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Abstract—In this paper, we investigate optimal load control in
industrial sector which involves several new and distinct research
problems. For example, while most residential appliances operate
independently, industrial units are highly inter-dependent and
must follow certain operational sequences. Also, unlike residential
appliances, the operation of industrial units may span across
multiple days and involve multiple batch cycles. Furthermore,
in industries with process control, energy management is often
coupled with material flow management. The design in this
paper is comprehensive and addresses industrial load control
under various smart electricity pricing scenarios, including day-
ahead pricing, time-of-use pricing, peak pricing, inclining block
rates, and critical peak pricing. The use of behind-the-meter
renewable generator and energy storage is also considered. The
formulated optimization problem is a tractable mixed-integer
linear program. Different case studies are presented based on
a practical energy-extensive steel mill industry model.

Keywords–Demand side management, industrial load control,
smart pricing, batch processes, optimal energy scheduling.

NOMENCLATURE

T , t Set and index of time slots.
T Load scheduling horizon.
V , i Set and index of industrial units.
K, k Set and index of materials.
R, r Set and index of initial/raw materials, R ⊂ K.
F , f Set and index of final materials/products, F ⊂ K.
ai Number of time slots in each cycle of unit i.
si[t] Number of unit i’s batch cycles started up to time t.
ei[t] Number of unit i’s batch cycles finished up to time t.
xi[t] Indicating whether unit i operates at time slot t.
ui[t] Total material that is fed to unit i at time t.
yi[t] Total material that is produced by unit i at time t.
αi Minimum material capacity of unit i.
βi Maximum material capacity of unit i.
mk[t] Amount of material k available at storage at time t.
ηk Capacity of storage for material k.
φf Minimum amount of final product f that is needed.
mk[0] Initial amount of material k available in storage.
Mi[t] Total amount of all materials inside unit i at time t.
Iink Set of units that use material k as an input.
Ioutk Set of units that produce material k as an output.
X Set of some units that must operate exclusively.
rki Required fraction of material k at the input of unit i.
qki Fraction of material k at the output of unit i.
Iunt Set of uninterruptible units.
Kimd Set of non-storable materials.
li[t] Electricity consumption of unit i at time slot t.
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ci, di Parameters of electricity consumption of unit i.
lmin
i Minimum stand-by electricity consumption of unit i.
lback[t] Background load at time slot t.
L[t] Total electricity consumption of complex at time t.
Lmax Power draw limit of the industrial complex.
p[t] Price of electricity at time slot t.
pf Unit price of final product f .
pr Unit price of initial/raw material r.
γk Cost of storing a unit of material k for one time slot.
Celct Electricity cost during scheduling horizon.
Cfixed Fixed cost of the industrial complex.
b[t] Indicating status of the battery system at time t.
lch[t] Charge amount of the battery system at time t.
ldch[t] Discharge amount of the battery system at time t.
lmax
ch Maximum charge rate of the battery system.
lmax
dch Maximum discharge rate of the battery system.
µ Efficiency of the battery system during charge.
θ Efficiency of the battery system during discharge.
Binit Initial charge levels of the battery system.
Bfull Capacity of the battery system.
lslr[t] Expected value of available solar energy at time t.
Ω A large enough number.

I. INTRODUCTION

To assure reliable service, electricity generation capacity
is often designed to match the peak demand. Accordingly,
it is desirable to minimize the peak-to-average ratio (PAR)
in the aggregated demand profile in order to achieve efficient
operation and to minimize the need to build new power plants.
This can be done by a combination of smart pricing by utility
companies and optimal load control by consumers. While the
former has been widely studied in the demand response (DR)
literature, e.g. [1]–[6], the latter is also of critical importance,
where the focus is on exploiting the controllable load potential
in each load sector in response to changes in price signals.

Most prior studies on optimal load control are concerned
with residential [5], [7]–[12] and commercial [13]–[15] loads.
However, since the industrial sector comprises 42% of the
world’s electricity consumption [16], addressing industrial
load control (ILC) is also critical. Interestingly, since many
industries are already automated, one can benefit from these
existing automation infrastructures and upgrade them with
control mechanisms that take into consideration power usage
and demand response. Table I shows some factors that make
industrial load control different from residential load control.

In this paper, an industry is defined as a collection of several
industrial units or processes. An industrial process is either
batch or continuous. In a batch process, the input materials
are fed into a unit at the beginning of each batch processing
cycle. The processed material are then collected at the end of



TABLE I
INDUSTRIAL VS. RESIDENTIAL LOAD CONTROL

Design Factor Residential Industrial
Peak Load Shaving X X
Time-Shiftable Load X X

Interruptible Load X X
Uninterruptible Load X X

Pricing Tariffs X X
On-site Renewable Generation X X

On-site Energy Storage X X
Sequential Operation X

Load Dependency X
Size of Batch Cycles X

Number of Batch Cycles X
Material Flow X

Material Balance X
Material Storage X
Final Products X
By-products X

Human Comfort X

the batch processing cycle. In contrast, in a continuous process,
materials are fed and/or products are produced continuously
[17]. For example, steel-making is a batch process while
oil refining is mostly a continuous process. In this paper,
the power usage for continuous processes is considered as
uncontrollable background load while power usage for batch
processes is considered as potential controllable load.

The contributions in this paper are summarized as follows:

• We take several industrial load details into consideration,
including those that do not appear in residential or com-
mercial load control problems. For example, industrial
units are highly inter-dependent and must follow a certain
operational sequence. The operation of certain industrial
units may also span across multiple days. Furthermore,
in industries that involve process control, energy manage-
ment is often coupled with material flow management.

