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Abstract—Data centers have diverse options to procure elec-
tricity. However, the current literature on exploiting these options
is very fractured. Specifically, it is still not clear how utilizing
one energy option may affect selecting other energy options.
To address this open problem, we propose a unified energy
portfolio optimization framework that takes into consideration
a broad range of energy choices for data centers. Despite the
complexity and nonlinearity of the original models, the proposed
analysis boils down to solving tractable linear mixed-integer
stochastic programs. Using experimental electricity market and
Internet workload data, various insightful numerical observations
are reported. It is shown that the key to link different energy
options with different short- and long-term profit characteristics
is to conduct risk management at different time horizons. Also,
there is a direct relationship between data centers’ service-
level agreement parameters and their ability to exploit certain
energy options. The use of on-site storage and the deployment
of geographical workload distribution can particularly help data
centers in utilizing high-risk energy choices, such as offering an-
cillary services or participating in wholesale electricity markets.
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time markets, reserve, renewable generation, energy storage.

I. INTRODUCTION

As a major energy consumer, a data center has various
options to procure electricity. For example, it may purchase
electricity from a retailer (RET), e.g., a utility company [1] or
a load serving entity [2]. It may also participate in wholesale
electricity markets, including the day-ahead market (DAM)
and real-time market (RTM) [3], [4]. Another option for data
centers is to enroll in ancillary service (ANS) programs [5]-
[7]. Data centers may also fully or partially operate by local
renewable (REN) power generators such as wind turbines [8]
and/or solar panels [9]. Some data centers also use on-site
energy storage systems (ESS) [10]. Geographically dispersed
data centers could also benefit from geographical workload
distribution (GWD), where the Internet and cloud computing
workload is routed towards data centers with lower electricity
prices or higher renewable generation availability [11], [12].

The above options are summarized in Table I. The last two
columns indicate whether the study takes into consideration
service-level agreements (SLAs) [13] or risk management
(RM) [14]-[16]. Note that, SLA is of importance in this
context in order to maintain an acceptable trade-off between
energy cost minimization and meeting the quality-of-service
obligations for various Internet and cloud computing services.
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TABLE I
SUMMARY OF REPRESENTATIVE RELATED LITERATURE

‘RET DAM RTM ANS REN ESS GWD ‘ SLA ‘ RM
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[171| v X X v X 4 X X X
[18] | X X X X X 4 X X X
[191 | v X v X v 4 X X X
[20] | X X X X X X X 4 X
[21]| X X X X X X X v X
[22]1| X X X X v X X v X
[231] v X X X v v X X X
[24]| v X X X v X v X | X

From Table I, the literature on addressing data centers’
energy options is very fractured. That is, most existing designs
are specific to only a small subset of available energy options.
Accordingly, it is still unclear how utilizing one energy option
may affect selecting other energy options. Addressing these
open problems is the focus of this paper, where we develop
an energy portfolio optimization framework for data centers.
The contributions in this paper can be summarized as follows:

1) Comprehensive Energy Options: The proposed energy
portfolio optimization framework encompass a broad
range of energy options for data centers, including all
nine items in Table I. The RM and SLA models are par-
ticularly detailed in terms of the statistical characteristics
of the Internet workload and other stochastic quantities.

2) Computational Efficiency: Despite the complexity and
nonlinearity of the original models that are used in our
comprehensive energy portfolio analysis, the proposed
unified energy planning decision making process boils
down to solving tractable linear mixed-integer programs.

3) Insightful Numerical Results: Using experimental elec-
tricity market and Internet workload data, the perfor-
mance of the proposed energy portfolio optimization
approach is evaluated in various case studies. It is ob-
served that different energy options differ in their short-
term and long-term profit characteristics. Accordingly,
the key to link different energy options is to conduct
RM at different time horizons. Also, there is a direct
relationship between a data center’s SLA parameters and
its ability to exploit certain energy options, such as ANS.
In this regard, the use of on-site ESS and the deployment
of GWD can particularly help data centers in utilizing
high-risk energy choices, such as ANS, REN, and RTM.

This paper is comparable also with the literature on energy



portfolio management in contexts other than data centers,
e.g., see [25], [26]. Here, the analysis includes energy options
that are specific only to data centers, such as geographical
workload distribution, which do not appear in other load types.

II. ENERGY MANAGEMENT OPTIONS
A. Retailer Market

A data center may procure its electricity power needs from
a retail utility company at rates that are often flar and based
on long-term bilateral contracts that are sometimes negotiable
between the data center and the utility company. We denote
the price and the quantity of power that is purchased at time ¢
from the utility company by wrgr[t] and Lrgr[t], respectively.

B. Electricity Wholesale Market

In most U.S. markets, power purchase is done in two
settlements through day-ahead and real-time markets. The
day-ahead market is settled at about one day before the
operation time, while the real-time market is settled either
a few minutes before or after operation [27]. We denote the
amount of power that is purchased for operation at time ¢ from
the day-ahead market and the real-time market by Lpawm|[t] and
Lrrm(t], respectively. The price in these two markets at time
t are denoted by wpam[t] and wrrm[t], respectively.

By procuring electricity from the wholesale market instead
of a local utility company, data centers can avoid the insurance
premiums, service charges, and mark-up that utilities may
include in retail rates. However, a key challenge in procuring
power directly from the wholesale market is price uncertainly,
especially in the real-time market. This can expose data centers
to the risk of facing volatile electricity expenditure [3].

