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Abstract—We study the convexity of loss probability in com-
munications and networking optimization problems that involve
finite buffers, where the arrival process has a general distri-
bution. Examples of such problems include scheduling, energy
management and revenue and cost optimization problems. To
achieve a computationally tractable optimization framework, we
propose to adjust an existing non-convex loss probability formula
for G/D/1 queues to present a convex and even more accurate
loss probability model. We then use empirical data and computer
simulations to examine the performance of the proposed design.
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I. INTRODUCTION

Loss Probability is commonly used as a metric to assess
the performance of communication and networking systems
that involve finite buffers [1], [2]. It is usually modeled as
a function of service rate. A higher service rate results in
a lower loss probability, which in turn improves quality-of-
service (QoS). However, a higher service rate may increase
the cost of service, e.g., due to using additional equipment or
resources. Therefore, there is a trade-off between maximizing
performance and minimizing cost in selecting service rate.
This trade off can be systematically captured within an opti-
mization framework where the service rate is the optimization
variable. However, a major concern is whether the problem is
convex and tractable. If an optimization problem that involves
loss probability is not convex, as in [3]–[5], then inaccurate
local optimization or time-consuming exhaustive search are
needed to solve the problem. Prior studies have previously
examined the convexity of loss probability models in certain
queueing systems such as M/M/1/K queues, c.f. [6]. However,
in this paper, our focus is on the steady state behavior of
finite G/D/1 buffers, where the arrival process has a general
distribution and the queue is first-in first-out (FIFO), non-
preemptive and non-process sharing.

II. EXAMPLE SERVICE RATE ALLOCATION PROBLEMS

A. Case 1: Maximum Profit Multi-Service Scheduling

Consider a communications, networking, or computation
system with N ≥ 1 finite buffers to admit N different service
types. For each service type i = 1, . . . , N , the arrival rate is
modeled using its mean λi, variance σ2

i , and auto-covariance
ρi(l), where l is the lag-time. Let µi ≥ 0 denote the rate at
which the service requests of type i are handled. For a time
interval of length T , let qi(µ) denote the loss probability at
queue i. Let Ii denote the number of service requests of type i
that are handled within this time interval of interest. We have

E{Ii} = Tλi (1− qi(µi)) . (1)

Next, let Ri(·) denote the revenue function that indicates the
revenue the server receives as a function of the total number of
handled service requests of type i, c.f. [1], [2], [7]. The per-
time interval revenue is calculated as Ri(Tλi(1 − qi(µi))).
Similarly, let Ci(µi) denote the cost that incurs to the server
due to handling the service requests of type i. The revenue and
cost functions are assumed to be non-decreasing functions of
their arguments. They are also concave and convex in their
arguments, respectively. To maximize the total profit in the
system, we need to solve the following optimization problem:

Maximize
µi≥0

∑N
i=1Ri(Tλi(1− qi(µi)))−

∑N
i=1 Ci(µi) (2)

Using the composition rules [8, p. 85], we can verify that the
above problem is convex as long as the loss probability model
qi(µi) is convex in µi for every service type i.

B. Case 2: Stochastic Service Rate Optimization

In practice, there can be uncertainties even with respect
to the exact statistical characteristics of the arrival process in
communications systems, e.g., due to some external factors.
For instance, consider a scenario where there is only N = 1
service type / service queue in the system and the statistical
characteristics of the arrival process for the single service
type of interest is represented by ψ , <λ, σ, ρ(·)> which
belongs to a discrete set of outcomes Ψ with a probability mass
function fΨ(·). Here, for the ease of presentation, we dropped
subscript i from the mean, variance, and auto-correlation
notations. The expected value of the profit is obtained as

E{Profit} =
∑
ψ∈Ψ

[Profit | ψ] fΨ(ψ). (3)

As an example, suppose Ψ = {ψ1, ψ2}, fΨ(ψ1) = β, fΨ(ψ2)
= (1− β), ψ1 = <λ1, σ1, ρ1(·)>, and ψ2 = <λ2, σ2, ρ2(·)>.
In this case, the profit maximization problem (3) becomes

Maximize
0≤µ≤µmax

R(Tλ1(1− qψ1
(µ))fΨ(ψ1)+

R(Tλ2(1− qψ2
(µ))fΨ(ψ2)− C(µ),

(4)

where qψ1
(µ) and qψ2

(µ) denote the loss probability in the
communications system of interest, when the arrival process
carries statistical characteristics ψ1 and ψ2, respectively.

III. LOSS PROBABILITY MODEL

In this section, we present a mathematical model for loss
probability q(µ) to be used in problems similar to (2) and (4).