• Operation under different smart pricing scenarios are con-
sidered, including day-ahead pricing, time-of-use pricing,
peak pricing, inclining block rates, and critical peak pric-
ing. The uses of behind-the-meter renewable generation
and energy storage are also taken into consideration.

• The formulated industrial load control optimization prob-
lem is a tractable mixed-integer linear program.

• Different case studies are presented based on a practical
scenario based on a steel mill industry model.

This study can be compared, e.g., with [16], [18]–[22].
In [18], the benefits and challenges in ILC-based demand
response are discussed; however, no specific design formu-
lation is presented. An algorithm for ILC is proposed in [19];
however, some important industrial load features, such as the
operational interdependency across industrial units are not
formulated. Such details are partly discussed in [20]–[22];
however, neither [19] nor [20]–[22] considers size and the
number of batch processing cycles in their formulations and
whether each industrial unit is interruptible or uninterruptible.
Furthermore, these studies do not take into consideration the
emerging smart grid components, such as different smart
pricing tariffs and the use of local renewable generation and
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Fig. 1. An industry is modeled as a collection of interacting industrial units:
(a) An example industry with four units and two final products. (b) Each unit
is identified by its material and energy inputs and outputs, its emission and
waste, and its internal operation details, e.g., whether it is interruptible.

energy storage. Finally, compared to our previous work in [16],
this paper has four advantages. First, here, we manage both
energy usage and material flow. Second, here, we incorporate
a wider range of smart pricing models and also address local
renewable generators and energy storage. Third, the system
model in [16] is inherently limited to a single batch cycle.
Therefore, a completely new model is used in this paper
to select size and number of batch processing cycles and
accordingly to conduct optimal ILC over multi-day operation
horizons. Fourth, the practical steel mill industry model in this
paper is also completely new and it was not discussed in [16].

II. INDUSTRIAL LOAD SYSTEM MODEL

A. Industrial Units as Building Blocks

Consider a complex industrial system, such as the one in
Fig. 1(a). One can model this system as a combination of
several industrial units of different sizes and types that work
together to produce one or multiple final products. To model
each unit, we need to first identify its inputs and outputs in
terms of both material and energy, as shown in Fig. 1(b). We
are particularly interested in the electricity energy inputs to
industrial units, e.g., to run electric boilers, create electric arc,
run electric motors, etc. Output energy, while not common for
most units, is any usable energy form as a by-product.

The output material from one unit is often fed to another unit
as input to go through a multi-stage processing chain before
a final product is produced. As an example, in Fig. 1(a), we
can identify two processing chains 1 → 2 → 3 and 1 → 4
to produce final products m6 and m8, respectively. The raw
materials are marked as m1, m2, and m7. The units in a pro-
cessing chain may or may not work simultaneously. However,
it is always necessary to have enough input materials available
at each unit, before it can start a new batch processing cycle.

Suppose time is divided into equal time slots, where each
time slot is modeled by its beginning time. The numbers in
parentheses inside each unit in Fig. 1(a) shows the number
of time slots that the unit must operate to finish one batch
cycle. Unit 3 is an interruptible load and its represented by a
circle. If needed, its operation can be stopped in the middle of
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Fig. 2. Breaking down unit 2 in Fig. 1(a) into three physical subunits to
reveal the option of operating subunit 3c separately from subunits 2a and 2b.
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Fig. 3. Breaking down unit 4 in Fig. 1(a) into its two logical subunits in
order to represent the ability of unit 4 to support variable batch cycles.

a batch cycle and restored later. In contrast, units 1, 2, and 4
are represented by rectangles because they are uninterruptible.
The flow of material m5 from unit 2 to unit 3 is shown with a
solid line to highlight that due to its pressure, temperature, or
other characteristics, material m5 must be processed by unit 3
as soon as it is produced by unit 2. In contrast, a material flow
with dashed line represents a material that does not have to
be processed immediately; hence, it can be stored and used at
a later time. Material m2 is a usable by-product of unit 2 that
is fed back to unit 1. Also note that materials m1 and m3 are
consumed by multiple units. Finally, each unit may undergo
different number of cycles. For example, unit 1 may undergo
3 cycles while units 2, 3, and 4 may undergo 2 cycles only.

B. Physical and Logical Subunits

An industrial unit can be a complex system, consisting
of multiple internal subunits that conduct different subtasks.
Understanding such internal details of a unit may sometimes
reveal new potentials for load flexibility. For example, consider
unit 2 in Fig. 1(a). This unit is uninterruptible and takes two
time slots to finish one batch cycle. The input materials to
this unit are m3 and m4. The output materials from this unit
are m5 and m2. In practice, this unit may consist of three
internal subunits 2a, 2b, and 2c, as shown in Fig. 2. Each
subunit requires one time slot to finish operation. Based on the
additional details that are now available about unit 2 in Fig. 2,
it turns out that the uninterruptible feature of unit 2 is due to
the way that subunits 2a and 2b operate, where there is a need
to immediately process the internal material m5 by subunit
2b. However, such requirement does not involve subunit 2c.
Therefore, subunit 2c can operate independently from the other
two subunits as long as its input materials are ready.