C. Local Renewable Generation

Depending on their locations, data centers can use various
on-site renewable generation options, such as wind turbines
[8] and/or solar panels [9]. However, renewable generation is a
challenging power procurement option due to its intermittency
and stochastic nature. We assume that the amount of local
renewable generation at the data center at time ¢ is denoted by
random variable Grgn|[t] with a known probability distribution.

D. Offering Ancillary Services

Traditionally, ancillary services are offered by generators
[27, Chapter 9]. However, large consumers, such as data
centers, are also eligible to register as load resources to offer
ancillary services [5], [28]. In this paper, our focus is on a data
center that offers spinning reserve [29]. Spinning Reserve, also
known as responsive reserve, is an on-line reserve capacity that
is ready to be dispatched within 10 to 15 minutes of receiving
a call signal from the power grid operator [30, Section 3].

For a data center that offers reserve service, the amount of
power reduction or power injection at time ¢ is Yans[t] Lans|[t],
where Lans is the reserve bid that is submitted to the day
ahead reserve market and Yans[t] is a binary parameter that
is 1 if the reserve capacity is actually called; and O otherwise.
In the case of receiving a call signal, the data center is not

allowed to purchase power from the real time market. The
spinning reserve service that is offered by data center at time
t is compensated by a capacity payment based on the total
offered capacity Lans[t] at rate wans[t], and a call payment
at rate wcar[t], only if the reserve is actually called [31].

E. Energy Storage

Data centers are often equipped with local energy storage
to supply backup power in case of power disruption. Energy
storage may also help data centers in lowering their energy
expenditure, e.g., by storing energy at low price hours and
releasing it at high price hours. We denote the energy storage
level at the end of time ¢ by Esrr[t]. We must always have

0 < Estr[t] < Egr°s (D

where EJi§" is the operational capacity of the storage units.
The electricity that is stored at storage units can be injected
into the data center to meet local demand, or into the power
gird to satisfy the reserve service obligation of the data center
once a reserve capacity call signal is received. In our model,
unless a reserve capacity signal is received, the data center is
not paid for the power that it may inject back to the grid [8].

F. Geographic Workload Distribution

As it is recently shown, e.g., in [8], [11], [12], [32], [33],
a group of geographically dispersed data centers can cut their
electricity bills by forwarding some of their workload to data
centers that face lower regional electricity prices or have more
available renewable generation. As we will see in this paper,
geographic workload distribution can also help in improving
service reliability in data centers, e.g., in case of regional
power disruption, unexpected reduction in available renewable
generation, or receiving a reserve capacity call signal.

III. ENERGY PORTFOLIO OPTIMIZATION

In this section, we seek to find the best mix utilization
portfolio of the diverse available energy options that we listed
in Section II. We divide the operating time of data center into
T successive time slots of lengths 7 minutes, e.g. 7 = 15.
First, we address the case of a single data center. The case
with multiple data centers is explained in Section III-I.

A. Internet Workload and Service Rate

At each time slot ¢, suppose the Internet workload arrives
at the data center with a general probability distribution with
average A[t], variance o%[t], and auto covariance function p;[t],
where [ = 1,2, ... is the lag time. Note that, these parameters
may change significantly during the day [34]. We assume that
each server can handle up to x service requests per second,
where k is a fixed parameter that depends on the computation
capability of the server and the type of service. Let Mt] <
M™% denote the number of servers that are switched on at
time slot t. We assume that the service requests that arrive to
the data center are queued upon their arrival, until they are
pulled out from the queue in a first come-first-served order to
be handled by one of the switched on computer servers. The



rate at which service requests are pulled out of the queue to
be handled by a computer server is

wlt] = M|t]k. )

Due to the wear and tear cost associated with switching
computer servers on and off, we assume that pu[t] is changed
only at the beginning of each time slot ¢, not on a moment-
by-moment basis. If the duration of time slots 7 is around 10
to 15 minutes, then this arrangement also meets the response
time requirement in most practical responsive reserve services.

B. Service Level Agreement

To satisfy the quality-of-service (QoS) requirements, the
queue waiting time for each service request must be limited
according to its SLA [13]. An SLA is identified by three
parameters D, d, and «. Parameter D indicates the maximum
queue waiting time that a service request can tolerate. Parame-
ter J indicates the service money that the data center receives
when it handles a single service request before deadline D.
Parameter ~ indicates the money that the data center must pay
to its customers every time it cannot handle a service request
before deadline D and consequently drops the request.

C. Power Consumption

For a data center, power usage effectiveness (PUE), denoted
by FElsage, is as the ratio of the data center’s total power usage
to the power usage at servers [35]. Let Piver denote the
average power usage of a switched on computer server, while
it is handling a service request. Assuming full CPU utilization
for all switched on servers, the total power consumption of
the data center at time slot ¢ is calculated as [8], [36]:

Power Consumption = ¢ pu[t], 3)

where ¢ = Eysge Peerver/ & and the equality is due to (2).

