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Abstract— While a large body of work has recently focused on
reducing data center’s energy expenses, there exists no prior work
on investigating the trade-off between minimizing data center’s
energy expenditure and maximizing their revenue for various
Internet and cloud computing services that they may offer. In
this paper, we seek to tackle this shortcoming by proposing
a systematic approach to maximize green data center’s profit,
i.e., revenue minus cost. In this regard, we explicitly take into
account practical service-level agreements (SLAs) that currently
exist between data centers and their customers. Our model also
incorporates various other factors such as availability of local
renewable power generation at data centers and the stochastic
nature of data centers’ workload. Furthermore, we propose a
novel optimization-based profit maximization strategy for data
centers for two different cases, without and with behind-the-
meter renewable generators. We show that the formulated opti-
mization problems in both cases are convex programs; therefore,
they are tractable and appropriate for practical implementation.
Using various experimental data and via computer simulations,
we assess the performance of the proposed optimization-based
profit maximization strategy and show that it significantly out-
performs two comparable energy and performance management
algorithms that are recently proposed in the literature.

Keywords: Green data centers, behind-the-meter renewable
power generation, energy and performance management, service-
level agreements, profit maximization, convex optimization.

I. INTRODUCTION

The growing demand for Internet services and cloud com-
puting has significantly increased the electric power usage
associated with large data centers - such as those owned and
operated by Google, Microsoft, and Amazon - over the past
few years. Each data center includes hundreds of thousands
of computer servers, cooling equipment, and substation power
transformers. For example, consider Microsoft’s data center in
Quincy, WA. It has 43,600 square meters of space and uses 4.8
kilometers of chiller piping, 965 kilometers of electric wire,
92,900 square meters of drywall, and 1.5 metric tons of backup
batteries. The peak power consumption of this facility is 48
megawatts, which is enough to power 40,000 homes [1]. As
another example, the National Security Agency is currently
building a massive data center at Fort Williams in Utah which
is expected to consume over 70 megawatts electricity [2].

Due to the increasing cost of electricity associated with data
centers, there has been a growing interest towards developing
techniques and algorithms to minimize data centers’ energy
expenditure. One thread of research focuses on reducing the
amount of energy consumed by computer servers [3]. Another
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thread of research is dynamic cluster server configuration to
reduce the total power consumption by consolidating workload
only on a subset of servers and turning off the rest, during low
workload hours [4], [5]. A similar approach is dynamic CPU
clock frequency scaling [6], [7]. In this approach, a higher fre-
quency, imposing higher energy consumption, is chosen only
at peak workload hours. Finally, some recent studies aimed
to utilize price-diversity in deregulated electricity markets as
well as locational-diversity in renewable power generation.
The idea is to constantly monitor the price of electricity and
the amount of renewable power generated at different regions
and forward the workload towards data centers that are located
in regions with the lowest electricity price [8], [9] or highest
renewable power available [10], [11].

While a large body of work has addressed minimizing data
centers’ cost, e.g., in [4]–[11], to the best of our knowledge,
no prior work has addressed the trade-off between minimizing
data center’s energy expenditure and maximizing their revenue
for various Internet and cloud computing services that they
offer. Such trade-off is due to the fact that minimizing data
center’s energy cost is achieved essentially by turning off
some servers, scaling down CPU clocks, or migrating some
workload, which can all potentially lead to degrading the
quality-of-services offered by data center and consequently
its income, considering the stochastic nature of workload.
Therefore, in this paper, we seek to tackle this shortcoming
by proposing a systematic approach to maximize green data
center’s profit, i.e., revenue minus cost. In this regard, we
explicitly take into account practical service-level agrements
(SLAs) that currently exist between data centers and their
customers. In summary, our contributions are as follows:

• We develop a mathematical model to capture the trade-
off between minimizing a data center’s energy cost versus
maximizing the revenue it receives for offering Internet
services. We take into account computer server’s power
consumption profiles, data center’s power usage effec-
tiveness, price of electricity, availability of renewable
generation, total workload in terms of the rate at which
service requests are received at each time of day, practical
service-level agreements and their parameters for service
deadline, service payment, and service violation penalty.

• We propose a novel optimization-based profit maximiza-
tion strategy for data centers for two different cases,
without and with behind-the-meter renewable generators.
The latter is the scenario applicable to green data centers.
We show that the formulated optimization problems in
both cases are convex programs; therefore, they are
tractable and appropriate for practical implementation.

