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Abstract— With the growing trend in the amount of power
consumed by data centers, finding ways to cut their electricity
bills has become an important and challenging problem. In this
paper, our focus is on the cost reduction that data centers may
achieve by exploiting the diversity in the price of electricity in
day-ahead and real-time electricity markets. Based on a stochas-
tic optimization framework, we propose to jointly select a data
center’s service rate and its power demand bids to the day-ahead
and real-time electricity markets. In our analysis, we take into
account service-level-agreements, risk management constraints,
and statistical characteristics of workload and electricity prices.
Using empirical electricity price and Internet workload data
and through computer simulations, we show that by directly
participating in the day-ahead and real-time electricity markets,
data centers can significantly reduce their energy expenditure.

Keywords: Data Center, Day-ahead Market, Real-time Market,
Price Diversity, Power Procurement, Service-level Agreement.

I. INTRODUCTION

The energy demands of data centers have significantly in-
creased over the past years. Accordingly, the cost of electricity
to operate data centers have been skyrocketing. For example,
it is estimated that Microsoft and Google each spent over $36
million on annual electricity bills for their data centers in 2007
[1]. The total annual electricity cost of servers and data centers
in the United States is estimated at $7.4 billion [2].

The growing energy cost of data centers has motivated
various studies to lower data centers’ electricity bills. The prior
work can be classified into at least five different categories.
First, there have been studies to reduce the amount of power
that computing and memory devices consume, e.g., see [3].
Second, different methods have been proposed to optimize the
operation of hardware and software systems in data centers
in response to changes in the workload, e.g., by conducting
dynamic cluster server configuration [4]. Third, there have
been efforts to make the best use of local energy recourses
at data centers, such as solar and wind generators [5], [6],
battery banks [7], and backup diesel generators [8]. Fourth,
some recent studies have focused on workload redistribution
across data centers to benefit from geographical diversity in
both electricity prices [1], [8] and renewable generation [9],
[10]. Finally, there have been studies to manage the operation
and available resources of data centers to better respond to
the changes in the price of electricity, whether by lowering
power consumption or by increasing the use of local energy
resources. Examples include [11] for the case of time-of-use
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Fig. 1. Two sample empirical price trends for day-ahead and real-time
electricity markets during the first week of October 2013: (a) The Ameren
retail price trends [18]. (b) The PJM wholesale market price trends [19].

prices, [12] for the case of day-ahead prices when hedging is
applied, [13] for the case of coincidental peak prices, [14] for
the case of prediction-based prices and [15] for the case of a
data center offering ancillary services.

In this paper, our approach is related to the fifth category
above. Our focus is on procuring power for data centers in
a deregulated electricity market, i.e., a market where prices
are set by running bidding mechanisms among the electricity
suppliers and consumers, c.f., [16]. Compared to the prior
work, our study is unique in the sense that we consider a
scenario where data centers can buy electricity from both
the day-ahead market and the real-time market. The day-
ahead market is usually settled several hours or even a day
in advance while the real-time market is settled only one hour
or sometimes 15 minutes in advance [17, Chapter 2].

Our goal is to understand the cost reductions that data
centers can achieve by exploiting the price diversity across
day-ahead and real-time markets. To see the potential for such
cost reductions, consider the price data in Fig. 1. Here, we
show the prices in the day-ahead market versus the real-time
market in the Ameren retail market in Illinois [18] and the
Pennsylvania-Jersey-Maryland (PJM) wholesale market [19].
Price diversity is evident: at some hours the price is lower in
the real-time market while at some other hours the price is
lower in the day-ahead market. For the price data in Fig. 1,
and compared to buying electricity only from the day-ahead
market, procuring electricity from both day-ahead and real-
time electricity markets may result in a saving up to 13.2%



and 7.5% in the Ameren and PJM markets, respectively.
The significant power consumption of data centers make

them eligible to directly participate in the day-ahead and real-
time electricity markets that currently exist in the U.S., instead
of purchasing electricity from regional utilities who charge
“insurance premiums” to handle the variations in the wholesale
price of electricity. However, a key challenge in procuring
power directly from the wholesale markets is that, although
the statistical characteristics of electricity prices and Internet
workload can be predicted, the actual values of such variables
are revealed only at the operating time and not in advance.
This can expose data centers to the risk of facing volatile
electricity expenditure. To tackle this challenge, we propose to
maximize the data center’s expected profit, i.e., revenue minus
cost, subject to the data center operator’s risk management
constraints as well as the constraints with respect to power
consumption and service-level-agreements (SLAs).