D. Operational Energy Cost

The operational energy cost of a data center depends on the
realizations of various random parameters, ranging from the
output of its local renewable generators to the cleared market
prices and whether or not the data center receives a reserve
capacity call signal. At each time slot ¢, we assume that the
statistical characteristics of random variables wpam|[t], wrtm|[t],
GRren[t], wans[t], Yans[t] and wear[t] are modeled by K sce-
narios. These scenarios can be generated, e.g., from historical
data, or from a joint probability distribution, say, using the
Monte Carlo method [37]. For each scenario k£ = 1,..., K,
we denote the realizations of the random variables as wf ,\,[t],
witrwlt): GRenlt], whns[t], Yis[t] and wésy [t]. Recall that the
retail electricity price wrgr[t] is a known and fixed parameter.
Also note that, since the real-time market bids are selected at
the time of operation, they too depend on the realizations of
random scenarios. Accordingly, we denote them as Lk [t].

Under random scenario k£ and during time slot ¢, the total
power draw of the data center from the grid is calculated as

Lrer[t] + Loam(t] + (1—Ians[t]Yixs[t) L[t )

where
Inns[t] = I (Lans[t] > 0). @)

Here, I(-) is a 0-1 indicator function. If Lans[t] = O, then
Ians[t] = 0. If Lans[t] > 0, then Tans[t] = 1. To understand
the last term in (4), recall from Section II-D that if the data
center offers reserve service, i.e., Ians[t] = 1, and it receives a
reserve call signal under scenario k, i.e., Y/st [t] = 1, then the
data center must not procure power from the real-time market.

Similarly, the operational energy cost of the data center
during time slot ¢ and under random scenario k is obtained as

Lrgr[tlwrer[t] + Loam[tlwpamlt]

+ (1 = Ians[t]Yins [t]) Ligrm [lwrmm [t]- ©

E. Service Rate Allocation
From (3) and (4), at each random scenario k£ and each time
slot ¢, the following power balance equation must hold:
Lrer[t] + Loam[t] + (1 — Ians[t]Yaxs [H]) Liru[t]
= ¢ p*[t] — GRenlt] + (Este[t] — st — 1)) /7,
where 1*[t] is the service rate at time slot ¢ under scenario
k. Note that, the second and the third terms on the right hand

side in (7) incorporate the impact of local renewable generator
and energy storage unit, respectively. We can rewrite (7) as

)

i) = %[LRETM + Lpaml[t]
+ (1 — Ians[t]YAxs[t]) Lispm 1] ®)
+ Giex(t] — (Esr[t] — Estr[t — 1])/7].

FE. Operational Revenue

The operational revenue of a data center may come from
two sources: (a) the revenue due to offering Internet and cloud
computing services, and (b) the revenue due to offering reserve
service to the power grid. At each time slot ¢ and under random
scenario k, these revenue streams are calculated as

TA[ (6 — (6 4+ 7)q(k"[t])) 9)

and

Lans[tlwins[t] + Lans[t]Y s [Hlwéar: (10)

respectively. First, we explain (9). Here, ¢(-) denotes the
probability that an arriving service request is not handled
before its SLA-required deadline. This probability is a function
of service rate ;*[t]. From the analysis in [38], we have

1
a(p) = a(p) exp (2 min mn(ﬂ)> ; (11)
where

(= A>2 T
252 12
a(p) = )\\/70'6 / dr (12)

o

a2

mp(p) = (Dp —:111(;; A)) , Vn>1. (13)

no? +2 l; pu[t](n —1)



The above model is based on the assumption that service rate
is higher than average service request arrival rate. An extension
of (11) when this assumption is relaxed is given in [39]. As
for the model in (10), the first term is the reserve capacity
payment and the second term is the reserve call payment.

G. Risk Management

The profit for a data center can be calculated as the data
center’s revenue minus its cost. In presence of uncertainty, it
is natural to seek to maximize the expected profit. However,
such average-sense profit maximization approach does not
take into consideration the distribution of the profit under
different realizations of the random parameters in the system.
Accordingly, it would still be possible that the data center faces
very low profit under certain random scenarios. In this section,
we address this shortcoming by restraining the average profit
of a data center above a specified threshold, for the random
scenarios where the data center’s profit takes low values. We
note that, the total profit of a data center over 7' time slots is
a stochastic variable with the following sample space:

T
U = {meﬁt’“[t] ‘ 1§k§K}
t=1

where Profit"[t] is the profit of data center at time slot ¢
under the kth random scenario. A model for Profit*[t] will be
provided later in Section III-H. Note that, from the discussions
in Section III-D, some of the elements in ¥ may be repeated.

In order to restrain the risk of low profit, we seek to keep the
expected value of the total profit within the /3 fractile lowest
profit random scenarios, above a design threshold I':

(14)

Average of 3 Fractile Lowest Total Profit Values > I"

= (15)

Average of [ Fractile Lowest Elements in ¥ > I')

where 3 € [0, 1] is a design parameter. A typical value for (3 is
0.1. A higher IT" indicates a risk averse design while a lower
T' indicates a risk seeking design [40]-[43]. The choice of
parameter I' depends on the financial obligations that one faces
in operating a data center. For example, even though a data
center operator’s ultimate goal is to maximize annual profit;
it may face financial obligations to make monthly, weekly, or
daily payments corresponding to facility charges or equipment
mortgages. As a result, the operator needs a mechanism to
assure a minimum short-term revenue to cover these charges
in presence of uncertainty. The amounts of such short-term
charges would directly translate to parameter I'.

