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Abstract— While a large body of work has recently focused on
reducing data center’s energy expenses, there exists no prior work
on investigating the trade-off between minimizing data center’s
energy expenditure and maximizing their revenue for various
Internet and cloud computing services that they may offer. In
this paper, we seek to tackle this shortcoming by proposing
a systematic approach to maximize green data center’s profit,
i.e., revenue minus cost. In this regard, we explicitly take into
account practical service-level agreements (SLAs) that currently
exist between data centers and their customers. Our model also
incorporates various other factors such as availability of local
renewable power generation at data centers and the stochastic
nature of data centers’ workload. Furthermore, we propose an
optimization-based profit maximization strategy for data centers
for both cases, without and with behind-the-meter renewable
generators. Using various experimental data and via computer
simulations, we assess the accuracy of the proposed mathematical
model for profit and also the performance of the proposed
optimization-based profit maximization strategy.

Keywords: Green data centers, service-level agreements, energy
and performance management, renewable power generation.

I. INTRODUCTION

Due to the increasing cost of electricity associated with data

centers, there has been a growing interest towards developing

techniques and algorithms to minimize data centers’ energy

expenditure. One thread of research focuses on reducing the

amount of energy consumed by computer servers [1]. Another

thread of research is dynamic cluster server configuration to

reduce the total power consumption by consolidating workload

only on a subset of servers and turning off the rest, during low

workload hours [2], [3]. A similar approach is dynamic CPU
clock frequency scaling, where a higher frequency, imposing

higher energy consumption, is chosen only at peak workload

hours [4]. Finally, some recent studies aimed to utilize price-
diversity in deregulated electricity markets and locational-
diversity in renewable power generation. They constantly

monitor the price of electricity and the amount of renewable

power generated at different regions and forward the workload

towards data centers that are located in regions with the lowest

electricity price [5] or highest renewable power available [6].

In this paper, we address the trade-off between minimizing
data center’s energy expenditure and maximizing their revenue
for various Internet and cloud computing services that they

may offer. Such trade-off is due to the fact that minimizing

data center’s energy cost is achieved essentially by turning

off certain number of computers, scaling down CPU clocks,

or migrating some workload, which can all potentially lead

to degrading the quality-of-services offered by data center

and consequently its income. In this regard, we propose a

systematic approach to maximize green data center’s profit,
i.e., revenue minus cost. We explicitly take into account

service-level agreements (SLAs) between data centers and

their customers. Our model supports the common scenario

that each data center may simultaneously offer different types

of SLAs with different quality-of-service requirements. Our

contributions in this paper can be summarized as follows:

• We develop a mathematical model to capture the trade-off

between minimizing a data center’s energy cost versus

maximizing the revenue it receives for offering various

Internet services. In this regard, we take into account

computer server’s power consumption profiles, data cen-

ter’s power usage effectiveness, price of electricity, avail-

ability of renewable power generation, behind-the-meter

renewable generation contract models, total workload for

each service class in terms of the rate at which service

requests received at each time of day, different service-

level agreements and their parameters including service

deadline, service payment, and service violation penalty.

• We propose an optimization-based profit maximization
strategy for data centers for both cases, without and with

behind-the-meter renewable generators. The latter is the

scenario applicable to green data centers.

• We use various experimental and practical data, e.g.,

for workload, price of electricity, renewable power gen-

eration, and SLA parameters, to assess the accuracy of

the proposed mathematical model for profit and also the

performance of the proposed optimization-based profit

maximization strategy via computer simulations.

The rest of this paper is organized as follows. The system

model and notations are defined in Section II. The proposed

optimization-based profit maximization strategy is presented

in Section III. Simulation results are presented in Section IV.

Conclusions and future work are discussed in Section V.

II. SYSTEM MODEL

A. Power Consumption

Consider a data center with Mmax servers. Let M ≤ Mmax

denote the number of servers that are switched ‘on’. Let Pidle

denote the average idle power draw of a single server and

Ppeak denote the average peak power when a server is han-

dling a service request. The total electric power consumption



associated with the data center can be obtained as [7]:

P = M [Pidle + (Eusage − 1)Ppeak + (Ppeak −Pidle)U ], (1)

where U is the CPU utilization of servers and PUE is the

power usage effectiveness of data center. From (1), the power

consumption at data center increases as we turn on more

computer servers or run servers at higher utilization.