• We use experimental data, e.g., for workload, price of



electricity, renewable power generation, and SLA param-
eters, to assess the accuracy of the proposed mathemat-
ical model for profit and also the performance of the
proposed optimization-based profit maximization strategy
via computer simulations. We show that our proposed
optimization-based designs significantly outperform two
comparable energy and performance management algo-
rithms that have recently been proposed in the literature.

The rest of this paper is organized as follows. The system
model and notations are defined in Section II. The proposed
optimization-based profit maximization strategy is presented
in Section III. Simulation results are presented in Section IV.
Conclusions and future work are discussed in Section V.

II. SYSTEM MODEL

Consider an Internet or cloud computing data center with
Mmax computer servers as shown in Fig. 1. Next, we explain
the system model in terms of power consumption, price of
electricity, incoming workload, and quality-of-service.

A. Power Consumption

The total amount of power consumption in a data center
is obtained by adding the total power consumption at the
computer servers to the total power consumption at the facility,
e.g., for cooling, lighting, etc. For a data center, power usage
effectiveness (PUE), denoted by Eusage, is defined as the ratio
of the data center’s total power consumption to the data
center’s power consumption at the computer servers [12]. The
PUE is considered as a measure for data center’s energy
efficiency. Currently, the typical value for most enterprise data
centers is 2.0 or more. However, recent studies have suggested
that many data centers can soon reach a PUE of 1.7. A few
state-of-the art facilities have reached a PUE of 1.2 [12].

Let Pidle denote the average idle power draw of a single
server and Ppeak denote the average peak power when a server
is handling a service request. The ratio Ppeak/Pidle denotes the
power elasticity of servers. Higher elasticity means less power
consumption when the server is idle, not handling any service
request. Let M ≤ Mmax denote the number of servers that
are ‘on’ at data center. The total electric power consumption
associated with the data center can be obtained as [13]–[16]:

P = M [Pidle + (Eusage − 1)Ppeak+

(Ppeak − Pidle)U ],
(1)

where U is the CPU utilization of servers. From (1), the
power consumption at data center increases as we turn on
more computer servers or run servers at higher utilization.

B. Electricity Price

The electricity pricing models that are deployed for each
region usually depend of whether the electricity market is
regulated or deregulated in that region. The electricity prices
often have flat rates and do not change during the day
when the electricity market is regulated. On the other hand,
the prices may significantly vary during the day when the
electricity market is deregulated as the prices would reflect

the fluctuations in the wholesale electricity market. Some of
the non-flat pricing tariffs in deregulated electricity markets in-
clude: Day-ahead pricing (DAP), time-of-use pricing (TOUP),
critical-peak pricing (CPP), and real-time pricing (RTP). Our
proposed energy and performance management design in this
paper is applicable to not only flat rate but also non-flat rate
pricing tariffs. In our system model, the instantaneous price of
electricity is denoted by ω. In Section III, we will use pricing
information to obtain data center’s cost of electricity.

C. Renewable Power Generation

In order to reduce cost of electricity, a data center may be
equipped with behind-the-meter renewable generators, e.g., a
wind turbine, in addition to being connected to the power grid.
Let G denote the renewable power generated by renewable
generators. The amount of power exchange with the power
grid is obtained as P−G. If local renewable power generation
is lower than local power consumption, i.e., P > G, then
P −G is positive and the power flow is in the direction from
the power grid to the data center. If P = G then the data
center operates as a zero-net energy facility [17]. If P < G,
then P −G is negative and the power flow is in the direction
from the data center to the power grid. However, in this case,
whether the grid compensates the data center’s injected power
depends on the market model being used. Although, in some
areas, the utility pays for the power injected into the grid,
currently, there is no specific market model for behind-the-
meter generation in most regions in the U.S. Therefore, in
our system model, while we allow a data center to inject its
excessive renewable generation into the power grid, we assume
that it does not receive compensation for the injected power.

