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Abstract—Recent studies have shown that the lack of knowl-
edge among users on how to respond to time-varying prices and
the lack of effective home automation systems are two major
barriers for fully utilizing the advantages of real-time pricing.
Therefore, there has been a growing interest over the past
few years towards developing automated energy consumption
scheduling (ECS) devices to constantly monitor the hourly prices
and schedule the operation of users’ controllable load to minimize
their energy expenditure. While the prior results in using ECS
devices are promising, all prior work are limited to small-scale
deployment of ECS devices. For example, in most cases, the users
that are equipped with the ECS devices are assumed to be part of
a microgrid or a feeder connected to a sub-station. In this paper,
we rather investigate large-scale deployment of ECS devices in
a power grid with several buses and generators. The price of
electricity at each bus is set according to the locational marginal
price (LMP) at that bus. We show that a key challenge in large-
scale deployment of ECS devices is load synchronization. However,
we propose to use a moving average smoothing mechanism for
LMPs that can fix the load synchronization problem and stabilize
the system. Furthermore, we show that the proposed large-scale
ECS system has a close to optimal performance in terms of
reducing peak-to-average-ratio in load demand, minimizing the
total power generation cost, and lowering users’ electricity bills.

Keywords: Energy consumption scheduling, large power grid,
load synchronization, real-time pricing, locational marginal price.

I. INTRODUCTION

Real-time and time-of-use electricity pricing models can

potentially lead to several economic and environmental advan-

tages compared to the current commonly used flat rates. In par-

ticular, they can provide power consumers with the opportunity

to reduce their electricity expenditure by responding to pricing

that varies at different times of day and is higher at peak load

hours [1]. Furthermore, they can help utilities and independent

system operators to reduce the peak-to-average-ratio (PAR) in

aggregate load demand which can lead to minimizing the need

for building new power generation capacities [2].

Despite several advantages that real-time, time-of-use, and

other non-flat pricing models can offer, recent studies have

shown that the lack of knowledge among users about how to

respond to time-varying prices and the lack of effective home

automation systems are two major barriers for fully utilizing

the benefits of non-flat electricity pricing tariffs [3], [4]. In

fact, most of the current residential load control activities are

operated manually. This makes it difficult for users to opti-

mally schedule the operation of their appliances in response

to the hourly updated pricing information they may receive

from the utilities in a non-flat pricing program. For example,

the experience of the real-time pricing program in Chicago, IL

has shown that although the price values were available via

telephone and the Internet, only rarely did households actively

check prices as it was difficult for the participants to constantly

monitor the hourly price values to respond properly [5].

To tackle the problems with manual load control, there

has been a growing interest recently towards using automated

energy consumption scheduling (ECS) devices [6]–[12], sim-

ilar to the one shown in Fig. 1. In this setup, each user is

equipped with an ECS device, e.g., in its smart meter, which is

assumed to be connected to a smart power distribution system

with a two-way digital communication capability through

computer networking [13]. Based on the updated pricing

signals that the ECS device receives from the utility through

the available communications infrastructure, and also given

the users’ personal energy needs, the ECS device optimally

schedules the energy consumption for the users’ controllable

load such that it can minimize the users’ daily or monthly

electricity expenses. The use of ECS devices is recommended

not only for residential consumers [6] but also for industrial

consumers [14]. Furthermore, there have been companies that

have already started offering commercial ECS devices for

home automation products, e.g., see [15].

While the prior results in using automated ECS devices in

smart grids have been very promising, all prior work along this

line of research have been limited to small-scale deployment

of the ECS devices. For example, in most cases, the users that

are equipped with the ECS devices are assumed to be part of

a microgrid or part of a small feeder in a distribution line that

is connected to a single generator or a sub-station. Therefore,

in this paper, we rather investigate large-scale deployment of

ECS devices in power grid such as the one shows in Fig. 2.

The price of electricity at each bus in this system is assumed to

be set according to the locational marginal price (LMP) at that

bus. Note that, most existing deregulated electricity markets in

the United States currently use LMPs to settle various bulk sale

and ancillary service transactions [16]. Although setting retail

prices according to LMPs is still not a common practice in

most regions, it is recently shown that by reflecting the prices
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Fig. 1. An automated energy consumption scheduling device in a smart meter
[6]–[12]. The prices are obtained through a communications infrastructure.

in the wholesale market to the consumer side, users will be

better encouraged to consume electricity more efficiently [17].