First, suppose µ ≥ λ. In [9], the following loss probability
model of a G/D/1 queuing system was proposed for this case:

qI(µ) = α(µ) e
− 1

2 min
n≥1

mn(µ)
, (5)
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where

α(µ) =
1

λ
√

2πσ
e

(µ−λ)2

2σ2

∫ ∞
µ

(r − µ)e−
(r−λ)2

2σ2 dr (6)

and for each integer number n ≥ 1 we have

mn(µ) =
(L+ n(µ− λ))2

nσ2 + 2
∑n−1
l=1 ρ(l)(n− l)

. (7)

Here, L denotes the size of the finite queue.
Theorem 1: The loss probability function qI(µ) in (5) is not

convex over interval µ ∈ [λ, λ + 0.5σ]; however, it is convex
and non-increasing over interval

µ ∈ [λ+ 0.5 σ,+∞] . (8)

The proof of Theorem 1 is given in Appendix A.
Next, suppose µ ≤ λ. This scenario may occur, e.g., in

stochastic optimization, where service rate is less than the
mean arrival rate under certain random scenarios. In this case,
the server would always be busy. Accordingly, out of the total
Tλ service requests that are received within the interval of
length T , a total of Tµ service requests are handled, while the
rest, i.e., Tλ−Tµ service requests are dropped. Therefore, the
loss probability can be approximated as

qII(µ) =
Tλ− Tµ
Tλ

=
λ− µ
λ

. (9)

As a special case, if µ→ 0, then qII(µ)→ 1. Note that qII(µ)
is a linear (thus convex) and decreasing function of µ.

Using the empirical data in [10] with T = 15 minutes,
the accuracy of the loss probability models in (5) and (9) are
assessed in Fig. 1. We can see that qI(µ) in (5) is accurate
when µ → ∞ and qII(µ) in (9) is accurate when µ → 0.
However, both models lose accuracy when µ approaches λ,
from the right hand side in case of qI(µ), and from the left
hand side in case of qII(µ). Therefore, we propose to adjust
and combine the loss probability models (5) and (9) and obtain
the following alternative loss probability model:

q(µ) =


qI(µ) µI ≤ µ
q′I+(µI)(µ− µI) + qI(µI) µII ≤ µ ≤ µI
qII(µ) µ < µII ,

(10)

where q′I+(µI) denotes the right derivative of function qI(µ)
at µ = µI . The point µI ≥ λ+ 0.5σ is chosen in a way that,
the right tangent to qI(µ) at µI intersects qII(µ) at a point
µII such that λ− σ ≤ µII ≤ λ. The proof on the guaranteed
existence of parameters µI and µII is omitted for brevity.

Theorem 2: The loss probability function q(µ) in (10) is
convex in service rate for its entire operation range µ ≥ 0.
The above theorem directly results from Theorem 1 and the
way that the loss probability function q(µ) is constructed.

To examine the accuracy of the proposed loss probability
model, next we generate 100 random time series of length
T = 15 minutes [11, Section 5.1], based on the statistical
characteristics of randomly selected 15 minutes intervals of
the data in [10]. Fig. 2 shows the mean absolute error (sorted
in ascending order) of the proposed loss probability model in
(10) and the one in (5) over the interval [λ, µI ] for these 100
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Fig. 1. Loss probability as a function of service rate µ: empirical curve versus
the three analytical curves according to (5), (9), and (10).

Scenario Number
0 10 20 30 40 50 60 70 80 90 100

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

0

0.002

0.004

0.006

0.008

0.01

0.012

Proposed Model in (10)

The Model in (5) [9]

Fig. 2. The mean absolute error of the proposed loss probability model in
(10) and that of the one in (5) over 100 randomly generated time series.

time series. From Fig. 2, the loss probability model in (10)
has a lower mean absolute error than the one in (5).

Theorem 3: Let us define nmax such that ρ(l) = 0 for any
l ≥ nmax. If L ≥ σnmax, there exist a parameter µ? ≥ µII
such that the proposed loss probability model in (10) is a
more accurate approximation of the true loss probability than
the model in (5) over the interval µ? ≤ µ ≤ µI .

The proof of Theorem 3 is given in Appendix B.

IV. CASE STUDIES

First, consider Case 1 in Section II-A. Here, we simulate 30
time slots of length T = 15 minutes. We assume that N = 3
different types of service requests are handled by the shared
server. The service request arrival rates for the first, the second,
and the third service types are set based on the World Cup data
on June 14th, 15th, and 16th, respectively, from 12:00 AM to
7:30 AM [10]. We set Ri(x) = 100wilog(1+x), where w1 =
1, w2 = 2, and w3 = 3 are the revenue weighting factors.
The cost functions are fixed. Hence, problem (2) reduces to a
multi-service queue revenue maximization problem.