D. Quality-of-Service

Because of the limited computation capacity of data centers
and given the stochastic nature of most practical workload,
data centers cannot process the incoming service requests,
immediately after they arrive. Therefore, all arriving service
requests are first placed in a queue until they can be handled
by any available computer. In order to satisfy quality-of-
service requirements, the waiting time/queuing delay for each
incoming service request should be limited within a certain
range which is determined by the Service Level Agreement
(SLA). The exact SLA depends on the type of service offered
which may range from cloud-based computational tasks to
video streaming and HTML web services. Examples of two
typical SLAs for an Internet or cloud computing data center
are shown in Fig. 2 [18]. In this figure, each SLA is identified
by three non-negative parameters D, δ, and γ. Parameter D
indicates the maximum waiting time that a service request can
tolerate. Parameter δ indicates the service money that the data
center receives when it handles a single service request before
deadline D. Finally, parameter γ indicates the penalty that the
data center has to pay to its customers every time it cannot
handle a service request before deadline D. For the Gold SLA
in Fig. 2, we have D = 300 ms, δ = 7 × 10−5 dollars, and
γ = 3.5×10−5 dollars. For the Silver SLA, we have D = 200
ms, δ = 5× 10−5 dollars, and γ = 1.6× 10−5 dollars.
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Fig. 1. In the studied system model, service requests are first placed in a queue before they are handled by one of the available computer servers.
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Fig. 2. Two sample service-level agreements (SLAs) in data centers.

E. Service Rate

Let µ denote the rate at which service requests are removed
from the queue and handled by a server. The service rate
depends on the number of servers that are switched on. Let S
denote the time it takes for a server to finish handling a service
request. Each server can handle κ = 1/S service requests per
second. Therefore, the total service rate is obtained as

µ = κM ⇒ M =
µ

κ
. (2)

As we increase the number of switched on servers and
accordingly the service rate, more service requests can be
handled before the SLA-deadline D, which in turn increases
the payments that the data center receives as explained in
Section II-D. On the other hand, it will also increase the data
center’s power consumption and accordingly the data center’s
energy expenditure as explained in Sections II-A and II-B.
Therefore, there is a trade-off when it comes to selecting the
data center’s service rate, as we will discuss in detail next.

III. PROBLEM FORMULATION

The rate at which service requests arrive at a data center
can vary over time. To improve data center’s performance,
the number of switched on servers M should be adjusted
according to the rate of receiving service requests. More
servers should be turned on when service requests are received

at higher rates. By monitoring service request rate and ad-
justing the number of switched on servers accordingly, only
a proportional-to-demand portion of servers will be on. This
results in reducing data center’s power consumption.

Because of the tear-and-wear cost of switching servers on
and off, and also due to the delay in changing the status
of a computer, M cannot be change rapidly. It is rather
desired to be updated only every few minutes. Therefore, we
divide running time of data center into a sequence of time
slots Λ1,Λ2, · · · ,ΛN , each one with length T , e.g. T = 15
minutes. The number of switched on servers are updated
only at the beginning of each time slot. For the rest of this
section, we focus on mathematically modeling the energy cost
and profit of the data center of interest at each time slot
Λ ∈ Λ1,Λ2, · · · ,ΛN as a function of service rate µ and
consequently as a function of M , based on (2).

A. Revenue Modeling

Let q(µ) denote the probability that the waiting time for
a service request exceeds the SLA-deadline D. Obtaining
an analytical model for q(µ) requires a queueing theoretic
analysis that we will provide in Section III-C. Next, assume
that λ denotes the average rate of receiving service requests
within time slot Λ of length T . The total revenue collected by
the data center at the time slot of interest can be calculated as

Revenue = (1− q(µ))δλT − q(µ)γλT, (3)

where (1−q(µ))δλT denotes the total payment received by the
data center within interval T , for the service requests that are
handled before the SLA-deadline, while q(µ)γλT denotes the
total penalty paid by the data center within interval T for the
service requests that are not handled before the SLA-deadline.

B. Cost Modeling

Within time interval T , each turned on server handles

T (1− q(µ))λ

M
(4)

service requests. This makes each server busy for T (1 −
q(µ))λ/κM seconds. By dividing the total CPU busy time
by T , the CPU utilization for each server is obtained as

U =
(1− q(µ))λ

κM
. (5)



Replacing (2) and (5) in (1), the power consumption associated
with the data center at the time slot of interest is obtained as

P =
aµ+ bλ(1− q(µ))

κ
, (6)

where
a
4
= Pidle + (Eusage − 1)Ppeak, (7)

b
4
= Ppeak − Pidle. (8)

Multiplying (6) by the electricity price ω, the total energy cost
at the time interval of interest is obtained as1