To obtain a mathematical expression for the risk manage-
ment constraint in (15), we first sort the elements in set ¥ in
an ascending order to obtain the following set:

T = Sort (1), T <. < TN (16)
From (16), the constraint in (15) is equivalent to
BK —k
> x >T. (17)
BK
k=1

Next, we note that, from [44, Definition 3], we have

T L g
CVaRy_g | — Proﬁt[t]) = —
(-2 >

k=BK
K
& BK T S BK
K W
2R

where CVaR denotes the standard operator for conditional
value at risk [44], [45]. From (17) and (18), we can express
the risk restrain constraint in (15) as

T
—CVaR, g (— Zproﬁt[t}> >T.
t=1

Note that, since CVaR is a combinatorial operator that takes
the expected value of a sorted set, the minus signs inside and
outside the CVaR function in (19) do not cancel out each other.

19)

H. Risk-aware Profit Maximization Problem

From the expressions in (6), (9), and (10), the data center’s
profit at time slot ¢ under scenario k is calculated as

Profit”[t] = TA[t](8 — (8 + 7)q(1"[¢]))
+ Lans[t]wislt]
+ Lans[t]Yis[tlwéar
— Lygr[tlwrer[t] — Loau[tlwpam(t]
— (1 — Tans[t)Ys [6]) Ligrm [Eloogrm t]-

Therefore, the risk-aware energy portfolio optimization prob-
lem for a data center over T time slots is formulated as

(20)

T 1 K
k
max ;?;Proﬁt [t]
st. Egs. (1),(5),(8), (11), (20), t=1,...,T
T
—CVaR, g (ZProﬁt[t}) >T,
t=1 o1

From [44, Theorem 16], the last constraint in (21) can be
reformulated and equivalently expressed as

T
ZProﬁtk[t]—FC—FmZO, k=1,...,K,
t=1

e > 0, k=1,...,K, (22)
K
11
== <-r
¢+ BK > < -T,
k=1
where ¢ and 7 for all £ = 1,..., K are auxiliary variables.

By replacing the last constraint in optimization problem (21)



with the set of inequalities in (22), the optimization problem
(21) can be equivalently expressed as

T 1 K
k
max Z?ZProﬁt ]
t=1 k=1
st. Egs. (1),(5),(8),(11),(20), t=1,...,T
T
> Profit*[t] + ¢+ me >0, k=1,...,K, (23)
t=1
nkZOa k:17"'7K7

11 &
—— < T
<+5Kk§=1"’“—

By solving optimization problem (23), we maximize the
expected value of the profit subject to risk management con-
straints and several other operational constraints with respect
to the diverse energy options that we listed in Section II.

1. Coordinated Geographically Dispersed Data Centers

In this section, we assume that the Internet and cloud
computing workload is handled by N > 2 geographically
distributed but coordinated data centers. The Internet workload
is first received by a front-end web server and then distributed
among data centers. For the case with multiple data centers,
notations Lrer, Lpam, Lrrm, Gren, Ians, Lans, Yans and
Egtr are replaced with L; Ret, L, pam, Li rtm» G RENs 15 aNS,
L; ans, Yians and Ej; gt corresponding to data center i.
Precisely, we denote the electricity price at retail market,
day-ahead market and real-time market at the location of
ith data center within time slot ¢ by w; rer[t], w; pam[t] and
w; rTM[t] respectively. Also, the amount of available renewable
generation at the location of ith data center within time slot ¢
is denoted by G; ren[t]. Moreover, Y; ans[t] € {0, 1} indicates
whether a reserve capacity call signal is received at ¢th data
center within time slot ¢. For the time slot ¢, ¥; ans[t] = 1
means a reserve capacity call signal is received by the tth
data center, while Y; ans[t] = 0 means no capacity call signal
is received by the ith data center. The reserve capacity price
and reserve call price at the location of data center ¢ and within
the time slot ¢ are denoted by w; ans and w; car. respectively.

Let I; ans[t] € {0,1} denote whether data center  partic-
ipates in the reserve market at time slot ¢. Specifically, for
each time slot ¢, I; axs[t] = 1 means that data center ¢ does
participate in the reserve market, while I; ans [t] = 0 means
that data center ¢ does not participate in the reserve market.
Similar to the discussion in Section III-D we have

I; ans[t] = I (L; ans[t] > 0)

where, () is defined in Section III-D.

At each time slot t, we assume that the statistical charac-
teristics of random variables w; pam[t], wirtm[t], Girenlt],
wi ans[t], Yians[t] and w; caL[t] are modeled by K random
scenarios. For each random scenario k = 1,..., K, we denote
the realizations of the random variables as wfpap[t], W grmlt],
Glrenlt]s Wi ans[t] Yians[t] and wlca [t]. Also, let L; ger[t],
L; pam[t] and L; ans[t] denote the bid of data center ¢ within

(24)

time slot ¢ at retail electricity market, day ahead electricity
market and reserve market, respectively. Let L;?,RTM [t] denote
the ith data center bid at real time market at time slot ¢ and
under scenario k. Finally, E; str is the charging/discharging
schedule of data center ¢ within time slot ¢.