Simulation results are shown in Fig. 3, where the operating
time is divided into three time frames. First, during time slots
1 to 10, there are service requests for service types 1 and 2.
After that, during time slots 11 to 20, service requests arrive
from all three service types. Finally, during time slots 21 to 30,
the server receives requests for service types 1 and 3, but not 2.
From the results in Fig. 3, a service rate allocation based on the
optimal solution of problem (2) manages the resources based
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Fig. 3. Simulation results for Case 1: (a) The mean service request arrival
rates. (b) The service rates by solving (2). (c) The optimality in comparison
with the true optimal profit obtained from an event-based simulation.
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Fig. 4. Simulation results for Case 2: (a) The optimality in maximizing the
expected profit. (b) Optimal service rate based on different design approaches.

on the priority of incoming service requests, giving higher
service rates to service requests with higher priorities.

Next, consider Case 2 in Section II-B. Think of a web-based
video streaming server for a playoff soccer game. Suppose the
90 minutes normal game time is about to finish while the game
is in a tie. The server administrators need to allocate resources
for the next T = 15 minutes. There are two possibilities. First,
with probability β, one team scores and the game ends in
normal time. In that case, the workload to the servers will
drop significantly as many online viewers do not watch the
post-game show. Second, with probability 1 − β, the game
ends in tie and the extra time is implemented. In this case, the
workload will remain high as users will continue watching the
game. In this example, the outcome of the soccer game is the
external factor in Section II-B. It is natural to assume that the
World Cup server administrators have a good estimate, based
on historical data, about the statistical characteristics of the
workload during a post-game show streaming, i.e., ψ1, and
during a live game streaming, i.e., ψ2. However, they do not
know which one of these two scenarios will occur. Therefore,
they need to solve a stochastic optimization problem as in (4).
Here, we use the statistical characteristics of the workload data

[10] during time slot 4:15 AM to 4:30 AM on June 29th to
obtain ψ1 and the statistical characteristics of the workload
data during time slot 2:00 AM to 2:15 AM on June 24th to
obtain ψ2. Note that, we have λ1 = 248.48 and λ2 = 394.77.

The expected profit for the next T = 15 minutes are shown
in Fig. 4(a), where the probability parameter β varies from 0
to 1. Here, the expected value is calculated by examining 100
random workloads that are generated based on the statistical
characteristics that we obtained from the empirical data, using
the time series generation scheme in [11, Section 5.1]. We can
see that, our proposed stochastic optimization approach can
accurately maximize the expected profit for all values of β.
In contrast, the model in (5) [9] cannot be used for stochastic
optimization. Instead, we should either use <λ1, σ1, ρ1(·)>
or <λ2, σ2, ρ2(·)>; either way, the results will be represented
by flat curves as in Fig. 4(b). For certain values of β, e.g.,
β = 0.9, the optimal service rate µ∗ is greater than λ1 but
less than λ2. Therefore, it is necessary to use a loss probability
model that works for both µ ≥ λ and µ ≤ λ, as in (10).

V. CONCLUSIONS

A convex optimization framework was proposed for service
rate allocation in finite communications buffers with example
applications to maximum profit multi-service scheduling and
stochastic service rate allocation. Using empirical data, both
deterministic and stochastic case studies were investigated.

APPENDIX A: PROOF OF THEOREM 1

Let us define t , (µ− λ)/σ. We can reformulate (6) as

α(µ) =
σ

λ
√

2π

(
1− te t

2

2

∫ ∞
t

e−
u2

2 du

)
. (11)

Once we take the derivative with respect to µ, we have

α′(µ) =
1

λ
√

2π

(
t− (t2 + 1)e

t2

2

∫ ∞
t

e−
u2

2 du

)
. (12)

Also, since e−x is non-increasing we have qI(µ) =
maxn qn(µ), where for each n ≥ 1, we define

qn(µ) , α(µ) e−
1
2mn(µ). (13)

From [8, Section 3.2.3], qI(µ) is proven to be a convex
function if we can show that for each n ≥ 1, we have

qn
′′(µ) = e−

1
2mn(µ)

(
α′′(µ) + α(µ)m′n

2
(µ)/4

− α′(µ)m′n(µ)−α(µ)m′′n(µ)/2

)
≥ 0.

(14)

We show (14) through the following five steps:

Step 1: Since the function under integral in (6) is positive
within the range of integral, from (6) we have α(µ) ≥ 0.