Cost = Tω

[
aµ+ bλ(1− q(µ))

κ

]
. (9)

C. Probability Model of q(µ)

Consider a new service request that arrives within time slot
Λ. Let Q denote the number of service requests waiting in
the service queue right before the arrival of the new service
request. All the Q requests must be removed from the queue,
before the new request can be handled by any available server.
Since the data center’s service rate is µ, it takes Q/µ seconds
until all existing requests are removed from the queue. Hence,
the new service request can be handled after Q/µ seconds
since its arrival. According to the SLA, if Q/µ ≤ D, then the
service request is handled before the deadline D. If Q/µ > D,
the service request is not handled before the deadline D and
it is dropped. Therefore, we can model the SLA-deadline by
a finite-size queue with the length µD. A service request
can be handled before the SLA-deadline, if and only if it
enters the aforementioned finite size queue. We assume that
the service request rate has an arbitrary and general probability
distribution function. On the other hand, since the service rate
µ is fixed over each time interval of length T , q(µ) can be
modeled as the loss probability of a G/D/1 queue. Therefore,
following the queuing theoretic analysis in [19], we can obtain

q(µ) = α(µ) e
− 1

2 min
n≥1

mn(µ)
, (10)

where

α(µ) =
1

λ
√

2πσ
e

(µ−λ)2

2σ2

∞∫
µ

(r − µ)e−
(r−λ)2

2σ2 dr (11)

and for each n ≥ 1 we have

mn(µ) =
(Dµ+ n(µ− λ))2

nCλ(0) + 2
n−1∑
l=1

Cλ(l)(n− l)
. (12)

Here, σ = Cλ(0) and Cλ denotes the auto-covariance of the
service request rate’s probability distribution function. It is
known that the model in (10) is most accurate when the service
request rate can be modelled as a Gaussian Process, but it also
works well for any general probability distribution [19], as we
will confirm through simulations in Section IV. Our model is

1Here, since our focus is on energy and performance management of data
centers, the cost model only indicates the cost of electricity. However, other
cost items can also be included in the model in a similar fashion.

particularly more accurate than the existing models that are
based on Poisson workload arrival distributions, e.g., in [20].

Before we end this section, we shall clarify our assumption
on discarding service requests that are not handled before
their deadlines. The benefits of this approach are addressed in
detailed in [21]. Based on the experimental customer studies in
[22], [23], the authors in [21] argue that for most data center
application traffic, a network flow is useful, and contributes
to application throughput and operator revenue, if and only
if it is completed within its deadline. For example, services
such as Web search, retail, advertisement, social networking
and recommendation systems, while are very different, share
a common underlying theme that they need to serve users in
a timely fashion. Consequently, when the time expires for a
service request, responses, irrespective of their completeness,
are shipped out. However, the completeness of the responses
directly governs their quality, and in turn, operator’s revenue
based on the contracted SLA, as we explained in Section III-
A. Some other studies that similarly assume dropping service
requests if they cannot meet the deadline include [24]–[27].

D. Profit Maximization without Local Renewable Generation

At each time slot Λ, data center’s profit is obtained as

Profit = Revenue− Cost, (13)

where revenue is as in (3) and cost is as in (9). We seek to
choose the data center’s service rate µ to maximize profit.
This can be expressed as the following optimization problem:

Maximize
λ≤µ≤κMmax

Tλ [(1− q(µ))δ − q(µ)γ]−

Tω

(
aµ+ bλ(1− q(µ))

κ

)
,

(14)

where q(µ) is as in (10) and Mmax denotes the total number of
servers available in the data center. We note that the service
rate µ is lower bounded by λ. This is necessary to assure
stabilizing the service request queue [11], [19], [20]. We also
note that Problem (14) needs to be solved at the beginning of
every time slot Λ ∈ {Λ1, . . . ,ΛN}, i.e., once every T minutes.

E. Profit Maximization with Local Renewable Generation

When a data center is supplied by both the power grid
and also a local behind-the-meter renewable generator, then
the optimum choice of service rate for maximizing profit is
obtained by solving the following optimization problem

Maximize
λ≤µ≤κMmax

Tλ [(1− q(µ))δ − q(µ)γ]−

Tω

[
aµ+ bλ(1− q(µ))

κ
−G

]+
,

(15)

where [x]+ = max(x, 0). Note that, (aµ+bλ(1−q(µ)))/κ−G
indicates the amount of power to be purchased from the grid.
As discussed in Section II-C, if this term is negative, the data
center’s electricity cost will be zero, given the assumption that
the grid does not provide compensation for the injected power.