II. SYSTEM MODEL

A. Power Market and Cost of Electricity

In most deregulated electricity markets, electricity can be
purchased both at the Day-Ahead Market (DAM) and the Real-
Time Market (RTM). This is done by submitting demand bids
LDAM and LRTM in megawatt hours to the DAM and RTM,
respectively. The total amount of purchased electric energy
from the two markets combined is obtained as

Electric Energy Purchase = LDAM + LRTM . (1)

The day-ahead market is usually settled several hours or a
day in advance while the real-time market is settled one hour
down to 15 minutes before the operation time [17, Chapter
2]. Let ωDAM and ωRTM denote the market clearing prices
at the day-ahead and real-time markets, respectively. The total
cost of power purchase for each bidding period is obtained as

Cost = LDAMωDAM + LRTMωRTM . (2)

We note that, since LDAM and LRTM are selected before
the market is settled, the market clearing prices ωDAM and
ωRTM are not known at the time of choosing the demand bids.
Therefore, ωDAM and ωRTM are modeled as two random vari-
ables with statistical characteristics E{ωDAM}, V ar{ωDAM},
E{ωRTM}, V ar{ωRTM}, and Cov{ωDAM , ωRTM}. Note
that, in this study, we assume that the data center is price
taker. That is, its demand bids are not large enough to have
noticeable impact on the price of electricity.

B. Power Consumption

The total amount of power consumption in a data center
is obtained by adding the total power consumption at the
computer servers to the total power consumption at the facility,
e.g., for cooling, lighting, etc. For a data center, power usage
effectiveness (PUE), denoted by Eusage, is defined as the ratio
of the data center’s total power consumption to the power
consumption at the servers [2]. The PUE values reported in
the literature range from state-of-the-art 1.05 to 3.0 for the
common practice [20, Section 12.3.3]. Let Pserver denote
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Fig. 2. Two sample service-level agreements (SLAs) in data centers [22].

the average power when a switched on server handles a
service request. Also let M ≤ Mmax denote the number of
servers that are switched on at the data center. Assuming full
CPU utilization for all switched on servers, the total power
consumption of a data center can be calculated as [10], [21]:

Power Consumption = EusageMPserver. (3)

Clearly, the power consumption at a data center increases as
more servers are switched on to handle more service requests.

C. Quality-of-Service, SLAs, and Service Rate

Because of the limited computing capacity of data centers
and the stochastic nature of workload, the service requests that
are sent to a data center are first placed in a queue until they
can be handled by an available computer. To satisfy quality-
of-service (QoS) requirements, the waiting time / queuing
delay for each incoming service request should be limited
to a level that is determined by the Service Level Agreement
(SLA). The exact SLA depends on the type of service offered
which may range from cloud-based computational tasks to
video streaming and web services. Two example SLAs based
on the study in [22] are shown in Fig. 2, where each SLA
is identified by three parameters D, δ, and γ. Parameter D
indicates the maximum waiting time that a service request can
tolerate. Parameter δ indicates the service money that the data
center receives when it handles a single service request before
deadline D. Parameter γ indicates the penalty that the data
center must pay to its customers every time it cannot handle
a service request before deadline D.

Let µ ≥ 0 denote the rate at which service requests are
removed from the queue and handled by a server. Also let κ
denote the number of service requests that a computer server
in the data center can handle per second. We have [11]:

µ = κM ⇒ M =
µ

κ
. (4)

As we switch on more servers and accordingly increase the
service rate µ, more service requests can be handled before the
SLA deadline D, which in turn increases the payments that the
data center receives based on the SLAs. However, increasing



µ will also increase the amount of power consumption at the
data center. In fact, from (3) and (4), we have

Power Consumption = φµ, (5)

where
φ = EusagePserver/κ. (6)

D. Revenue of Data Center

Consider a power purchase bidding period T . For example,
in an hourly market, we have T = 3600 seconds. Let N � 1
denote the number of service requests that arrive at the data
center. Based on the SLA model that we discussed in Section
II-C, the revenue of the data center within the time period of
interest can be calculated as

Revenue =

N∑
i=1

ID,i δ − (1− ID,i) γ, (7)

where ID,i = 1 indicates that the ith service request was
handled before the SLA deadline D and ID,i = 0 indicates
that the ith service request was not handled before the SLA
deadline D. If T and N are large enough, then we can write