B. Electricity Price and Renewable Power Generation

To support both regulated or deregulated electricity markets,

in our system model, we assume that the instantaneous price of

electricity is denoted by ω. In Section III, we will use pricing

information to obtain data center’s cost of electricity.

To reduce cost of electricity, a data center may be equipped

with behind-the-meter renewable generators, e.g., a wind

turbine, in addition to being connected to the power grid.

Let G denote the renewable power generated by renewable

generators. The amount of power exchange with the grid is

obtained as P − G. If local renewable power generation is

lower than local power consumption, i.e., P > G, then P −G
is positive and the power flow is in the direction from the grid

to the data center. While we allow a data center to inject its

excessive renewable generation into the power grid, we assume

that it does not receive compensation for the injected power.

C. Service Classes

A data center may offer different classes of service, e.g.

cloud-based, video streaming, web services, etc. Each class

has its specific method of service and SLA. We assume that a

total of N ≥ 1 service classes are offered by the data center.

D. Quality-of-Service

All arriving service requests are first received by a front-

end web server, then forwarded and placed in one of the N
depending on their class of service. The service requests of

each class are then served in a first-come first-served order. To

satisfy quality-of-service, the waiting time/queuing delay for

each incoming service request of class i should be limited to

a deadline that is determined by its corresponding SLA. Each

SLA is identified by three parameters D, δ, and γ [7]. For the

ith SLA, parameter Di indicates the maximum waiting time

(i.e., the deadline) that a service request of class i can tolerate.

Parameter δi indicates the service money that the data center

receives when it handles a single service request of class i
before deadline Di. Finally, parameter γi indicates the penalty

that the data center has to pay to its customers every time it

cannot handle a service request of class i before deadline Di.

E. Service Rates

Let μi denote the rate at which service requests of class i
are removed from their queue to be handled by a server. The

total number of switched on servers is obtained as [7]

M =

N∑
i=1

μi

κi
. (2)

As we increase the number of switched on servers and

accordingly the service rates, more service requests can be

handled before the SLA-deadline Di, which in turn increases

the payments that the data center receives as explained in

Section II-D. On the other hand, it will also increase the data

center’s power consumption and accordingly the data center’s

energy expenditure as explained in Sections II-A and II-B.

Therefore, there is a trade-off when it comes to selecting the

data center’s service rates, as we will discuss in detail next.

III. PROBLEM FORMULATION

In general, the rate at which a data center receives incoming
service requests of each service class can vary from time to

time. To improve data center’s performance, the number of

switched on servers M should be adjusted according to the

rates of receiving service requests, along with some other

factors such as the hourly price of electricity and the amount

of behind-the-meter renewable power generated. However, be-

cause of the tear-and-wear cost of switching on/off computers,

M should not be changed too frequently. It is rather desired to

be updated only every few minutes. Therefore, we divide run-

ning time of data center into several time slots Λ1,Λ2, · · · ,ΛN

of length T , e.g. T = 15 minutes. The number of switched on

servers are updated only at the beginning of each time slot. For

the rest of this section, we focus on mathematically modeling

the energy cost and profit of the data center of interest at each

time slot Λ ∈ Λ1,Λ2, · · · ,ΛN as a function of service rates

μi and consequently as a function of M , based on (2).

A. Revenue Modeling

Let qi(μi) denote the probability that the queue waiting

time for an incoming service request of class i exceeds the ith
SLA-deadline Di. Obtaining an analytical model for qi(μi)
requires a queueing theoretic analysis that we will provide in

detail later in Section III-C. Let λi denote the average rate of

receiving service requests of class i at the data center within

the time slot Λ. The total revenue collected by the data center

at the time slot of interest can be calculated as

Revenue =

N∑
i=1

(1− qi(μi)) δiλiT − qi(μi)γiλiT, (3)

where the first term within the summation, i.e., (1 −
qi(μ))δiλiT denotes the total payments received by the data

center within time interval T for the service requests of class i
that are handled before the ith SLA-deadline, while the second

term, i.e., qi(μ)γiλiT denotes the total penalty paid by the data

center within time interval T for the service requests of class

i that are not handled before the ith SLA-deadline.