F. Solution and Convexity Properties

In this Section, we characterize optimization problems (14)
and (15), and show that they can be solved using efficient
optimization techniques, such as the interior point method
(IPM) [28]. First, consider the following useful theorem.

Theorem 1: The probability function q(µ) in (10) is non-
increasing and convex if the service rate is limited to

µ ∈

λ+

√
2

2
σ, λ+

√√√√ 16/π

3− 8
π +

√
9− 16

π

σ

 . (16)

The proof of Theorem 1 is presented in Appendix A. Note
that, the interval in (16) can be approximately expressed as

[λ+ 0.7071σ , λ+ 1.4477σ]. (17)

Next, we note that handling a single service request in-
creases power consumption of a single server from Pidle to
Ppeak for 1/κ seconds. This increases the energy cost by
ω(Ppeak − Pidle)/κ = ωb/κ and also increases the revenue
by δ. Thus, running the data center is profitable only if

δ − ωb/κ > 0. (18)

From this, together with Theorem 1, we can now provide the
following key results on tractability of Problems (14) and (15).

Theorem 2: Assume that condition (18) holds and the ser-
vice rate µ is limited in the range indicated in (16). (a)
Problem (14) is convex in its current form. (b) Problem (15)
is equivalent to the following convex optimization problem:

Maximize
λ≤µ≤κMmax

Tλ [(1− q(µ))δ + q(µ)γ]−

Tω

(
aµ+ bλ(1− q(µ))

κ
−G

)
Subject to aµ+ bλ(1− q(µ)) ≥ G.

(19)

The proof of Theorem 2 is given in Appendix B. Note that,
two optimization problems are called equivalent if they have
equal optimal solutions such that solving one can readily solve
the other one [28, pp. 130-135]. From Theorem 2, Problems
(14) and (15) are both tractable and can be solved efficiently
using convex programming techniques, such as the IPM [28].

An interesting extension for the design problem in (19) is
the case when an SLA requires that the probability of dropping
a packet is upper bounded by a constant L. This requirement
can be incorporated in our design by adding the following
constraint to optimization problems (14), (15) and (19):

q(µ) ≤ L. (20)

However, we can show that the above constraint is convex.
Note that, from Theorem 1, q(µ) is a convex function. There-
fore, constraint 20 forms a convex set [28, Section 4.2.1] and
the convexity of problems (14), (19) still holds. As a result,
the proposed convex optimization framework is still valid.
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Fig. 3. Comparing analytical and simulation results in calculating data center
profit as a function of µ over a sample T = 15 minutes time slot.

IV. PERFORMANCE EVALUATION

A. Simulation Setting

Consider a data center with a maximum of Mmax = 50, 000
servers. The exact number of switched on servers M is updated
periodically at the beginning of each time slot of length
T = 15 minutes by solving Problems (14) and (15) for
the cases without and with behind-the-meter renewable power
generation respectively. For each switched on server, we have
Ppeak = 200 watts and Pidle = 100 watts [10]. We assume that
Eusage = 1.2 [12]. The electricity price information is based
on the hourly real-time pricing tariffs currently practiced in
Illinois Zone I, spanning from June 10, 2011 to July 9, 2011
[29]. We also assume that κ = 0.1 and consider the SLA to
be according to the Gold SLA curve of Fig. 2. To simulate the
total workload, we use the publicly available World Cup 98
web hits data, spanning from June 10, 1998 to July 9, 1988,
as the trend for rate of incoming service requests [30].

B. Simulation Results for a Single Time Slot

To gain insights about the achievable profit, in this section,
we focus on a single time slot of length T = 15 minutes
at 1:00 PM on June 19 and investigate the solution of the
profit maximization problem in (14). In Fig. 3, the analytical
profit curve is compared with the profit curve that is calculated
using an event-based simulator. We can see that the analytical
curve is a close approximation of the simulation one. Based on
the analytical curve, the optimum µ is 274.7 requests/second.
This is only 3.7 requests/second greater than the true optimum
service rate obtained from the simulation curve. That is, the
optimality loss due to analytical modeling error is only 1.4%.