Let A\F[t] denote the average of Internet workload that is
forwarded toward data center ¢ from the front-end web server
within time slot ¢ and under the realization of kth scenario.
Under each random scenario k, the total outgoing traffic at the
front-end server must match the total arriving workload:

N
SN =M k=1,... K (25)
=1

Moreover, we assume that the service requests that are for-
warded to the ¢th data center from the front-end web server
are selected randomly from all arriving service requests to the
front-end web server. Therefore, based on basic Statistics [46,
Theorem 6.14], the variance and autocovarince of the Internet
workload that is received by ¢th data center within time slot ¢
and under kth scenario are obtained as

9 ki 2 ki 2
oM = @E) 21, okl = C[?) alt]. (26)

Next, let p*[t] denote the service rate of data center i at time
slot ¢ and under random scenario k. Similar to the discussion
in Section III-E, we have

Wil =5

L; rer[t] + Li pamlt]

+ (1 - Ii,ANS [t]Yil,cANs [t])Lf,RTM [t]

+ Glexlt] — (Bistwlt] = Bislt = 1)/7]-
27)

Suppose the communication cost to transmit the workload

from the front-end web server to data center i is & A;[t].

Similar to the discussion in Sections III-F and III-H, the total

profit of the data centers under scenario k is obtained as

EN: ET: Profit”[],

=1 t=1

(28)
where

Profitf[1] = TAL[11(0 — (6 +7)a: (ufTt]), AFTH) — €AE A
+ L ans [t]wf, Anslt]
+ Lianst] Yi],gANS [t]%k,CAL
— Li rer[tlwi rer[t] — Lipam[tlw) pam [t]

—(1- I; aNs [t])/i],cANS [t])Lf,RTM [t]wﬁRTM [t].
(29)

and

T ALTED = a6 A exp (5 min 1))
B (30)



As in (12) and (13), we have

i A1) = (e (L 21D

) /ravEati)

o _ (r=akp)?
[ = ukitne 0 a,
pilt]
(31)
and
k k[ _ 2k 2
o (4 [1]) = (Dpi’[t] + n(pi[t] = A7[H)) Cvn> 1 (32)

n—1

112
noflt]” +2 30 pfyltl(n —1)

Similar to the discussion in Section III-G, the average total

profit over [ fractile lowest profit random scenarios is kept

above a threshould I, if the following inequality holds:

f: > Profit} [t]) >T.

—CVaR;_g (— (33)

i=1 t=1
We seek to maximize the aggregated expected profit of all data
centers. Different from the single data center case in Section
III-H, here, )\f[t] fori=1,..., N is an optimization variable.
The following risk-aware energy portfolio optimization prob-
lem gives the optimum operation variables of data centers:

T
Z;Zme
k=11:=1
s.t.  Egs. (24),(25),(27),(29), (30) vt i, k,
N T
—CVaR, g ( ZZProﬁtf[t]) >T
i=1 t=1 (34)

Similar to the discussion in Section III-H, from [44], [47], the
optimization problem (34) can be equivalently expressed as

| KX
Z?ZZProﬁt’?

1i=1
st. Egs. (24,(25),( 7), (29), (30)

Vi, i, k,
T N
D> Profit] [t] + ¢+ mx > 0, VE,  (35)
t=1i=1
M > 0, vk,
11 &
¢+ K ;m <-T

If N =1, then problem (35) reduces to problem (23).

IV. SOLUTION METHOD

Problem (35) is a mixed-integer nonlinear program, which
is hard to solve. Notice that, even if we relax the binary
constraints in (24), problem (35) is still hard to solve due to
the non-convex bilinear terms L} gry[t]1] sns[t], Vi, Yk in (27)
and (29). In this Section, we first propose a solution approach

based on combining convex programming with the branch-
and-bound method [48]. This approach is guaranteed to give
the optimal solution of the problem in (35). After that, we will
also propose an approximate solution for the problem in (35)
which is based on mixed integer linear programming (MILP)
and can be solved efficiently, e.g., using CPLEX [49].

We start by pointing out that we can replace the expression

(1 —1I; ans|t] }/il,cANS [t] )LZZC,RTM [t]

with LﬁRTM [t] in (27) and (29) by introducing the following
inequality as a new constraint to the problem in (35):

0.< L] (1= Lws (Vs 1) (:1™0),

where £M™ ¢ is the maximum value that L} gp\[t] can take.
To see this, we note that from (36), if I; ans[t]Y; ans = 1, then
LY grmlt] is forced to zero. Hence, the value of L ppylt] is
the same as that of (1 —I; ans[t]Y;"sns[t]) LY grm[t], as long as
Ii,ANS [t]Y—i,ANS = 1. Furthermore, if Ii,ANS[t]Y;,ANS = 0, then
1—I; ans[t]Y;"yns[t] = 1 and the value of LY gp\[t] is again the
same as that of (1—1; axs[t]Y;¥sng[t]) L¥ gra[t]. After replacing
(1—Lians [ Y s (1) L row[£] in (27) and (29) with LE gy 1],
and adding (36) as a new constraint to (35), the following
optimization problem is obtained which is equivalent to (35):

Z%ZZ%Mﬂ

(36)

t=1 k=11i=1
s.t. Eqs (25) (30) Vt,i, k,
ZZProﬁt ]+ ¢+ >0, VE,
t=1 1=1
M > 0, vk,
K
1
tER S
0 < Ligrult] < (1= I ans[t]Y ans[t]) £M™ ¢,
37
where
Profit} [t] = TAF[t](8 — (6 + 7)qi (uF[t]), A [t]) — &AF[t]

+ Li ans[t]w; ANS[ |+ Lianslt ]Yi]fANs [t]wﬁCAL
L; rer[tlwi rer[t] — Lipam [t]wik;DAM [t]

- Li,RTM [t]wf,RTM [t],

(38)
and
MMZ%LMWHIme+mmM
+ Gl 59
— (Bistr[t] — Eisr[t —1])/7|.