The definition of subunits for an industrial unit does not
have to be based on the existence of physically separated

equipment. In fact, one may also represent the internal oper-
ational details of a unit by introducing some logical subunits.
For example, one may use logical subunits to model variable
batch cycles. This option is illustrated in Fig. 3. Suppose we
now know that unit 4 takes two time slots to finish operation
but only if it works at full capacity. Further suppose it turns out
that unit 4 can also operate in half capacity and in that case it
would take only 1 time slot to finish operation. Accordingly,
logical subunit 4a represents unit 4 when it operates at full
capacity and logical subunit represents unit 4 when it operates
at half capacity. Here, the dashed-dot line with two crossing
lines between subunits 4a and 4b indicates exclusive operation
because only one setting can be scheduled at a time.

Note that, as far as our overall methodology in this paper is
concerned, there is no difference between units and subunits.
That is, once all units and subunits are defined based on the
intended granularity and their characteristics are understood
and modeled, we can then simply refer to all of them as
units. Accordingly, based on the conventions that we defined in
Section II-A to characterize units, one can represent a subunit
as a circle or square. The interactions between subunits can
also be represented in form of solid or dashed lines.

We must also point out that once we break down a unit into
its physical or logical subunits, we may no longer consider the
original unit in our model. For example, once we replace unit
2 in Fig. 1(a) with subunits 2a, 2b, and 2c, then the set of
units in the system becomes 1, 2a, 2b, 2c, 3, and 4. If we also
replace unit 4 with subunits 4a and 4b, then the set of units
in the system becomes 1, 2a, 2b, 2c, 3, 4a, and 4b.

III. PROBLEM FORMULATION

One can shape the electric load profile of an industrial load
by adjusting the operational schedule of its batch processing
units subject to their operational needs and inter-operational
sequences. In this section, we formulate the design objective,
decision variables, and constraints in an optimal ILC problem.

A. Objective Function

The primary goal of any industry is to maximize its profit,
i.e., its revenue minus cost. On one hand, revenue depends
on the amount and sale price of each final product. On the
other hand, cost depends on the amount and purchase price of
raw materials and also the operational cost of industrial units,
including their cost of electricity. Therefore, we have

Profit = Revenue− Cost, (1)

where
Revenue =

∑
f∈F

mf [T ]pf , (2)

and

Cost =
∑
r∈R

(mr[0]−mr[T ]) pr

+

T∑
t=1

∑
k∈K

mk[t]γk + Cfixed + Celct.

(3)

The first term in (3) is the total cost of raw materials consumed
during the scheduling horizon. The second term is the total



cost of storing materials of any type. The third term is any
fixed cost that does not depend on our decision variables, e.g.,
cost of labor, facility, etc. Finally, and most importantly, the
fourth term is the cost of electricity, which we explain next.

B. Cost of Electricity

The cost of electricity depends on both the electric load
profile and the pricing method used by the utility company.

1) Day-Ahead Pricing (DAP): This pricing method is used,
e.g., by Ameren Inc. in Illinois [23]. In DAP, the utility
releases the hourly prices for the next day on a daily basis. Let
p[t] $/kWh denote the day-ahead price of electricity at time
slot t. Also let L[t] denote the total power consumption at the
industrial complex of interest at time slot t. We have:

Celct =

T∑
t=1

L[t]p[t], (4)

where T is the scheduling horizon.
2) Time-of-Use Pricing (ToUP): This pricing method is

used, e.g., by Pacific Gas & Electric in California for commer-
cial and industrial users [24]. In ToUP, there are multiple rate
periods as on-peak, mid-peak, and off-peak hours. Prices are
usually fixed over a season. Mathematically, ToUP is a special
case of DAP; therefore, the cost of electricity when ToUP is
used is formulated similar to the expression in (4).

3) Peak Pricing (PP): This pricing method is used, e.g.,
by Riverside Public Utilities in California [25]. It usually
has two components: usage charge and peak demand charge.
Usage charge is based on flat or time-of-use rates. It can be
modeled as in (4). Peak demand charge is rather based on
the consumer’s daily or monthly peak load. It is calculated by
measuring electricity usage at the hour of the day or month
during which the consumer’s load is at its highest amount. The
peak price, denoted by ppd $/kWh, is usually much higher than
the prices that are used to calculate the usage charge. That is,
ppd � p[t] for all t ∈ T . As a result, PP can encourage users
to consume electricity more uniformly during the day in order
to improve the load factor. The cost of electricity when PP
method is used can be calculated as

Celct =

T∑
t=1

L[t]p[t] +
(

max
t
L[t]

)
ppd. (5)

4) Inclining Block Rates (IBR): This pricing method is
another way to encourage balanced load profiles. It also
encourages energy conservation. It is offered, e.g., by British
Columbia Hydro in Canada to industrial users [7]. In IBR
pricing, beyond a certain load threshold, the price increases to
a higher value. In a typical two-tier IBR model, we have [7]:

p[t] =

{
pbl[t] if L[t] ≤ L0[t],

phl[t] if L[t] > L0[t],
(6)

where pbl[t], phl[t], and L0[t] are the price parameters at time
t. If L[t] ≤ L0[t], then the cost of electricity at time t becomes

Celct[t] = pbl[t]L[t]. (7)

Otherwise, i.e., if L[t] > L0[t], we have

Celct[t] = pbl[t]L0[t] + (L[t]− L0[t]) phl[t]. (8)

The total cost of electricity during an interval of interest [1, T ]
under IBR pricing is calculated as Celct =

∑T
t=1 Celct[t].