C. Simulation Results for an Entire Day

Fig. 4 shows a comparison between the proposed design
with the one in [11] and [20] by simulation over 24 hours
operation of the data center based on the June 19 data. The
time-of-day price of electricity [29] as well as the workload
[30] are shown in Fig. 4(e) and Fig. 4(d), respectively. We can
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Fig. 4. Performance comparison between the proposed design and the designs in [11] and [20] over 24 hours running time of a data center: (a) Normalized
profit gain. (b) The choice of service rate µ. (c) Servers’ utilization. (d) Total workload [30]. (e) Hourly price of electricity [29].

see that the normalized profit gain of the proposed design in
Fig. 4(a) is very close to optimal. The normalized profit gain is
calculated as (Profit−ProfitBase) divided by (ProfitMax−
ProfitBase). Here, ProfitBase is the profit obtained when we
simply set µ = λ [31] and ProfitMax is the maximum of
the profit curve obtained by simulation. Furthermore, we can
see that our proposed design can outperform the two designs
in [11] and [20]. The reason is two-fold. First, our design
explicitly takes into account a mathematical model for data
center’s profit as a function of service rate. Second, we use
an accurate G/D/1 queuing model while the designs in [11]
and [20] are based on less accurate M/M/1 queueing models
which cannot capture the workload distribution well. Finally,
Fig. 4(b) shows the optimum choice of service rate, obtained
from various designs, and Fig. 4(c) shows the server utilization
U for the case of each design. We can see that the proposed
design can achieve close to optimal service rates as well as
close to optimal server utilization levels. The designs in [11]
and [20] result in under and over utilized servers, respectively.

Next, we compare the normalized daily profit gain achieved
by our design with those obtained by the designs in [11] and
[20] over 30 days operation of the data center. The results are
shown in Fig. 5. We can see that the proposed design works
better in all days, with an average optimality of 96.3%. It is
interesting to also point out that in 84% of the total 30×24×
4 = 2880 time slots being simulated, the optimum analytical
service rate, i.e., the maximizer of the analytical profit curve,
drops within interval (16), which is the range in which Problem
(14) is a convex program. Finally, the normalized profit gain

of the three aforementioned designs, when S = 1/κ changes,
are compared in Fig. 6 for June 19 data. We can see that the
proposed design is not sensitive to the service time parameter
and can outperform [11] and [20] in all cases.

The loss probability of dropping a service request for
different design approaches over 24 hours running time of the
data center are shown in Fig. 7. Here, the choice of simulation
parameters are the same as those in Fig 4. The results in Fig.
7 show that the loss probability for our proposed design is
closer to the optimum loss probability, compared to the cases
of the designs in [11] and [20]. In order to understand the
cause for this observation, we note that based on the results in
Fig. 4-(c) the designs in [11] and [20] under-utilize and over-
utilize the servers, respectively. For an under-utilized design,
the loss probability is lower than the optimum value. For an
over utilized design, the loss probability is higher than the
optimum value. Clearly, we can draw a similar conclusion
based on the loss probability results shown in Fig. 7.

D. Impact of Behind-the-Meter Renewable Generation
Next, assume that the data center is equipped with one

local 1.5 Megawatts wind turbine. The power output for
the turbine is assumed to be as in Fig. 8(a), based on the
June 10 wind speed data available in [32]. In this case, the
optimal service rate is obtained by solving Problem (15). The
corresponding additional profit (in percentage) due to local
renewable generation is shown in Fig. 8(b). We can see that
local renewable generation can significantly increase the data
center’s daily profit by offsetting part of its energy cost.
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Fig. 5. Daily normalized profit gain across 30 days.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel analytical model to
calculate profit in large data centers without and with behind-
the-meter renewable power generation. Our model takes into
account several factors including the practical service-level
agreements that currently exist between data centers and their
customers, price of electricity, and the amount of renewable
power available. We then used the derived profit model to
develop an optimization-based profit maximization strategy for
data centers. We showed, under certain practical assumptions,
the formulated optimization problems are convex. Finally,
using various experimental data and via computer simula-
tions, we assess the accuracy of the proposed mathematical
model for profit and also the performance of the proposed
optimization-based profit maximization strategy.