We will show that a key challenge in large-scale deployment

of ECS devices is load synchronization. This problem can be

explained as follows. Every time the electricity prices, i.e., the

LMPs, are set, the ECS devices move their load from high-

price hours to low-price hours in an attempt to minimize their

energy expenditure. However, this will in turn overload low-

price hours, making them high-price hours in the next iteration,

and underload high-price hours, making them low-price hours

in the next iteration. This causes constant fluctuations in the

electricity prices and makes the system unstable. To tackle

this problem, we propose to use a moving average smoothing

mechanism for LMPs. Our simulation results show that the

proposed approach works well and can assure system stability.

Furthermore, we show that the proposed large-scale deploy-

ment of ECS devices has a very close to optimal performance

in terms of reducing PAR in the aggregate load demand,

minimizing the total power generation cost in the system, and

reducing each user’s individual electricity bill payments.

The rest of this paper is organized as follows. The system

model is explained in section II. The interactions between the

grid operator and the ECS devices is discussed in Section III.

Simulation results are presented in Section IV. The conclu-

sions and future work directions are discussed in Section V.

II. SYSTEM MODEL

Consider a power grid system, such as the IEEE 24-bus

system in Fig. 2(a). Let B, with cardinality B, denote the set

of buses in the system. For each bus i ∈ B, let Ni, with

cardinality Ni, denote the set of users connected to bus i.
Clearly, if bus i is not a load bus, then we have Ni = 0.

For each load bus, we assume that each user is equipped with

an ECS device. An example for the case of bus 8 with N8

users is shown in Fig. 2(b). The price of electricity at each

load bus is set according to the locational marginal price at

that bus. Let LMPh
i denote the locational marginal price at

load bus i at hour h. Consider an H > 1 hours ahead energy

consumption scheduling problem for a user n ∈ Ni connected

to bus i. Note that for day-ahead planning, we have H = 24.
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Fig. 2. An example for large-scale deployment of automated ECS devices:
(a) An IEEE 24-bus power system with 16 load buses. (b) The set of N8

users, equipped with ECS devices, that are connected to bus 8. The retail
price of electricity at each bus is set according to the LMP at that bus.

Given the following H × 1 price vector

LMPi = [LMP 1
i , LMP 2

i , . . . , LMPH
i ], (1)

the ECS device in user n’s smart meter is responsible for

scheduling the operation of all user n’s controllable load such

that user n’s daily energy expenditure is minimized.

For each user n, let An denote the set of all appliances

that have controllable / shiftable load. Examples for such

appliances may include washer, dryer, dishwasher, and plug-in

hybrid electric vehicles. For each appliance a ∈ An, we define

an energy consumption scheduling vector as

xn,a = [x1
n,a, x

2
n,a, . . . , x

H
n,a]. (2)



Let En,a denote the total energy needed to finish the operation

of appliance a. For example, En,a = 16 kWh for a sedan

electric car with 40 miles daily driving range [1]. Furthermore,

for each appliance a, the operation needs to be scheduled

within a time frame [αn,a, βn,a], where 1 ≤ αn,a < βn,a ≤ H .

These parameters are set by user n based on his energy

consumption needs for each appliance. For example, user n
may set αn,a = 1:00 PM and βn,a = 5:00 PM for the operation

of a dishwasher after lunch table and before diner. Of course,

the time duration βn,a − αn,a must be larger than or equal to

the time needed to finish the normal operation of appliance a.

To assure on time operation of appliances, it is required that

user n’s ECS device fulfills the following constraints

βn,a∑
h=αn,a

xh
n,a = En,a. (3)

Furthermore, it is required that

xh
n,a = 0, ∀ h ∈ H\Hn,a, (4)

where

H = {1, . . . , H}, and Hn,a = {αn,a, . . . , βn,a}. (5)

Finally, we note that some appliances may have some mini-

mum standby power γmin
n,a and/or some maximum supported

power γmax
n,a . In that case, it is also required that

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀ h ∈ Hn,a. (6)

For notational simplicity, for each user n, we introduce a new

vector xn, which is formed by stacking up energy consumption

scheduling vectors xn,a for all appliances a ∈ An. In this re-

gard, we can define a feasible energy consumption scheduling

set corresponding to user n as follows:

Xn = {xn | ∑βn,a

h=αn,a
xh
n,a = En,a,

xh
n,a = 0, ∀ h ∈ H\Hn,a,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀ h ∈ Hn,a} .