5) Critical Peak Pricing (CPP): This pricing method is
used, e.g., by Fort Collins Utilities in Fort Collins, CO [26]. In
CPP, there is an additional charge during the hours where the
utility experiences spikes in the total load demand in its service
territory. Since CPP depends on the combined behavior of all
consumers, individual customers are unaware of its happening
time. Therefore, utilities send warnings from 5 minutes to 24
hours in advance to inform users about the occurrence of an
upcoming critical peak hour. The exact setup of CPP may vary
in different places. In this paper, we assume that the CPP price
pcp $/kWh and the start and duration of each critical peak hour
are announced as part of the warning signal sent by the utility.
Following the analysis of historical CPP warnings in [27], we
assume that warnings accurately identify the critical peak hour,
i.e., no CPP false alarm may be sent to consumers.

Similar to PP, CPP is usually combined with usage charges.
The cost of electricity under CPP pricing methods becomes

tbeg−1∑
t=1

L[t]p[t] +

tend∑
t=tbeg

L[t]pcp +

T∑
t=tend+1

L[t]p[t], (9)

where tbeg and tend denote the beginning and the end of the
critical peak time frame, where tbeg < tend. The CPP price
is usually much higher than the regular usage price and even
peak price. As reported in [27], when CPP is used, at least
23% of the cost of electricity comes from the CPP charges.

Note that, in this paper, we consider the typical scenario
where the industrial facility procures electricity from a local
utility company at a price that depends on the pricing method
as we discussed earlier. However, given the large electricity
usage of industrial loads, it is also feasible for industrial
facilities to participate in the wholesale electricity market and
procure their needed electricity by submitting proper demand
bids. This option is available in practice, e.g., in California in
the United States. For more details please refer to [28]–[30].

C. Decision Variables

The decision variables in our proposed problem formulation
and the range of the values that they can take are as follows:

si[t] ∈ {0, 1, 2, ...}, ∀i,∀t,
ei[t] ∈ {0, 1, 2, ...}, ∀i,∀t,
xi[t] ∈ {0, 1}, ∀i,∀t,
ui[t] ∈ {0} ∪ [αi, βi], ∀i,∀t,
yi[t] ≥ 0, ∀i,∀t,
mk[t] ∈ [0, ηk], ∀k, ∀t,
li[t] ≥ 0, ∀i,∀t.

(10)

The definitions of the above variables are given in the nomen-
clature. Next, we explain these variables and their relationship.



D. Batch Cycle’s Start and End Time Constraints
As listed in the nomenclature, si[t] denotes the number

of unit i’s batch cycles that started before or at time slot t.
Similarly, ei[t] denotes the number of unit i’s batch cycles that
ended before or at time slot t. These two sets of variables are
defined in order to keep track of the start time and the end
time of each batch cycle in each unit. By definition, we have:

0 ≤ si[t]− si[t− 1] ≤ 1, ∀i,∀t, (11)

0 ≤ ei[t]− ei[t− 1] ≤ 1, ∀i,∀t, (12)

where for each unit i the initial condition is defined as si[0] =
ei[0] = 0. If at a time slot t we have si[t] − si[t − 1] =
1, then unit i has started a new cycle at time slot t and if
ei[t] − ei[t − 1] = 1, then unit i has finished a cycle at time
slot t. Since a unit may not start a new cycle unless its current
cycle has ended, the following inequalities must hold:

0 ≤ si[t]− ei[t] ≤ 1, ∀i,∀t. (13)

Note that, if si[t]− ei[t] = 0, then si[t] = ei[t], i.e., all batch
cycles that started before or at time slot t also finished before
or at time slot t. If si[t]− ei[t] = 1, then the current cycle is
in process and it has not finished yet. The following terminal
conditions also need to hold in order to assure that all batch
cycles for all units end before the end of the decision horizon:

si[T ] = ei[T ], ∀i. (14)

Last but not least, we need to enforce the following terminal
constraint on xi[t] for each unit i to complement the con-
straints in (14) such that no unit operates at the last time slot
t = T and that time is used only for delivering final products:

xi[T ] = 0, ∀i. (15)

E. Batch Cycle’s Operational Constraints
Next, we need to relate variables si[t] and ei[t] to xi[t]

which is the primary variable to control the operation of each
unit i. Let parameter ai denotes the number of time slots that
unit i must operate to finish one batch cycle. Then

si[t] =


0, if

∑t
j=1 xi[j] = 0

1, if 1 ≤
∑t

j=1 xi[j] ≤ ai
2, if ai + 1 ≤

∑t
j=1 xi[j] ≤ 2ai

...

∀i,∀t (16)

and

ei[t] =


0, if 0 ≤

∑t
j=1 xi[j] ≤ ai − 1

1, if ai ≤
∑t

j=1 xi[j] ≤ 2ai − 1

2, if 2ai ≤
∑t

j=1 xi[j] ≤ 3ai − 1
...

∀i,∀t (17)

After reordering the terms, we can replace (16) and (17) with
the following equivalent but more tractable constraints:

(si[t]− 1)ai + 1 ≤
t∑

j=1

xi[j] ≤ si[t]ai, ∀i,∀t, (18)

ei[t]ai ≤
t∑

j=1

xi[j] ≤ (ei[t] + 1)ai − 1, ∀i,∀t. (19)

F. Exclusive Operation and Variable-Length Batch Cycles
Recall from Section II-B that some units might be required

to operate exclusively. That is, for various reasons, certain
units may not operate at the same time. Such operational re-
quirement can be enforced by using the following constraints:∑

i∈X
xi[t] ≤ 1, ∀X ,∀t, (20)

where X ⊂ V is any set of units that must operate exclusively.
For example, for the logical subunits in Fig. 3, we can define
X = {4a, 4b}. Accordingly, the constraint in (20) becomes

x4a[t] + x4b[t] ≤ 1, ∀t. (21)

Thus, as intended, subunits 4a and 4b cannot operate simul-
taneously. To facilitate variable-length batch cycles, we also
set:

β4a = β4, β4b =
1

2
β4, a4a = a4, a4b =

1

2
a4. (22)

All other parameters for subunits 4a and 4b are then inherited
from unit 4. If subunit 4a is scheduled, then it is as if unit 4 is
scheduled to operate at full capacity, where its operation will
take two time slots to finish. And if subunit 4b is scheduled,
then it is as if unit 4 is scheduled to operate at half capacity,
where its operation will take only one time slot to finish.