Revenue ≈ λT ((1− q(µ))δ − q(µ)γ), (8)

where λ denotes the average arrival rate of service requests
and q(µ) is the probability that a service request is not handled
within deadline D. A model for q(µ) can be obtained through
a G/D/1 queuing analysis that is already done in [23]:

q(µ) =


qI(µ) µI ≤ µ
q′I+(µI)(µ− µI) + q(µI) µII ≤ µ < µI

qII(µ) µ < µII ,

(9)

where
qI(µ) = α(µ) exp

(
−1

2
min
n≥1

mn(µ)

)
, (10)

and

qII(µ) =
Tλ− Tµ
Tλ

=
λ− µ
λ

. (11)

Parameters µI and µII are obtained using [23, Algorithm 1]
and the notations in (10) are defined as follows:

α(µ) =
1

λ
√

2πσ
e

(µ−λ)2

2σ2

∞∫
µ

(r − µ)e−
(r−λ)2

2σ2 dr, (12)

and for each integer number n ≥ 1 we have

mn(µ) =
(Dµ+ n(µ− λ))2

nσ2 + 2
n−1∑
l=1

ρ(l)(n− l)
. (13)

It is worth emphasizing that the general service request arrival
rate in (9)-(13) is modeled based on its various statistical
characteristics, i.e., not only its mean λ, but also its variance
σ2 and its auto-covariance function ρ(l), where lag time
l = 1, 2, . . .. Thus, the q(µ) model in (9) is significantly
more elaborate and more accurate than the simplified M/M/1
queuing models that are typically used in most data center
power consumption studies, e.g., in [8], [9], [12], [24], [25].

III. STOCHASTIC PROFIT MAXIMIZATION

From the results in Section II, there is a trade-off when
it comes to selecting a data center’s service rate: increasing
service rate increases the revenue while it also increases
the cost. Addressing this trade-off is challenging due to the
complexity of the queuing models and also because of the
stochastic nature of the workload and the day-ahead and
real-time electricity market prices. Hence, in this section, we
propose a decision making process based on a stochastic
optimization framework. We propose two variations for the
problem, with and without risk constraints, as we explain next.

A. Design without Risk Constraint

We can model the profit for a data center as

Profit = Revenue− Cost. (14)

When it comes to operating a data center, it is natural to
seek to maximize the data center’s profit. However, due to
the stochastic nature of workload and electricity price, such
maximization must be in an average / statistical sense, i.e., in
terms of the expected value of the profit. Therefore, we need
to solve the following optimization problem to choose both the
electricity purchase bidding parameters LDAM and LRTM as
well as the service rate µ, one day in advance, i.e., at the time
when the day-ahead market bid needs to be submitted:

Maximize
LDAM , LRTM
µ ≤ µmax

E{Profit}

Subject to Energy Consumption = Energy Purchase,
(15)

where µmax = κMmax. From (14), we can write

E{Profit} = E{Revenue} − E{Cost}. (16)

By substituting (2) and (8) in (16), we have

E{Profit} =λT ((1− q(µ))δ − q(µ)γ)−
LDAME{ωDAM} − LRTME{ωRTM}.

(17)

From (1), (5), and (17), we can rewrite problem (15) as

Maximize
LDAM ,LRTM , µ≤µmax

λT
(
(1− q(µ))δ − q(µ)γ

)
−

LDAME{ωDAM}−
LRTME{ωRTM}

Subject to LDAM + LRTM = φµ,

(18)

where the probability term q(µ) is as in (9). The following
theorem helps characterising the above optimization problem.

Theorem 1: The following results hold for problem (18):
(a) If E{ωDAM} > E{ωRTM}, then, at optimality, we have

L?DAM = 0, (19)

L?RTM = φµ?, (20)

µ? = arg max
µ≤µmax

λT
(
(1−q(µ))δ−q(µ)γ

)
−φµE{ωRTM}. (21)

(b) If E{ωDAM} < E{ωRTM}, then, at optimality, we have

L?RTM = 0, (22)
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Fig. 3. Statistical characteristics of the day-ahead market and the real-
time market prices during the month of October 2013 based on the Ameren
electricity price trends in [18]: (a) Mean; (b) Standard deviation.

L?DAM = φµ?, (23)

µ? = arg max
µ≤µmax

λT
(
(1− q(µ))δ − q(µ)γ

)
− φµE{ωDAM}.