Note that, from [39, Theorem 2], q;(u¥[t], \¥[t]) in (30) is a
convex function of p¥[t]. Also, from (26), ¢;(uF[t], \¥[t]) in
(30) is a function of uF[t]/A\¥[t], i.e., it depends on only the
ratio of p¥[t] and AF[t]. Therefore, from [50, Proposition 4],
e[t qi (uE[t], AE[t]) is jointly convex over p¥[t] and A¥[t]. As
a result, the profit model in (38) is convex and therefore the
optimization problem (37) is a mixed-integer convex program.



It can be solved with guaranteed optimality using convex
programming and branch-and-bound method [48].

In practice, a complicated convex function such as
et qi (uF[t], ANk [t]) is often approximated by piecewise linear
or piecewise quadratic functions to facilitate applying numer-
ical convex programming algorithms, c.f. [51, Section 10.4],
[52, Section 13.5], and [53]-[58]. Similarly, in this paper, we
replace A¥[t]q; (¥ [t], \¥[t]) in (38) with its two-dimensional
piece-wise outer-linearized approximation [59]:

[t = mgX{Ap,i[f]Mf [t] + BpaltI\F[t] + Cplt]}. (40)
where A, ;[t], Bp;[t] and C,;[t] are the parameters of the
tangent plane to AF[t]q; (uf[t], AF[t]) at (u3[t], A5[t]). Here,
linearization is done at P different points (u[t], As[t]), where
p=1,..., P. Note that, any desirable accuracy can be reached
if P is large enough. In fact, from [60, Proposition 6.4.1], we
have:

A [a (uf 18], AT ) = Jim 2 [t).

41
P—oo ( )
From (38), minimizing the objective function in (37) in-

volves minimizing z¥[t]; accordingly, we can replace (40) with
2 [t] > {Apaltluf [t] + By altIAT[t] + Cpilt]} Vp.

After substituting the term A¥[t]q;(uF[t], \F[¢]) in (38) with
2F[t] and adding the constraint in (42) to the problem (37), the
problem (37) becomes a mixed integer linear program and can
be solved with existing software such as CPLEX and MOSEK.

(42)

V. CASE STUDIES
A. Simulation Setting

Unless stated otherwise, we consider a data center with
M™ = 50,000 servers, Pier = 150 watts, Eygage = 1.2,
and x = 0.1. The SLA parameters are set as in [38], where
§=7x107°,~v=3.5x10"% and D = 0.3. The service rate
is updated every T' = 15 minutes. The default risk parameters
are = 0.1 and I = 80. The day-ahead and real-time market
prices are from PJM at [61]. The data for the reserve capacity
call signal is from PJM, based on its historical synchronized
reserve events [62]. The data for reserve capacity price is from
PIM [63]. We set Lcar, = Lrrm [64]. The PIM datasets are
from January 1, 2004 to January 30, 2004. The data for wind
speed is from [65], and the wind turbine power-versus-wind-
speed curve is from [66]. The statistical data of the workload
is from the web hits of Wikipedia on 9/19/2007 [67]. For the
case studies that involve only one time slot, the data is from
3:30 PM to 3:45 PM, which is one of the ten time intervals
at which PJM sent out a reserve capacity signal during the
studied period. For simulations that include one data center, we
use the loss probability model in [39], which is an extension
of the model in (11) to the entire range of service rate.

B. Impact of Risk Management Constraint

The optimum bids and the resulted optimal expected profit
over one time slot versus parameter I' are shown in Fig. 1.
For a data center that bids in the reserve market, the lowest
profit values occur in scenarios where a reserve capacity call
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Fig. 1. The impact of risk management parameter I': (a) optimal day-ahead
energy and reserve market bids, (b) expected profit, (c) CVaR of profit.
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Fig. 2. The profit values over 30 scenarios for a design that is: (a) risk
seeking, (b) risk averse. The profits are sorted in a descending order.

signal is received. In such scenarios, although the data center
gains a payment of Lanswgrrm that is not gained in other
scenarios without a reserved capacity call signal, such payment
is still much lower than the SLA revenue that the data center
loses due to dropping its service requests to lower its power
consumption. As the risk parameter I' increases the data center
becomes more risk averse and lowers its reserve capacity bids.

Next, we compare a risk averse design with I' = 50 and
a risk seeking design with I' = 80. The results are shown in
Fig. 2, where the profit values over the considered 30 random
scenarios are sorted in a descending order. The average per-
time slot profit is 156.61 and 159.00 for the risk averse and
risk seeking designs, respectively. However, the average profit
across the 10% lowest profit scenarios is 104.57 and 80.93 for
the risk-averse and risk seeking designs, respectively. There is
one scenario with negative profit under a risk seeking design,
while the profit is always positive under a risk averse design.

C. Impact of Renewable Generation

Suppose some wind turbines are installed at a data center.
Each turbine has a rated power output of 50 kW. The expected
profit and the optimal bids versus the number of wind turbines
are shown in Fig. 3. The profit increases as we increase the
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Fig. 4. The impact of power purchase from Retail Market (a) optimum bids,
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number of wind turbines. Also, as the amount of turbines
increases, the total electricity purchase, i.e., the summation
of day-ahead market bid and real-time market bid, reduces
in order to lower the electricity cost of the data center.
Furthermore, increasing the number of wind turbines allows
the data center to increase its real-time market and reserve
bids, because it can now rely on its local generation during
the time slots where it receives a reserve capacity call signal.