G. Input and Output Timing Constraints
For a unit that operates in batch cycles, it may import its

input materials only at the beginning of its batch cycles. Recall
from Section III-D that time slot t is the beginning of a batch
cycle for unit i if and only if si[t]− si[t− 1] = 1. Therefore,
to assure the right timing of material entrance to unit i, the
amount of materials entering unit i at time slot t denoted by
ui[t] must satisfy ui[t] ∈ [αi, βi] if si[t] − si[t − 1] = 1, and
ui[t] = 0 if si[t]− si[t− 1] = 0. This can be equivalently ex-
pressed in form of the following linear inequality constraints:

ui[t] ≥ (si[t]− si[t− 1])αi, ∀i,∀t, (23)

ui[t] ≤ (si[t]− si[t− 1])βi, ∀i,∀t. (24)

Similarly, each unit may export its output materials only
at the end of its batch cycles. Recall from Section III-D that
time slot t is the end of a batch cycle for unit i if and only if
ei[t]− ei[t− 1] = 1. Also recall that all events happen at the
beginning of a time slot and hence, it is assumed that output
materials are produced at the beginning of the next time slot
when a cycle ends. Therefore, to assure the right timing of
material exit from unit i, the amount of materials exiting from
unit i at time slot t denoted by yi[t] must satisfy yi[t+ 1] ≥ 0
if ei[t]−ei[t−1] = 1, and yi[t+1] = 0 if ei[t]−ei[t−1] = 0
for all t ∈ [1, T ). This can be equivalently expressed in form
of the following linear inequality constraints:

yi[t+ 1] ≥ 0, ∀i,∀t < T, (25)
yi[t+ 1] ≤ Ω (ei[t]− ei[t− 1]) , ∀i,∀t < T, (26)

where Ω� 0 is a large enough number. Finally, the following
constraints assure that no material may leave any unit at the
very beginning of the decision process, i.e., at time t = 1:

yi[1] = 0, ∀i. (27)



H. Material Balance and Proportionality Constraints

The requirement for material balance in each unit is defined
as the equality between the total amount of input materials that
enter the unit at the beginning of each batch cycle and the total
amount of output materials, including any waste, that leave the
unit at the end of the same batch cycle. Since materials enter
a unit only at the beginning of batch cycles and leave the unit
only at the end of batch cycles, the above definition can be
mathematically expressed in form of the following constraints:

t∑
j=1

yi[j + 1] (ei[j]− ei[j − 1])

=

t∑
j=1

ui[j] (ei[j]− ei[j − 1]) , ∀i,∀t.

The above constraints require that by the end of each batch
cycle, the total material that enters the unit must match the
total material that leaves the unit. These nonlinear constraints
can be replaced by the following equivalent linear constraints:

0 ≤
t∑

j=1

ui[j]−
t∑

j=1

yi[j + 1]

≤ Ω (1− ei[t] + ei[t− 1]) , ∀i,∀t < T,

(28)

Besides material balance in each unit, material balance
should hold also across all units. That is, we need to have:

mk[t] = mk[t− 1] +
∑

i∈Iout
k

qki yi[t]−
∑
i∈Iink

rki ui[t], ∀k, ∀t,

(29)
where mk[0] is the amount of material k that is initially
available in the storage. Note that, for each industrial unit i, we
have

∑
k∈K r

k
i = 1 and

∑
k∈K q

k
i = 1. Constraint (29) is valid

for all types of materials including non-storable materials.

I. Material Storage Constraints

The amount of each material k stored at any time may not
exceed the capacity of its corresponding storage tank ηk. Also
the amount of each material k stored at any time cannot be
negative. These constraints can be formulated as

0 ≤ mk[t] ≤ ηk, ∀k, ∀t. (30)

Next, recall from Section II that certain materials cannot
be stored. Rather they must be immediately sent to the next
unit along the processing chain. Let Kimd denote the set of
materials with such requirements. We need to have:

ηk = 0, ∀k ∈ Kimd. (31)

From (31) and (30), we have mk[t] = 0, ∀k ∈ Kimd and ∀t.
We also need specific constraints with respect to the storage

of final products. Without loss of generality, we assume that
storage facilities of final products are initially empty and
final products of each cycle are accumulated until the end
of scheduling horizon. Therefore, mf [T ] indicates the sum of
final products f that are produced during the load scheduling
horizon. The following captures the production requirement:

mf [T ] ≥ φf , ∀f ∈ F . (32)

J. Constraints for Uninterruptible Units

While there exist industrial units, e.g., in the automotive
industry, whose operations can be interrupted and later re-
stored, there are also units, e.g., in chemical industries, whose
operations cannot be interrupted. Once an uninterruptible unit
starts a batch cycle, it may not stop operation until it finishes
its current batch cycle. Mathematically, this means that if
si[t] − si[t − 1] = 1, then we must have xi[t] = xi[t + 1] =
· · · = xi[t+ ai − 1] = 1. To model this mathematically, first,
we note that a batch cycle for an uninterruptable load may
start anywhere between time slots t = 1 and t = T − ai + 1;
otherwise, the batch cycle does not finish by the end of the
load scheduling horizon at time t = T . Therefore, in order
to assure the proper operation of an uninterruptable unit, the
following constraints must hold for any j = 0, 1, . . . , ai − 1:

si[t]− si[t− 1] ≤ xi[t+ j],∀i ∈ Iunt,∀t ∈ [1, T − j]. (33)

Note that, if at a time slot t, we have si[t] − si[t − 1] = 1,
then (33) becomes 1 ≤ xi[t + j], for all j = 0, 1, . . . , ai−1.
That is, xi[t] = xi[t+ 1] = . . . = xi[t+ ai − 1] = 1.