(7)

An energy consumption schedule calculated by the ECS unit

in user n’s smart meter is valid only if we have xn ∈ Xn.

For each user n ∈ Ni at bus i, the total electricity bill within

the scheduling horizon of interest is calculated as

H∑
h=1

LMPh
i ×

(
Lh
n +

∑
a∈A

xh
n,a

)
, (8)

where Lh
n denotes the total load of user n at hour h due to his

appliances that have non-controllable load. Examples for such

appliances may include lights, refrigerator, television and other

entertainment devices. Note that the operation of appliances

with non-controllable load is not scheduled by ECS devices.

To minimize user n’s energy expenditure, the ECS device in

user n’s smart meter should solve the following optimization

problem across appliances that have controllable load:

minimize
xn∈Xn

H∑
h=1

LMPh
i ×

(
Lh
n +

∑
a∈A

xh
n,a

)
. (9)
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Fig. 3. Interactions between the grid operator and the ECS devices. (a) The
electricity prices are set based on the original LMPs. (b) The electricity prices
are set based on a smoothed version of LMPs in order to enforce stability.

Note that the above optimization problem can capture the

behavior of each user’s ECS device. Next, we investigate the

interactions between the ECS devices and the grid operator

when the ECS devices are deployed in a large scale.

III. OPERATOR-USER INTERACTIONS

If the ECS devices are deployed only in small scales, e.g.,

in a microgrid or in a single distribution feeder as in [6]–[12],

the operation of ECS devices may not have any impact on the

LMPs. However, if the ECS devices are deployed in a larger

scale and at several buses, such as in the power system in Fig.

2, then the operation of the ECS devices may have a significant

impact on the LMPs at different buses as we explain next.

Let Xh
i denote the total load at bus i at hour h. Once all

ECS devices set the load by solving problem (9), we have

Xh
i =

∑
n∈Ni

(
Lh
n +

∑
a∈An

xh
n,a

)
. (10)

Using the standard power system dispatch control model in

[18], at each hour h, the grid operator can solve the following

optimization problem to calculate the LMPs at each bus:

minimize
Gh

i , ∀i

B∑
i=1

Ci

(
Gh

i

)
(11a)

subject to
B∑
i=1

Gh
i −

B∑
i=1

Xh
i = 0 (11b)

B∑
i=1

fk,i × (Gh
i −Xh

i ) ≤ Fmax
k , ∀ k ∈ K (11c)

Gmin
i ≤ Gh

i ≤ Gmax
i ∀ i ∈ B, (11d)

where Gh
i denotes the amount of dispatched power generation

at generator bus i at hour h, Ci(·) denotes the cost function

for the generator at generator bus i, K denotes the set of

all transmission lines in the system, fk,i denotes the [19]

injection shift factor to transmission line k from bus i, and



Fmax
k denotes the transmission limit of transmission line k.

Finally, Gmin
i and Gmax

i denote the minimum and maximum

generation range for the generator at bus i. Clearly, if bus i
is not a generation bus, then we have Gmin

i = Gmax
i = 0.

Assuming that power loss is negligible on transmission lines,

the formulation of LMP at bus i can be written as [20], [21]:

LMPh
i = λ+

K∑
k=1

fk,i × μk, (12)

where K denotes the number of transmission lines, i.e.,

the cardinality of set K, λ denotes the Lagrange multiplier

corresponding to the energy balance constraint in (11b), and

μk denotes the Lagrange multiplier corresponding to the line

capacity constraint in (11c) for transmission line k ∈ K.

A. Decentralized Model
The interactions between the grid operator and ECS devices

can be analyzed under the real-time pricing framework in [22].

Given the price values, i.e., vector LMPi at each bus i, the

ECS devices schedule the load based on the optimal solution

of problem (9). In turn, if the updated load profiles are replaced

in optimization problem (11), the resulted LMPs can become

different from the original values. This is shown in Fig. 3(a).