(24)

The proof of Theorem 1 is given in Appendix A. From
Theorem 1, if we follow the optimal solution of problem
(18), then the entire power needs of the data center must
be purchased from the market with lower average prices. In
practice, it is usually the real-time market that has the lower
average prices. For example, for the hourly price data in Fig.
3(a), in 17 out of 24 hours, the average price is lower in the
real-time market than the day-ahead market. Consequently, the
data center should procure all its energy needs from the real-
time market during most of the day. The drawback is that
the prices in the real-time market are more volatile, as shown
in Fig. 3(b). In fact, due to the high variations in the real-
time prices, load entities usually avoid purchasing the entire
or even the majority of their electricity needs from the real-
time market [26], making the solution of the expected energy
cost minimization problem (18) less desirable in practice. This
shortcoming can be resolved by including risk constraints in
the decision making process, as we explain next.

B. Design with Risk Constraint

To address the concerns about volatile electricity prices, we
propose to extend problem (15) by adding a risk constraint
that limits the variance in the cost of procured energy:

Maximize
LDAM , LRTM
µ ≤ µmax

E{Profit}

Subject to V ar{Cost} ≤ Γ

Energy Consumption = Energy Purchase,

(25)

where Γ is a risk management design parameter. The choice
of parameter Γ depends on whether the data center operator
is risk averse (lower Γ) or risk seeking (higher Γ). Note that,
problem (15) is a special case of problem (25) where Γ→∞.

From (2), the variance of the cost can be calculated as

V ar{Cost} =L2
DAMV ar{ωDAM}+

L2
RTMV ar{ωRTM}+

2LDAMLRTMCov{ωDAM , ωRTM}.
(26)

From (1), (5), (17), and (26), we can rewrite problem (25) as

Maximize
LDAM ,LRTM , µ≤µmax

λT
(
(1− q(µ))δ − q(µ)γ

)
−

LDAME{ωDAM}−
LRTME{ωRTM}

Subject to 2LDAMLRTMCov{ωDAM , ωRTM}+
L2
DAMV ar{ωDAM}+

L2
RTMV ar{ωRTM} ≤ Γ

LDAM + LRTM = φµ.
(27)

The following theorem shows that the above nonlinear opti-
mization problem is computationally tractable.

Theorem 2: For any workload and electricity price param-
eters λ, σ2, ρ(l), Cov{ωDAM , ωRTM}, V ar{ωDAM}, and
V ar{ωRTM}, the optimization problem in (27) is convex.

The proof of Theorem 2 is given in Appendix B. From
Theorem 2, problem (27) can be solved using standard convex
programming techniques, c.f. [27]. Therefore, solving problem
(27) can be considered as a practical yet optimal way to adjust
the operation of the data center and to select its demand bids
to the day-ahead and real-time electricity markets.

Before we end this section, we shall point out some remarks
about problem (27). First, the risk model based on variance
is only one option to cope with price uncertainty. Another
option is to use the conditional value at risk (CVaR) models
from [8], [28], [29] and revise them for risk management
across both day-ahead and real-time markets. Second, it can
be beneficial to also use price prediction, e.g., see [30]–[32],
especially for day-ahead market prices which are less volatile.
Third, although the optimization (27) is for a scenario where
service rate and power purchase bids are updated on an hourly
basis, we can easily extend our design to other update intervals.
For example, service rates can be updated every 15 minutes
[11], [23], while the power procurement bids are updated
every hour. Problem (27) can still be used in such scenarios
by breaking down the revenue and power consumption terms
into multiple terms, each corresponding to a smaller interval
at which the service rate is adjusted. Finally, optimization
problem (27) can be extended to the case where the data
center offers different types of services with different quality-
of-service requirements and SLAs. In this regard, the problem
formulation can be extended similar to analysis in [33].

IV. NUMERICAL EXAMPLES

Consider a data center with Mmax = 50, 000 servers. The
number of switched on servers M , and accordingly the service
rate µ is updated periodically at the beginning of each time
slot of length T = 15 minutes. We assume that κ = 0.1
and Pserver = 150 watts. The data center’s power usage
effectiveness is Eusage = 1.5. The SLA parameters are set
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Fig. 4. Numerical results for a single time slot for different values of Γ.

based on the Gold service model in Fig. 2. To simulate the
total workload, we use the World Cup 98 web hits data [34].
The electricity price information is based on the hourly day-
ahead and real-time prices that are set by Ameren and PJM
during December 2012 [18], [19]. In all cases, the revenue and
cost are calculated using an event-based simulation, where an
event is the arrival of a new service request, c.f. [11].

To gain insights, first we look at the detailed results for the
case of solving problem (27) for a single time slot. Here, we
use the prices from Ameren. The results are shown in Fig. 4
for different values of parameter Γ. When Γ = 0, the only
feasible solution is µ? = L?DAM = L?RAM = 0, i.e., shutting
down the data center. As we become more risk seeking by
increasing Γ, both service rate and profit increase. We can see
that for the lower values of Γ, it is optimal to procure a large
portion of the power needs from the day-ahead market as the
prices in the day-ahead market are less volatile. However, as
we increase Γ, such portion gradually degrades and the entire
demand is eventually procured from the real-time market.