K. Electricity Consumption Constraints

In general, the amount of power consumption at an indus-
trial unit depends on whether the unit is operating or it is on
stand-by and also the amount of material that is loaded into
the unit during its operation. In this regard, we can model

li[t] =

{
lmin
i if xi[t] = 0

ciMi[t] + di if xi[t] = 1
∀i,∀t, (34)

where the notations are defined in the nomenclature and

Mi[t] =

t∑
j=1

ui[j]−
t∑

j=1

yi[j] (35)

denotes the total amount of all materials that is inside unit i at
time slot t. We can replace (34) with the following constraints:

li[t] ≥ lmin
i , ∀i,∀t, (36)

li[t] ≥ ciM i[t] + di − Ω (1− xi[t]) , ∀i,∀t, (37)

where Ω is a large enough number. Assuming that for each unit
i, we have lmin

i ≤ di, we can explain (36) and (37) as follows.
If xi[t] = 1, then (36) and (37) reduce to li[t] ≥ ciMi[t] + di.
And if xi[t] = 0, then (36) and (37) reduce to li[t] ≥ lmin

i .
Based on the above explanations, the total power consump-

tion across all units in the industrial complex becomes:

L[t] =
∑
i∈V

li[t] + lback[t], (38)

where lback[t] is known and denotes the background load
which includes the facility loads (such as lighting and HVAC)
and non-controllable loads (such as units that operate contin-
uously). Recall that this amount has to be upper bounded:

L[t] ≤ Lmax, ∀t, (39)

where Lmax is determined based on the type of the meter and
electric feeder that the industrial complex is connected to.



L. Profit Maximization Problem

We are now ready to formulate the following profit max-
imization problem for the purpose of energy consumption
scheduling for industrial complexes and industrial processes:

Maximize
(10)

∑
f∈F

mf [T ] pf −
∑
r∈R

(mr[0]−mr[T ]) pr

−
T∑

t=1

∑
k∈K

mk[t] γk − Cfixed − Celct

Subject to (11)− (15), (18)− (33), (36)− (37), (39).

(40)

Note that, depending on the exact pricing model being applied,
we replace Celct in (40) with one of the electricity cost
models in (4) to (9). However, regardless of the choice of
the electricity cost model, the optimization problem in (40)
is either a mixed integer linear program (MILP) or it can
be easily converted to an MILP; therefore, it can be solved
efficiently and in a timely fashion using MILP optimization
software, such as MOSEK [31] and CPLEX [32].

M. Behind-the-Meter Batteries and Renewable Generators

The problem formulation in (40) can easily be modified
to also include batteries and renewable generators. To include
batteries in the ILC problem, we introduce three new variables:
lch[t] and ldch[t] to indicate the charge and discharge rates of
the battery system at slot time t, respectively, and b[t] ∈ {0, 1}
to indicate if the battery is charged or discharged at time slot
t. If b[t] = 1, then the battery is charged at time slot t, and if
b[t] = 0, then the battery is discharged. It is required that

0 ≤ lch[t] ≤ b[t]lmax
ch , ∀t, (41)

0 ≤ ldch[t] ≤ (1− b[t])lmax
dch , ∀t, (42)

where lmax
ch and lmax

dch denote the maximum charge rate and the
maximum discharge rate of the batteries, respectively. Since
the batteries cannot be discharged if they are empty and they
cannot be charged if they are full, the following constraints
are also needed in the problem formulation:

0 ≤ Binit +

t∑
j=1

(µ lch[j]− θ ldch[j]) ≤ Bfull, ∀t, (43)

where Binit and Bfull denote the initial charge level and the
full charge capacity of the battery system, respectively. Here,
µ ≤ 1 and θ ≥ 1 denote the efficiency of the battery system
during charge and discharge, respectively.

Besides adding constraints (41)-(43) to the the problem in
(40), we also need to slightly revise the load models in (38)
in order to incorporate the impact of adding on-site batteries:

L[t] =
∑
i∈V

li[t] + lback[t] + lch[t]− ldch[t], ∀t. (44)

In general, L[t] in (44) may take both positive and negative
values. In particular, L[t] can be negative if the rate at which
the battery is discharged at time t is higher than the total power
consumption at the industrial complex at time t. If L[t] < 0,
then it means that the industrial complex is injecting power
back to the grid. Depending on the policies set forth by the
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Fig. 4. The flow diagram and interacting units for a steel mill industry.

regional utility company that feeds the industrial complex, a
back injection power may or may not be allowed, as some
protection devices on distribution systems may not support
back injections. In that case, it is required to also add the
following constraints into the problem formulation:

L[t] ≥ 0, ∀t. (45)

Finally, suppose the industrial complex is equipped with
local renewable generator and renewable generator outputs are
predicted accurately at each time slot. In that case, equation
(44) should be slightly revised as follows:

L[t] =
∑
i∈V

li[t]+ lback[t]+ lch[t]− ldch[t]− lslr[t], ∀t, (46)

where lslr[t] is the expected available solar energy at time t.