Note that, the message exchanges are supported through the

two-way digital communications capability which is expected

to be available in the future smart grid [1]. The key question

is: Do the back and forth iterations between the grid operator
and the ECS devices converge to any fixed point?

To answer this question, we perform a simulation based on

the power grid topology in Fig. 2. The detailed simulation

setup is explained in Section IV. As shown in Fig. 4, the ob-

jective value of the generation dispatch problem (11), i.e., the

total cost power generation in the system, does not converge.

The fluctuations in this figure can be explained as follows.

Every time the prices are set, the ECS devices move their

load from high-price hours to low-price hours. This will in turn

overload low-price hours, making them high-price hours in the

next iteration, and underload high-price hours, making them

low-price hours in the next iteration. This problem is referred

to as load synchronization [6]. While load synchronization

does not have a major impact on electricity prices when the

ECS devices are deployed only in a small scale, large-scale

deployment of the ECS devices can cause significant instability

in the price signals as well as the aggregate load profiles, as

it is evident from the simulation results in Fig. 4.
Next, we propose a moving average smoothing mechanism

for LMPs to resolve the load synchronization problem. Let

LMPi[t] denote the locational marginal price vector at bus

i that is obtained by solving optimization problem (11) at

iteration t ≥ 1. We introduce a smoothed version of LMPi at

iteration t, denoted by LMPi[t], to be calculated as follows:

LMPi[t+ 1] = (1− ηt)LMPi[t] + ηt LMPi[t], (13)

where 0 ≤ ηt ≤ 1 is an iteration-dependent step-size. Choos-

ing a diminishing step-size can particularly assure convergence

to a fixed point. Therefore, we select ηt as

ηt =
t0

t0 + t− 1
, (14)
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Fig. 4. The fluctuation in total power generation cost in the system when
the electricity prices are set based on the original LMPs as in Fig. 3(a).
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Fig. 5. The total power generation cost in the system when the electricity
prices are set based on the smoothed version of LMPs as in Fig. 3(b).

where t0 ≥ 1 is a fix parameter. As iteration number t → ∞,

step-size ηt → 0. In the new model, the interactions between

the grid operator and the ECS device becomes as in Fig. 3(b).

The simulation results in this case are also shown in Fig. 5.

Note that, once the price signals sent to the ECS devices

converge to a fixed point, the load profiles will also stop

changing and the whole system reaches an equilibrium.

B. Centralized Model

Before we conclude this section, it is worth emphasizing

that the interaction between the grid operator and the ECS

devices shown in Fig. 3 is due to the fact that the utility /

grid operator does not usually have any centralized control

over the operation of users’ personal appliances. In fact, for

each user, the ECS device in his smart meter does not follow

the utilities commands. Rather it solely responds to the price

signals sent by utilities and aims to minimize the energy

expenditure specifically for its corresponding user. However, if

the grid operator does have direct control over the operation of

ECS devices, e.g., as in a direct load control (DLC) framework

[23], then the interactions between the grid operator and the

ECS devices would no longer be based on Fig. 3. Instead,

the operator would solve the following global optimization

problem and it would send the obtained optimal energy



schedules as a command signal to each corresponding ECS

device to enforce optimal energy consumption scheduling:

minimize
Gh

i , ∀i,
xn∈Xn, ∀n

B∑
i=1

Ci

(
Gh

i

)
(15a)

subject to
B∑
i=1

Gh
i −

B∑
i=1

Xh
i = 0 (15b)

Xh
i =

∑
n∈Ni

(
Lh
n +

∑
a∈An

xh
n,a

)
(15c)

B∑
i=1

fk,i × (Gh
i −Xh

i ) ≤ Fmax
k , ∀ k ∈ K (15d)

Gmin
i ≤ Gh

i ≤ Gmax
i ∀ i ∈ B, (15e)

where Xh
i acts as an auxiliary variable. Recall that, in (11),

Xh
i was a known constant. The centralized design in (15) is

not the focus of this paper as it may not be practical as users

could be reluctant to relinquish full control of their load to

utilities. Nevertheless, the solution of optimization problem

(15) can provide a benchmark to assess the performance of our

proposed distributed design in Section III-A, when it comes to

minimizing the total cost of power generation in the system.