B. Cost Modeling

Within time interval T , each turned on server handle

T (1− qi(μi))λi

M
(4)

service requests of class i. This makes each server busy for

T (1− qi(μi))λi

κiM
(5)



seconds handling service requests of class i within the time

interval T . Therefore, by dividing the total CPU busy time

N∑
i=1

T (1− qi(μi))λi

κiM
(6)

by T , the CPU utilization for each server is obtained as

U =

N∑
i=1

(1− qi(μi))λi

κiM
. (7)

Replacing (2) and (7) in (1), the power consumption associated

with the data center at the time slot of interest is obtained as

P =

N∑
i=1

[
aμi + bλi(1− qi(μi))

κi

]
, (8)

where

a
�
= Pidle + (Eusage − 1)Ppeak, (9)

b
�
= Ppeak − Pidle. (10)

Multiplying (8) by the electricity price ω, the total energy cost

at the time interval of interest is obtained as

Cost = Tω
N∑
i=1

[
aμi + bλi(1− qi(μi))

κi

]
. (11)

C. Probability Model of qi(μi)

We model the ith SLA-deadline by a finite size queue with

the length μiDi [7], [8]. A service request of class i can be

handled before the ith SLA-deadline, if and only if it enters

the aforementioned ith finite size queue. We assume that the

ith service request rate has mean λi and an arbitrary general
probability distribution. On the other hand, since the service

rate μi is fixed over each time interval of length T , qi(μi) is

modeled as the loss probability of a G/D/1 queue. Therefore,

following the queuing theoretic analysis in [9], we can obtain

qi(μi) = αi(μi) e
− 1

2 min
n≥1

mn,i(μi)
, (12)

where

αi(μi) =
1

λ
√
2πσi

e
(μ−λi)

2

2σ2
i

∞∫
μi

(r − μi)e
− (r−λi)

2

2σ2
i dr (13)

and for each n ≥ 1 we have

mn,i(μi) =
(Diμi + n(μi − λi))

2

nCλi
(0) + 2

n−1∑
l=1

Cλi
(l)(n− l)

. (14)

Here, σi = Cλi
(0) and Cλi

(l) denotes the auto-covariance

with lag time l of the rate of the incoming service request of

ith class. The model in (12) has its most accuracy when the ith
service request arrival rate is as a Gaussian process. However,

it also works well for any general probability distribution [9],

as we will confirm through simulations in Section IV.

D. Profit Maximization without Local Renewable Generation

At each time slot Λ, data center’s profit is obtained as

Profit = Revenue− Cost, (15)

where revenue is as in (3) and cost is as in (11). We seek to

choose the data center’s service rates μi to maximize profit.

This can be expressed as the following optimization problem:

Maximize
λi≤μi

T

N∑
i=1

[1− qi(μi))δiλi − qi(μi)γiλi]−

Tω
N∑
i=1

[
aμi + bλi(1− qi(μi))

κi

] (16a)

Subject To

N∑
i=1

μi

κi
≤ Mmax, (16b)

where qi(μi) is as in (12) and Mmax denotes the maximum

number of servers that are available in the data center. We

note that, for each service class i, the service rate μi is lower

bounded by λi. This is necessary to assure stabilizing the

service request queues [7], [9]. We also note that the N -

variable optimization problem in (16) can be decomposed

into N separate optimization problems whenever Mmax is too

large. Finally, we note that Problem (16) needs to be solved

once for every time slot Λ ∈ {Λ1, . . . ,ΛN}, i.e., every T
minutes using a simple exhaustive search.

E. Profit Maximization with Local Renewable Generation

When a data center is supplied by both power grid and a

local behind-the-meter renewable generator, then the optimum

choices of service rates for maximizing profit is obtained by

solving the following optimization problem

Maximize
λi≤μi

T

N∑
i=1

[1− qi(μi))δiλi − qi(μi)γiλi]−

Tω

[
N∑
i=1

aμi + bλi(1− qi(μi))

κi
−G

]+ (17a)

Subject To

N∑
i=1

μi

κi
≤ Mmax, (17b)

where [x]+ = max(x, 0). Note that, in Problem (17), opti-

mization variables are coupled not only in constraint (17b),

but also in objective function (17a) due to the term [x]+.