IV. CASE STUDIES

Steel mill industry is energy intensive, and electricity cost
accounts for a big portion of the total operational cost [33].
Fig. 4 shows flow diagram of a steel mill [34], [35]. The
names of units and materials in a typical still mill are given in
Table II. For each unit in Fig. 4, the number inside parenthesis
indicates the duration of each batch cycle. These numbers were
chosen through consulting with the California Steel Industry
in Fontana, CA in the United States and the Esfahan Steel
Company in Isfahan, Iran, with some modifications.



TABLE II
NAME OF UNITS AND MATERIALS IN FIG. 4.

Units Materials
1: Arc Furnace m1: Home Scrap m10: Treated Steel
2: Ladle Furnace m2: Purchased Scrap m11: Cast Steel
3: Slab Caster m3: DRI m12: Hot Band
4: Hot Strip Mill m4: Lime m13: Hot Band (F)
5: Skin Pass Mill m5: Alloys m14: Pickled Band
6: Pickle Line m6: Refractory m15: Cold Rolled
7: Cold Mill m7: Electrode m16: Annealed Band
8: Annealing Line m8: Liquid Steel m17: Cold Rolled (F)
9: Finishing Mill m9: Carbon m18 −m22: Losses

TABLE III
PARAMETERS IN INDUSTRIAL UNITS IN THE CASE STUDY.

i αi βi ci di
1 10 100 3.911 0.001
2 8 80 0.135 0.001
3 30 300 0.198 0.001
4 100 1000 1.023 0.001
5 4 40 0.047 0.001
6 40 400 0.228 0.001
7 40 400 0.340 0.001
8 60 600 0.140 0.001
9 40 400 0.181 0.001

The parameters related to the operation and energy con-
sumption of each unit are shown in Table III. Here, αi and βi
are in metric tonne, ci is in GJ/tonne, and di is in GJ.

Proportionality of input materials of unit 1 are 0.125, 0.376,
0.442, 0.036, 0.005, 0.014, and 0.002, and proportionality of
input materials of unit 2 are 0.9996 and 0.0004, respectively
[34]. Proportionality of output materials of unit 1 are 0.02,
0.79, 0.19. Proportionality of output materials of unit 2 are
0.021, 0.965, and 0.014. Proportionality of output materials
of unit 3 are 0.049, 0.941, and 0.01. Proportionality of output
materials of unit 4 are 0.025, 0.965, and 0.01. Proportionality
of output materials of unit 5 are 0.01 and 0.99. Proportionality
of output materials of unit 6 are 0.03, 0.95, and 0.02. Propor-
tionality of output materials of unit 9 are 0.050 and 0.950.

Storage capacity for all materials is chosen to be 20,000
tonnes, except for material 8 and 10 which must be zero
because these materials may not be stored. The initial amount
is set to zero for all non-raw materials, 10,000 tonnes for
material 1, and 20,000 tonnes for every other raw material.
There is no cost to store materials. The unit prices of the initial
materials are 0, 127.84, 163.54, 3.96, 5.85, 9.1, 11.6, and 10
$/tonne, respectively. The unit prices of the final products are
710, 750, and 0 $/tonne, respectively [36]–[38]. The daily
background load in gigajoules is chosen to be 0.06 for hours
1 and 21 to 24, 0.05 for hours 2 to 6, 0.09 for hours 7 and
10 to 12, 0.1 for hours 8 and 9, 0.08 for hours 13 to 18,
and 0.07 for hours 19 and 20. Capacity, initial charge level,
maximum charge rate, and maximum discharge rate of the
battery system are 5000 kWh, 1500 kWh, 2500 kWh/hour,
and 2500 kWh/hour (i.e., c-rate of 0.5), respectively. The load
control horizon is T = 48 time slots (hours) and Lmax is
chosen to be 5×105 kWh. The minimum needed final products
are chosen to be 20, 40, and 0 tonnes, respectively.

The electricity price data for DAP is from PJM, starting
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Fig. 5. Optimal load profile: (a) DAP; (b) ToUP; (c) PP; (d) IBR; (e) CPP.

March 20, 2014 [39]. To make different pricing methods
comparable, we used DAP as reference and set the parameters
for other pricing methods accordingly. Solar data is from [40],
which includes one sunny day followed by a cloudy day. For
the no load control case, problem (40) is solved for some flat
electricity prices, which are calculated as follows: in DAP and
CPP, the average of DAP price; in ToUP, the average of off-
peak and on-peak prices; in IBR, the average of base-load and
high-load prices; and in PP, the average of regular price.

In all cases, the profit maximization problem in (40) was
solved using CPLEX [32]. The relative mixed-integer pro-
gramming gap tolerance is set to 3% in this case.

A. Impact of Pricing on Load Profile

The load profiles for different pricing models are shown in
Fig. 5. We can see that the choice of pricing mechanism can
significantly affect the optimal demand response of the steel
industry. Note that, the areas under the curves in Fig. 5 are not
the same. For example, the total energy usage under DAP in
Fig. 5(a) is 6.76 GWh while the total energy usage under CPP
in Fig. 5(e) is 5.54 GWh. This is because, besides optimizing
power usage, here, we also optimize material usage as well as
the amount of final product(s). As a result, the changes in the
price of electricity can affect the amount of material flow and
final product(s); accordingly, different optimal energy usage
levels could be resulted under different pricing scenarios.