IV. PERFORMANCE EVALUATION

To assess the performance of the distributed ECS system,

we consider the IEEE 24-bus reliability test system [24]. It has

a maximum of 2650 MW total load at any hour. To alleviate

the computation burden and to better see the impact of energy

consumption scheduling in the overall system performance,

the scale of each user’s load is assumed to be relatively high,

such as the case for a major industrial unit. The total load

is distributed among 100 users located across all load buses.

Each user has both uncontrollable and controllable load.

A. Peak Shaving

To have a base for comparison, we examine the scenario

where no ECS unit is installed and users start their consump-

tion right after the start time αn,a and continue until the

operation of the appliance is done. This results in the load

curve shown in Fig. 6 with a PAR of 1.58. On the other

hand, when ECS systems are deployed, the PAR decreases

as users shift part of their controllable load from peak hours

to off-peak hours. This is shown in Fig. 6. For the results

in this figure, it is assumed that for each user about 50% of

the load is controllable. The PAR for the case of distributed

ECS is 1.32. The PAR further decreases to only 1.23 for the

case of centralized ECS. Recall from Section III-B that while

centralized ECS deployment may not be practical it provides

a benchmark to assess the performance of our proposed

distributed design in Section III-A.

B. Reducing Total Power Generation Cost

The total power generation cost in the system when the

portion of controllable load varies from 0 to 40% is shown
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Fig. 6. The daily load profile for various ECS deployment scenarios.

0 5 10 15 20 25 30 35 40
275

280

285

290

295

Controlable Load (%)

G
en

er
at

io
n 

C
os

t (
Th

ou
sa

nd
 D

ol
la

rs
)

No ECS
Centralized ECS
Distributed ECS

Fig. 7. The total power generation cost in the system versus the portion of
controllable load for various ECS deployment scenarios.

in Fig.7. We can see that although the proposed large-scale

distributed ECS deployment system cannot achieve the same

benchmark performance as in a centralized energy consump-

tion scheduling scenario, its performance is close to optimal

and much better than the case with no ECS deployment.

C. Benefit to Users

In addition to shaving the peak load and reducing the total

power generation cost in the system, large-scale deployment

of ECS devices can help each user reduce his electric bill.

This is shown in Fig.8, where 50% of the load is controllable.

We can see that all users on all buses can reduce their bill

compared to the case with no ECS deployment.

D. Collected Revenue by Utility

Fig.9 shows the collected versus intended revenue from the

users at different controllable load percentages. The collected

revenue is what users actually pay based on the smoothed

LMPs. The intended revenues are rather calculated based on

what users should have paid if we use the original LMPs.

Interestingly, although the smoothed LMPs that are used to

stabilize the price do not exactly match the original LMPs,

the total collected revenue is very close to (and even some-

times slightly higher than) the total intended revenue in all
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scenarios. Therefore, the proposed large-scale distributed ECS

deployment system can be of interest to utilities.

V. CONCLUSION AND FUTURE WORK

This paper represents the first step towards understanding

the challenges and opportunities in large-scale deployment of

automated energy consumption scheduling devices in smart

grids. To gain insights, we considered an IEEE 24-bus re-

liability test system with nine generator and 16 load buses.

We assumed that all users on each load bus are equipped

with an ECS device to obtain the updated price information

from the smart grid and accordingly schedule the operation of

the user’s controllable load to minimize the user’s electricity

bill. We showed that unlike the case when only a few users

are equipped with ECS devices, the large-scale deployment

of ECS devices can directly impact the electricity prices.

In particular, load synchronization can cause fluctuations in

locational marginal prices at different buses. We proposed to

fix this problem using a moving average smoothing mechanism

for LMPs. We showed that once this mechanism is applied, the

interactions between the grid operator and the ECS devices can

be coordinated such that a very close to optimal performance

is achieved in terms of reducing peak-to-average-ratio in load

demand, minimizing the total power generation cost in the

system, and lowering all users’ electricity bill payments.

The results in this paper can be extended in several direc-

tions. First, in addition to using a smoothing mechanism, new

pricing models can be examined to enforce stability. Second,

larger grid topologies with renewable power generators can be

considered. Finally, while we assume that users are price taker

and ignore the impact of their load on LMPs, the scenario

where users are price anticipator can be considered. The

interactions in this case can be studied, e.g., using game theory.
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