D. Impact of Power Purchase from Retail Market

Suppose the data center can purchase electricity also from
a retailer at fixed price wrgr = (1+¢€)E{wpam}, where € > 0.
Fig. 4 shows the optimum bids and the average profit versus
parameter e. When e is low, the data center procures a portion
of its energy needs from the retailer while it also bids to the
reserve market. This is because, by obtaining electricity from
the retailer at a flat rate, the data center is not exposed to high
prices. Consequently, the average profit in the 10% lowest
profit scenarios is kept above I' even when the data center
bids in the reserve market. As € increases, more electricity
is procured from the wholesale market than the retailer in
order to decrease the cost. The reserve bid is lowered so as to
increase the average profit in the 10% lowest profit scenarios.
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Fig. 5. The impact of changing SLA parameters on the data center operation:
(a) optimal bids, (b) average Lf{TM and (c) Average of profit and (d) CVaR
are shown for different ratios of d/+, where - is fixed and ¢ is changing.

E. Impact of SLA Parameters

The optimum bids and the resulted expected profit for
different ratios of SLA parameters /7 are shown in Fig. 5,
where I' = 60, v is fixed and J changes. From the results in
Fig. 5(a), as the ratio §/~ increases from 1.5 to 2, the day-
ahead and reserve market bids take increasing trends. This is
because, with higher values of §, the data center’s SLA revenue
in the 10% lowest profit scenarios can be kept above I" even
if fewer service requests are handled in scenarios where the
data center receives a reserve capacity call signal. Therefore,
without violating the risk management constraint, the reserve
market bid is increased such that the revenue from the reserve
service and consequently the average of profit increases. As
d/7 increases from 2 to 2.5, the optimum power purchase
from the day-ahead market remains fixed and equal to an
amount that is enough to handle all the service requests in
the scenarios without a reserve capacity call signal. However,
there is still one scenario in which all of the service requests
are dropped. Finally, when the ratio §/+ changes from 2.5
to 3, the SLA revenue is quite high, making it optimum not
to bid in the reserve market. Also, from the results in Fig.
5(b), when 6/ > 3, the optimum reserve bid is zero and
power is purchased from the real-time market, not the day-
ahead market. From the results in Fig. 5(c), the average profit
increases as the SLA parameter 0 increases. Finally, from the
results in Fig. 5(d), the CVaR is always kept above T.

F. Energy Portfolio Management Over Multiple Time Slots

In this section, we conduct energy portfolio management
over T' = 8 successive time slots, from 3:00 PM to 5:00
PM. The results are shown in Fig. 6. In single-time-slot
energy portfolio management, problem (23) is solved 1" times
for T time slots, where I' = I'sy = 80. In contrast, un-
der multiple-time-slots energy portfolio management, problem
(23) is solved only once but across all time slots, where
I'=Tp71 =TTsr = 8x80 = 640. As one would expect, the
per time slot CVaR is always above I'sr in the single-time-
slot design. However, the per time slot CVaR is below I'gr for
two time slots in the multiple-time-slots design because such
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design only keeps the CVaR of the fotal profit above I" ;7 and
does not impose any constraint on the per-time-slot CVaR. The
CVaR of the total profit is 726.64 for the multiple-time-slots
design which is above I'p;7. The CVaR of the total profit
for the single-time-slot design is 767.76. The average total
profit across all scenarios is 11,602 and 11, 670 for the single-
time-slot and multiple-time-slots designs, respectively. Hence,
single-time-slot energy portfolio management is more risk
averse than multiple-time-slots energy portfolio management.

G. Impact of Local Electricity Storage

Suppose the data center is equipped with an energy storage
system with capacity 100 KWh and also ten wind turbines
of the type in [66]. Energy portfolio management is done in
multiple-time-slots fashion over 7' = 96 time slots, i.e., an
entire day. We set I'y;7 = 96 x 80 = 7680. The storage unit
can take one of the following states at each time slot: charge,
discharge, and idle. Whenever a reserve capacity call signal
is received, either consumption is reduced by Lans, or the
storage unit is discharged at Lans. At those time slots where
the storage unit is discharged, its electricity output cannot be
injected into the grid, unless a signal for reserve capacity call
is received. Here, the data center is allowed to submit reserve
bids at time slots 28, 29, 30, 31, 38, 50, 63, 72, 73, 75 [62].

Fig. 7 shows the Internet workload, the average renewable
power generation, and the average of the real-time and day-
ahead market prices during the one day operation horizon. Fig.
8 shows the optimal bids and the optimal charge (positive)
and discharge (negative) schedule for the energy storage unit.
At optimality, the data center submits non-zero reserve bids
at time slots 28, 38, 50, 63 72, 73, 75. From Fig. 7(a), the
optimum real-time market bid Lk, is always zero during
scenarios where there is a received reserve capacity call signal,
which is consistent with the reserve market rules, see Section
II-D. Specially, at time slots 63, 72, 73 and 75, electricity is
purchased only from the day-ahead market, even though the
average RTM price is less than the average DAM price.
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Fig. 7. The system parameters for the case study in Sections V-G and V-L:
(a) the average local renewable power generation, (b) the average day-ahead
and real-time market prices, (c) Internet workload.
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Fig. 8. The optimal operation results for the case study in Section V-G:
(a) optimum bids to real-time market, (b) the optimal bids to the day-ahead
market, (c) the optimum bid to reserve market, (d) the optimal charge and
discharge schedule of the energy storage unit.