Next, we consider three different time slots / scenarios over
one month. The results are shown in Fig. 5. Scenario 1 is
for a time slot where the data center workload is low, with
average λ = 197.64. Scenario 2 is for a time slot where the
workload is medium, with average λ = 397.18. Scenario 3
is for a time slot where the workload is high, with average
λ = 879.29. For each scenario, we compare a risk averse
design with Γ = 1 and a risk seeking design with Γ = 4. In all
three scenarios, while a risk seeking design can increase profit
by more aggressively bidding in the real-time market, it makes
the cost more volatile. Note that, since the optimal choices
of LDAM and LRTM change from one day to another, the
variance of cost that is calculated across 30 different days may
not be limited to Γ; nevertheless, we can see that by changing
Γ we can achieve our intended design goal on controlling the
trade-off between maximizing the expected value of the profit
and minimizing the risk in power procurement cost.

V. CONCLUSIONS

In this paper, we took the first steps towards exploiting the
price diversity across the day-ahead and real-time electricity
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Fig. 5. The expected value of profit and the variance of cost for three workload
scenarios over one month: (a) Using Ameren prices. (b) Using PJM prices.

markets to lower data center energy expenditure. Based upon
our observations of empirical workload and electricity price
data, we proposed a novel stochastic and provably convex
profit maximization problem to select data centers’ service
rates and bids to the day-ahead and real-time electricity mar-
kets. Our design incorporates the trade-off between increasing
the profit and decreasing the risk in energy procurement cost,
for a data center that bids into both day ahead and real
time electricity markets. Through simulation results based on
different workload intensities, we showed that procuring power
from both the day-ahead and real-time electricity markets can
significantly help data centers in lowering their energy cost.

APPENDIX

A. Proof of Theorem 1

We prove part (a) by contradiction. The proof for part (b)
is similar. Assume that (L?DAM , L

?
RTM , µ

?) is an optimal
solution of problem (18), where L?DAM = ∆ > 0. Next,
consider (L∗DAM , L

∗
RTM , µ

∗) such that L∗DAM = 0, L∗RTM =
L?RTM + ∆, and µ∗ = µ?. Clearly, (L∗DAM , L

∗
RTM , µ

∗) is a
feasible solution for problem (18). We can show that

Profit(L∗DAM , L
∗
RTM , µ

∗)− Profit(L?DAM , L
?
RTM , µ

?)

= ∆ (E{ωDAM} − E{ωRTM}) > 0,
(28)



where the inequality is due to E{ωDAM} > E{ωRTM}. Thus,
(L?DAM , L

?
RTM , µ

?) cannot be an optimal solution of (18). �

B. Proof of Theorem 2

From [23, Theorems 1 and 3], for any choices of workload
statistical parameters λ, σ2, and ρ(l), the probability model
q(µ) is a convex and non-increasing function of service rate
µ. Therefore, the objective function in (27) is concave in µ and
linear in LDAM and LRTM . From this, and since the equality
constraint in (27) is linear, problem (27) is convex as long
as the left-hand side in the non-linear inequality constraint in
(27) is a convex function. To show this, first, we note that by
definition of the correlation coefficient, we have [35]:

−1 ≤ Cov{ωDAM , ωRTM}√
V ar{ωDAM}

√
V ar{ωRTM}

≤ 1. (29)

From (29), we can further show that

Cov2{ωDAM , ωRTM} ≤ V ar{ωDAM}V ar{ωRTM}. (30)

Next, we notice that the Hessian matrix of the non-linear
function in the inequality constraint of (27) is

2

 V ar{ωDAM} Cov{ωDAM , ωRTM} 0

Cov{ωDAM , ωRTM V ar{ωRTM} 0

0 0 0

 , (31)

where the rows and columns correspond to the optimization
variables LDAM , LRTM and µ, respectively. For the inequality
constraint in (27) to be convex, the above matrix must be
positive definite. Using the Schur complement and because
the variance of electricity price is always positive and also
because of the block diagonal structure of the matrix in (31),
this matrix is positive definite if and only if

V ar{ωRTM} −
Cov2{ωDAM , ωRTM}

V ar{ωDAM}
> 0. (32)

However, the above inequality always holds due to (30).
Therefore, the Hessian matrix in (31) is positive semi definite
and accordingly the problem in (27) is convex. �
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