The results in this paper can be extended in several direc-
tions. First, the considered cost model can be generalized to
include cost elements other than energy cost. Second, given
renewable energy forecasting models and day-ahead pricing
tariffs, the proposed short-term energy and performance man-
agement can be further extended to daily or monthly planning.
Finally, the obtained mathematical model in this paper can
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Fig. 8. Additional profit gained in a sample 24 hours operation of a data
center with local renewable generation. Wind data is obtained from [32].

be adjusted to also include potential profit if a data center
participates in ancillary services market in the smart grid.
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APPENDIX

A. Proof of Theorem 1

First, we show that q(µ) in (10) is non-increasing. We define

t , (µ− λ)/σ. (21)

From (21), and after reordering the terms, we can show that

α(µ) =
σ

λ
√

2π

1− te t
2

2

∞∫
t

e−
u2

2 du

 . (22)

Once we take the derivative with respect to µ, we have

α′(µ) =
1

λ
√

2π

t− (t2 + 1)e
t2

2

∞∫
t

e−
u2

2 du

 . (23)

From [33, Formula 7.1.13], the following bounds always hold:

2

t+
√

(t2 + 4)
< e

t2

2

∞∫
t

e−
u2

2 du ≤ 2

t+
√

(t2 + 8/π)
. (24)

From the lower bound in (24) and the trivial inequality
t

t2 + 1
≤ 2

t+
√
t2 + 4

, (25)

we have α′(µ) ≤ 0. That is, α(µ) is non-increasing. On the
other hand, for each n ≥ 1, we have m′n(µ) ≥ 0 [19]. As a
result, exp(− 1

2 minn≥1 mn(µ)) is non-increasing. Therefore,
q(µ) in (10) is non-increasing, i.e., q′(µ) ≤ 0.

Next, we prove that q(µ) is convex over interval (16). From
(10), and since e−x is non-increasing, we have

q(µ) = max
n≥1

α(µ) e−
1
2mn(µ). (26)

Therefore, from [28, Section 3.2.3], q(µ) is proven to be a
convex function if we can show that for each n ≥ 1, function

qn(µ) , α(µ) e−
1
2mn(µ) (27)

is convex. That is, for each n ≥ 1, the second derivative

qn
′′(µ) =e−

1
2mn(µ)

(
α′′(µ) + α(µ)

m′n
2
(µ)

4

− α′(µ)m′n(µ)−α(µ)
m′′n(µ)

2

)
≥ 0.

(28)

Next, we show (28) through the following five steps:

Step 1: We show that α(µ) ≥ 0. First, we note that

(r − µ)e−
(r−λ)2

2σ2 ≥ 0, ∀ r ∈ [µ,∞]. (29)

Therefore, the integral in (11) is non-negative. From this,
together with the fact that 1/λ

√
2πσ and exp (µ−λ)2

2σ2 are both
non-negative terms, we can readily conclude that α(µ) ≥ 0.

Step 2: We show that α′′(µ) ≥ 0 over interval (16). After
taking the second derivative of α respect to µ, we have

α′′(µ) =
1

λ
√

2πσ

(t2 + 2)− (t3 + 3t)e
t2

2

∞∫
t

e−
u2

2 du

 .

(30)



Using simple algebra, we can show that

2

t+
√

(t2 + 8/π)
≤ t2 + 2

t3 + 3t
(31)

for all

0 ≤ t ≤
√√√√ 16/π

3− 8
π +

√
9− 16

π

. (32)

Note that, from (21), condition (32) holds since (16) holds.
Together, from (30), (31), and the upper bound in (24), we
can directly conclude that α′′(µ) ≥ 0 over interval (16).

Step 3: We show that

−α
′(µ)

α(µ)
≥ 1

2σ

(√
t2 + 4− t

)
. (33)

From (22) and (23), we have

−α
′(µ)

α(µ)
=

1

σ

 e
t2

2

∞∫
t

e−
u2

2 du

1− te t
2

2

∞∫
t

e−
u2

2 du

− t

 . (34)

From the lower bound in (24) and after reordering, we have

1− te t
2

2

∞∫
t

e−
u2

2 du ≤ 1− 2t√
t2 + 4 + t

. (35)

Together, from (35) and the lower bound in (24), we have

e
t2

2

∞∫
t

e−
u2

2 du

1− te t
2

2

∞∫
t

e−
u2

2 du

≥
2

t+
√
t2+4

1− 2t
t+
√
t2+4

=
2√

t2 + 4− t
. (36)

By replacing (36) in (34) and after reordering we obtain (33).