H. Geographical Workload Distribution

Consider two geographically distributed data centers. The
first one is equipped with 50 wind turbines of the type in
[66]. It can also purchase electricity from a retailer at price
(1+4.01)E{wpam}, where the data for wpay is from [61]. The
second data center can purchase electricity directly from the
day-ahead and real-time wholesale markets [61]. It can also
bid in the reserve market. Here, we have I' = 75 and &; = 0,
for all © = 1,...,N. Fig. 9 shows the results for one time
slot from 5:45 PM to 6:00 PM, in which there is a received
capacity call at the 18th scenario. Fig. 9(c) shows the optimum
bids and Fig. 9(d) shows the optimum fraction of workload
that is sent to the first data center at the case of each scenario.
At the 18th scenario, the optimum real-time market bid is zero,
which follows the reserve market participation rules. Thus, a
high fraction of the workload is sent to the first data center at
the case of the 18th scenario.

L. Impact of Communication Cost

Fig. 10 shows the optimum total profit of data centers over
a time slot of length 7' = 15 minutes, and the optimum
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Fig. 9. Two coordinated data centers: (a) renewable generation at data center
1; (b) electricity prices; (c) optimum bids; (d) optimum workload distribution.
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Fig. 10. The impact of communication cost on geographical workload
distribution with two coordinated data centers: (a) the optimum profit; (b)
optimum fraction of workload that is forwarded to the first data center

fraction of workload that is forwarded to the first data center,
as a function of & /&, where &; is assumed to be fixed. In
obtaining this figure, we assumed that the first data center
submits bids to the day-ahead and real-time electricity markets.
As for the second data center, we assumed that it is equipped
with wind turbines and also procures electricity from a retail
market. Here, we set I' = 10. From Fig. 10, as the ratio £3/&;
increases, the total profit of data centers decreases and a higher
fraction of workload is forwarded to the first data center.

J. Comparison to other Profit Maximization Models

In this Section, we compare the performance of the pro-
posed profit maximization models with the ones in [11] and
[12] for the case of a data center that purchases electricity
from both day-ahead and real-time markets. Fig. 11 shows
that the proposed model in (23) gives a higher profit for all
time slots during a 24 hours time interval. Specially, in time
slots 25 to 28, the model in (23) significantly outperforms
the models in [11] and [12], as the model in (23) considers
procuring electricity at real-time electricity market which has
lower electricity prices than the day-ahead market in time slots
25 to 28, while the models in [11] and [12] are solely based
on procuring electricity from one single electricity market,
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Fig. 11. The profit of data center over one single time slot for our proposed
profit maximization design as well as for the designs in [12] and [11].

i.e., day-ahead market. Also, in time slots 29 to 32, as the
electricity price is cheaper in day-ahead market than in real-
time market, all the approaches in (23), [11], and [12] procure
electricity from the day-ahead market. However, our approach
in (23) still outperforms the models in [11] and [12] in time
slots 29 to 32, as the model in (23) takes into account the
SLA, while the other two models do not.

K. Computational Time and Optimality of Proposed Solution

Again consider the simulation setup in Section V-G. In this
section, we examine the impact of changing the number of
linearization segments P on the computation time and the
optimization accuracy. Fig. 12(a) shows that the profit that
is obtained from (23) increases as the number of segments
increases, but it is saturated when the number of segments
reaches 25. Also, Fig. 12(b) shows that the computation time in
solving problem (23) has an increasing trend when the number
of segments increases. In overall, from Figs. (12)(a) and (b),
one can achieve reasonable optimality and computational time
by using the optimization formulation in (23). We note that, the
results in this section are obtained from a personal computer
with 16 Gb of RAM and an Intel Core i5 CPU @ 2.6 GHz.

L. Flexibility in Decision Making Timing Horizon

In practice, the time interval for switching computer servers
on or off could be longer than what we assumed in our case
studies so far. However, changing the length of time intervals
is easy. For example, suppose the number of switched on
computer servers is changed once a day. The model in (23)
gives the optimum operating variables for this setup, if we add
the following constraint to the problem in (23):

P =

Notice that a whole day constitutes of 96 time slots of length
T = 15 minutes, and therefore the constraint in (43) indicates
that the service rate is fixed over one whole day and under the
kth scenario. Fig. 13 shows the optimal operating variables,
for the simulation setup in Fig. 7, when the constraint (43)
is added to (23). Here, the optimum reserve market bid is

= u*[96], Vk < K. (43)
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Fig. 13. The optimal operation results for the case study in Section V-L: (a)
the optimal bids to real-time market, (b) the optimal bids to the day-ahead
market, (c) The optimum service rates, (d) the optimal charge and discharge
schedule of the energy storage unit.

obtained as zero over all time slots. Also, from Fig. 13(c),
the optimum service rates at the realization of each random
scenario is the same over all time slots.

VI. CONCLUSIONS

A comprehensive and unified energy portfolio optimization
framework was presented in form of solving tractable lin-
ear mixed-integer programs for both single and coordinated
multiple data centers. It takes into account a broad range of
energy options and design factors. Using practical electricity
market and practical Internet workload data, various case
studies were presented to gain insights about the performance
of the proposed energy portfolio optimization under different
operating conditions, and also to gain insights on how utilizing
one energy option may affect selecting other energy options.
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