Step 2: We show that α′′(µ) ≥ 0 over interval (8). After taking
the second derivative of α with respect to µ, we have

α′′(µ) =
(t3 + 3t)e

t2

2

λ
√

2πσ

 t2 + 2

t3 + 3t
e

−t2
2 −

∞∫
t

e−
u2

2 du

 . (15)
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Next, we note that

d

dt

(
t2 + 2

t3 + 3t
e−

t2

2 −
∫ +∞

t

e−
u2

2 du

)
=
−6e−

t2

2

t2(t2 + 3)
2 < 0, (16)

and

lim
t→+∞

(
t2 + 2

t3 + 3t
e−

t2

2 −
∫ +∞

t

e−
u2

2 du

)
= 0. (17)

From (16) and (17), we conclude that for each t > 0, we have(
t2 + 2

t3 + 3t
e−

t2

2 −
∫ +∞

t

e−
u2

2 du

)
≥ 0. (18)

Since t > 0 for the interval in (8), from (18), we have α′′ ≥ 0.

Step 3: We show that

−2α′(µ)/α(µ) ≥ 1/(σt). (19)

In other words, from (11) and (12), we need to show that

−2
α′(µ)

α(µ)
− 1

σt
=

1

σ

(
2e

t2

2

∫∞
t
e−

u2

2 du

1− te t
2

2

∫∞
t
e−

u2

2 du
− 2t− 1

t

)
≥ 0.

After reordering the terms, we can rewrite this inequality as

2t2 + 1

2t3 + 3t
e−

t2

2 −
∫ ∞
t

e−
u2

2 du ≤ 0. (20)

Next, we note that

d

dt

(
2t2 + 1

2t3 + 3t
e−

t2

2 −
∫ ∞
t

e−
u2

2 du

)
=

(6t2 − 3)e−
t2

2

(2t2 + 3)2 t2
. (21)

The above derivative is negative (indicating a decreasing
function) for any 0 < t <

√
2/2 and positive (indicating an

increasing function) for any t >
√

2/2. Furthermore, we have

lim
t→+∞

(
2t2 + 1

2t3 + 3t
e−

t2

2 −
∫ ∞
t

e−
u2

2 du

)
= 0. (22)

The function on the left hand side in (20) has a zero at t =
0.466 and a minimum at t =

√
2/2. From these, together with

(21) and (22), we conclude that (20) and consequently (19)
hold as long as t ≥ 0.466, e.g., within the interval in (8).

Step 4: We show that, over interval (8), we have

m′′n(µ)/m′n(µ) ≤ 1/(σt). (23)

From (7) and after taking the derivatives over µ, we have:

m′′n(µ)

m′n(µ)
=

n

L+ n(µ− λ)
≤ 1

(µ− λ)
=

1

σt
. (24)

Step 5: From (19) and (23), and since m′n(µ)≥0 [9], we have

m′′n(µ)/m′n(µ) ≤ −2α′(µ)/α(µ)

⇒ −α′(µ)m′n(µ)− α(µ)m′′n(µ)/2 ≥ 0.
(25)

Also, from Steps 1 and 2, over interval (8) we have

α′′(µ) + α(µ)m′n
2
(µ)/4 ≥ 0. (26)

From (25) and (26) and since the exponential function is non-
negative, we can conclude (14) and the proof is complete. �

APPENDIX B: PROOF OF THEOREM 3
Since ρ(l) ≤ σ2 for any l, we have

∑n−1
l=1 ρ(l)(n − l) ≤

σ2n(n− 1)/2. From this, together with (7), we can show that

m′n
2

m′′n
= 2

(L+ n(µ− λ))
2

nσ2 + 2
∑n−1
l=1 ρ(l)(n− l)

≥ 2

(
L

nσ
+ t

)2

.

(27)
From (27), if L ≥ σnmax then

α(µ)m′n
2
/4− α(µ)m′′n/2 ≥ 0. (28)

Since α′′(µ) and −α′(µ)m′n are non-negative, from (14) and
(28), we conclude that qn(µ) in (13) is a convex function of
µ for any L ≥ σnmax. Accordingly, from [8, Section 3.2.3],
qI(µ) is convex if L ≥ σnmax. Next, let q̃(µ) denote the
true loss probability at service rate µ. Since qI(µ) is an upper
bound for q̃(µ) [9], we have q(µI) = qI(µI) ≥ q̃(µI). Also,
since (9) is a lower bound for q̃(µ) [12], we have q(µII) =
qII(µII) ≤ q̃(µII). From these two facts, and since q̃(µ) is
a continuous function, q̃(µ) must intersect with line segment
q(µ) at a point µII ≤ µ? ≤ µI . Consequently, since q̃(µ) is
convex [13, Theorem 3.1], we conclude that

q(µ) ≥ q̃(µ) ∀µ ∈ [µ?, µI ]. (29)

Also, from the convexity of qI(µ), we have

qI(µ) ≥ q(µ) ∀µ ≥ λ. (30)

From (29) and (30), the proposed loss probability model in
(10) is a tighter upper bound for q̃(µ) than the model in (5)
for any service rate µ? ≤ µ ≤ µI when L ≥ σnmax. �
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