Step 4: We show that, over interval (16), we have
m′′n(µ)

m′n(µ)
≤ 1

σ

(√
t2 + 4− t

)
. (37)

From (12) and after taking the derivatives over µ, we have:
m′′n(µ)

m′n(µ)
=

D + n

Dµ+ n(µ− λ)
≤ 1

(µ− λ)
=

1

σt
, (38)

where the last equality is due to (21). Note that, for each n ≥
1, we always have mn(µ) ≥ 0, m′n(µ) ≥ 0, and m′′n(µ) ≥ 0

[19]. Next, from the lower bound in (16), we have t ≥
√
2
2 σ.

From this, and by applying simple algebra, we can show that
1

σt
≤ 1

σ

(√
t2 + 4− t

)
. (39)

Replacing (39) in (38), we can directly conclude (37).

Step 5: From Steps 3 and 4, over interval (16), we have
m′′n(µ)

m′n(µ)
≤ −2

α′(µ)

α(µ)
⇒

− α′(µ)m′n(µ)− α(µ)
m′′n(µ)

2
≥ 0.

(40)

Furthermore, from Steps 1 and 2, over interval (16), we have

α′′(µ) + α(µ)
m′n

2
(µ)

4
≥ 0. (41)

From (40) and (41) and since the exponential function is non-
negative, we can conclude (28) and the proof is complete. �

B. Proof of Theorem 2

Part (a): We can rewrite the objective function in (14) as

Tλ(δ + ωb/κ)− (Tωa/κ)µ− Tλq(µ)(δ − ωb/κ+ γ). (42)

From Theorem 1, q(µ) is convex. Therefore, we need to show
that the coefficient of q(µ) in (42) is non-negative. We have

δ − ωb/κ+ γ ≥ δ − ωb/κ > 0, (43)

where the strict inequality is due to (18).
Part (b): From Theorem 1, Tλ [(1− q(µ))δ − q(µ)γ] and

(aµ+ bλ(1− q(µ)))/κ−G are both non-decreasing. Clearly,
they are also continuous functions. Hence, for each µ, where

aµ+ bλ(1− q(µ)) < G, (44)

there exists an ε > 0, such that we have

a(µ+ ε) + bλ(1− q(µ+ ε)) = G, (45)

and the objective value of Problem (15) at service rate
µ + ε becomes no less than the objective value at service
rate µ. Therefore, at optimality of Problem (15), we have
aµ + bλ(1 − q(µ)) ≥ G. This leads to the formulation of
equivalent Problem (19). Next, we show that Problem (19)
is convex. From Part (a), the objective function of Problem
(19) is concave as it is the same as the objective function in
Problem (14). Moreover, since q(µ) is convex, the expression
aµ+bλ(1−q(µ)) is a concave function in µ and consequently,
the constraint in Problem (19) forms a convex set [28]. �

Mahdi Ghamkhari (S’13) received his B.Sc. degree
from Sharif University of Technology, Tehran, Iran,
in 2011, and his M.Sc. degree from Texas Tech Uni-
versity, Lubbock, TX, USA, in 2012, both in Elec-
trical Engineering. Currently, he is a PhD student
in the Department of Electrical Engineering at the
University of California, Riverside, CA, USA. His
research interests include, Data Center and Cloud
Computing, Convex and Stochastic Optimization,
Queuing Theory and application of Game theory in
deregulated Power Market. Mr. Mahdi Ghamkhari

has been a recipient of several graduate student awards both at Texas Tech
University and at the University of California at Riverside.

Hamed Mohsenian-Rad (S’04-M’09) is currently
an Assistant Professor of Electrical Engineering at
the University of California at Riverside. He received
his Ph.D. degree in Electrical and Computer Engi-
neering from The University of British Columbia
(UBC) - Vancouver in 2008. Dr. Mohsenian-Rad is
the recipient of the NSF CAREER Award and the
Best Paper Award from the IEEE International Con-
ference on Smart Grid Communications 2012. He
is an Associate Editor of the IEEE Communications
Surveys and Tutorials, an Associate Editor of the

IEEE Communication Letters, a Guest Editor of the ACM Transactions on
Embedded Computing Systems - Special Issue on Smart Grid, and a Guest
Editor of the KICS/IEEE Journal of Communications and Networks - Special
Issue of Smart Grid. His research interests include the design, optimization,
and game-theoretic analysis of power systems and smart power grids.