IV. PERFORMANCE EVALUATION

A. Simulation Setting

Consider a data center and assume that the number of

switched on servers M is updated periodically at the beginning

of each time slot of length T = 15 minutes by solving

Problems (16) and (17), for the cases without and with behind-

the-meter renewable power generation at the data center,
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Fig. 1. Comparing analytical and simulation results to calculate data center profit. (a) Simulation results when parameter Mmax = 15000. (b) Simulation
results when parameter Mmax = 5250. (c) Analytical results when parameter Mmax = 15000. (d) Analytical results when parameter Mmax = 5250.

respectively. For each switched on server, we have Ppeak = 200

watts and Pidle = 100 watts [6]. We assume that Eusage = 1.2,

which is the reported state of the art power usage effectiveness

[7]. The electricity price information in our simulations are

based on the real-time pricing tariffs currently practiced in

Illinois Zone I, on June, 19, 2011 [10]. The prices are updated

every hour. We assume that the data center offers N = 2
classes of services, which are identical to the Gold and Silver

services explained in the example SLA model in [7]. We also

assume that κ1 = .1 and κ2 = .125. To simulate the total

workload, we use the publicly available World Cup 98 web hits

data on June 14, 1998 and June, 19, 1998 as the service request

trend for service class 1 and service class 2, respectively [11].

B. Simulation Results for a Single Time Slot

To gain insights about the achievable profit, in this section,

we focus on a single time slot of length T = 15 minutes

starting at 2:00 PM and we investigate the solution of the

profit maximization problem in (16). The simulation versus

analytical results for different choices of system parameter

Mmax are shown in Fig. 1. For the results in Fig. 1(a) and

(c), we have Mmax = 15000. We can see that, since the

number of available servers is large, constraint (16b) is not
binding and the choices of optimization variables μ1 and

μ2 can almost arbitrarily increase. However, given the trade-

off between minimizing energy expenditure and maximizing

revenue, optimal solution enforces switching on only a limited

number of servers. Furthermore, we can see that the simulation

curve in Fig. 1(a) and the analytical curve in Fig. 1(c) are

very similar, suggesting that our proposed analytical profit

model is accurate. For the results in Fig. 1(b) and (d), we

have Mmax = 5250. We can see that, since the number of

available servers is small, constraint (16b) is binding. As a

result, the optimal solution is achieved when μ1/κ1+μ2/κ2 =
Mmax. That is, at optimality, we need to switch on all servers

that are available in the data center. Nevertheless, we can

see that although the feasible set for optimization problem

(16) is significantly smaller when Mmax = 5250, the profit

curve remains concave, again indicating the trade-off between

minimizing energy expenditure and maximizing revenue.

C. Simulation Results for an Entire Day

For the rest of this section we assume that Mmax = 15000.

Simulation results over 24 hours are shown in Fig. 2. The

time-of-day price of electricity is as in Fig. 2(a) [12]. We can

see that the normalized profit gain in Fig. 2(b) is very close

to optimal with 97% optimality on average. The normalized

profit gain is calculated as (Profit − ProfitBase) divided

by (ProfitMax − ProfitBase). Here, ProfitBase is the profit

obtained when we simply set μi = λi [13] and ProfitMax is

the maximum of the profit curve obtained by simulation.

D. Impact of Behind-the-Meter Renewable Generation

Next, assume that the data center is equipped with a wind

turbines, with 1.5 Megawatts peak generation. The power
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Fig. 2. Experimental data and the simulation results for 24 hours operation of the data center: (a) Time-of-Day Prices [12]. (b) Obtained normalized profit
gain without local renewable power generation. (c) Available wind power [14]. (d) Additional profit (in percentage) with local renewable power generation.

output for each turbine is assumed to be as in Fig. 2(c),

based on the wind speed data available in [14] for June 14,

2011. In this case, optimal service rate is obtained by solving

Problem (17). The corresponding additional profit gain (in

percentage) due to local renewable generation is shown in

Fig. 2(d). We can see that local renewable generation can

significantly increase the data center’s daily profit.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel analytical model to cal-

culate profit in large data centers without and with behind-the-

meter renewable power generation. Our proposed model takes

into account several factors including the practical service-

level agreements that currently exist between data centers and

their customers, price of electricity, and the amount of renew-

able power available. We then used the derived profit model

to develop an optimization-based profit maximization strategy

for data centers. Using various experimental data and via

computer simulations, we assess the accuracy of the proposed

mathematical model for profit and also the performance of the

proposed optimization-based profit maximization strategy.

The results in this paper can be extended in several direc-

tions. First, the cost model can be extended to include cost

elements other than energy cost. Second, the proposed energy

and performance management method can be further extended

to daily or monthly planning, e.g., to decide whether installing

more servers is economical. Finally, the system model can

be adjusted to also include potential profit if a data center

participates in ancillary services in the power grid.
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