It is interesting to also calculate the average fraction of
material that was loaded to each unit during its operation,
over the capacity of the unit. The results are Fig. 6 for all



nine units. The results in this figure are for the DAP case.
Similar numbers can be obtained for other pricing methods.
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Fig. 6. The material capacity utilization for each unit with and without load
control under DAP. The number of units are based on Table II.

B. Advantages of Optimal Load Control

From Fig. 7, in each pricing model, optimal scheduling
results in higher profit. The improvement is 45% under IBR
and 10% under ToUP. The use of behind-the-meter battery
and renewable generator can further increase profit. However,
since the total electricity usage of the units is much larger than
the available renewable energy and the battery size, the profit
improvement is small compared to the case with no battery
and renewable energy. From Fig. 8, the battery is charged at
low-price time slots and discharged at high-price time slots.

Figs. 9(a) and (b) show the impact of battery capacity and
battery efficiency on profit, respectively. We can see that profit
increases as the battery capacity or battery efficiency increase.

The above results demonstrate some of the advantages of
our proposed ILC compared to the existing ILC methods in
the literature. First, unlike in [16], [19]–[22], here, batch-
size of each unit is a decision variable and the objective
function is profit which is more appropriate for industrial
consumers. Second, unlike in [16], [20] where the industrial
units are scheduled to operate for exactly one cycle during
the scheduling horizon, here, each unit may undergo multiple
cycles during the scheduling horizon, where the number of
cycles for each unit is in fact an optimization variable. Finally,
the existing literature does not incorporate interruptibility of
industrial units, material scheduling, or material feedback.

C. Variable Batch Cycles

Recall from Sections II-B and III-F that some units may
allow variable-length batch cycles. This may create additional
load flexibility to increase profit. To see this, suppose units
4 and 6 allow variable-length batch cycle. Unit 4 can now
operate at either full capacity that takes four time slots to finish
or half capacity that takes two time slots. Similarly, unit 6 can

DAP ToUP  PP IBR 
150

200

250

300

350

400

450

Pricing Method

P
ro

fit
 (

$ 
10

00
)

 

 
No Load Control
Optimal Load Control without Battery and Renewbles
Optimal Load Control with Battery and Renewbles

Fig. 7. Profit under different price and resource scenarios.
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Fig. 8. Operation with battery and renewable generator: (a) the retail price
of electricity, (b) solar generation, (c) controllable load, (d) battery schedule.

now operate at either full capacity that takes four time slots to
finish or half capacity that takes two time slots. In that case,
the optimal operation of the steel mill under DAP would result
in the total load profile that is shown in Fig. 10. This figure is
comparable with Fig. 5(a), where the operation of all units had
fixed length. We can see that the load profiles are different in
the two figures. The total energy usage under fixed and variable
batch cycles is 6.67 GWh and 5.85 GWh, respectively. As for
the total profit, it has increased from $314K under fixed batch
cycles to $388K under variable batch cycles.

The operation of units 4 and 6 under fixed batch cycles and
variable batch cycles are compared in Fig. 11. We can see that
the operation of both units have changed under batch variable-
length batch cycles. The changes for unit 4 are particularly
significant, where the first few and last few batch cycles
operate are at half capacity. As for the case of unit 6, one
full capacity cycle is moved to an earlier time and a new half
capacity is added after that with one time slot gap in between.
Note that, for unit 4, when it operates with variable cycles, we
obtain x4[t] = x4a[t] + x4b[t], where logical subunits 4a and
4b operate exclusively. Similarly, for unit 6 when it operates
with variable cycles, we obtain x6[t] = x6a[t] + x6b[t], where
logical subunits 6a and 6b operate exclusively.
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Fig. 9. The impact of battery parameters on profit: (a) capacity, (b) efficiency.
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Fig. 10. Optimal load profile under variable cycles and DAP pricing.

D. Longer Scheduling Horizons

From Fig. 12, the total profit increases as the scheduling
horizon increases due to more time flexibility. The improve-
ment under ToUP is over 50%, under CPP is around 40%,
under DAP is over 20%, and under PP is over 10%.

E. Timing of CPP Warning

From Fig. 13, a late CPP warning can be very costly for
an industrial load since an industrial load often does not have
enough flexibility to change the operation of units in short
notice, e.g., due uninterruptible nature of many units.

V. CONCLUSIONS

A new optimization-based industrial load control framework
is proposed under five different smart pricing methods: DAP,
ToUP, PP, IBR, and CPP. The formulated optimization problem
is a tractable mixed-integer linear program. Various load
features that are specific to industrial sector are considered,
including inter-dependence among industrial units, operation
across multiple days, size and number of batch processes, se-
quential operation, interruptible and uninterruptible operation,
and joint energy management and material flow management.
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Fig. 12. Impact of longer scheduling horizons on the overall profit.

The use of behind-the-meter energy resources, such as on-site
batteries and renewable generators, is also considered.

Case studies are presented in form of an illustrative example
and also for a steel mill industry. It is shown that the choice of
pricing mechanism can significantly affect the optimal demand
response of an industrial load. The advantages of using local
energy resources and the optimal sizes of these resources also
depend on the choice of the pricing method that is being used.
Due to the inter-dependency among industrial units, industrial
load control can benefit from increasing the scheduling horizon
to multiple days. However, such increase can come at the cost
of higher computational complexity. Finally, it is beneficial to
co-optimize energy usage and material flow, because control-
ling the material flow to each sub processing unit affects both
revenue, by having impact on the amount of final products, and
cost, by having impact on the amount of power consumption.
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