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Abstract— Renewable energy resources, such as wind and
solar power, are rapidly becoming generation technologies of
significance in the United States and around the world. How-
ever, because of their intermittency and inter-temporal variations,
the integration of renewable energy resources is usually very
challenging. Some of the previously proposed solutions, such as
the use of energy storage units and fast-responding generators,
are costly and may not be desirable in practice. Instead, in this
paper, we argue that due to the workload flexibility in the Internet
and Cloud Computing data centers they can offer a unique
opportunity to tackle the challenges in integrating renewable
energy resources. Moreover, by running data centers with behind-
the-meter renewable generators, we can significantly reduce not
only data centers’ energy cost but also their Carbon Footprint.
To achieve these objectives, we propose to optimally distribute
the workload among geographically dispersed data centers such
that we can benefit from the location diversity of different types
of available renewable energy resources. The quality-of-service
is guaranteed by real-time monitoring of the queue lengths and
effectively stabilizing short queue lengths in each data center. Our
simulation results, based on various experimental data, show that
the proposed design can significantly reduce data centers’ cost
of electricity while maintaining quality-of-service.

I. INTRODUCTION

The growing demand for the Internet services has signif-
icantly increased the energy consumed by the Internet and
Cloud Computing data centers over the past few years. A
typical data center includes hundreds of thousands of computer
servers, cooling equipment, and substation transformers. For
example, Microsoft’s data center in Quincy, WA consumes 48
megawatts electricity which is enough to power 40,000 homes
[1]. It is estimated that the total electricity cost of servers and
data centers in the United States is $7.4 Billion annually [2].

The increasing energy cost in data centers has motivated a
growing number of research projects not only to reduce the
amount of energy consumed by computer servers [3], [4], but
also to design resource management algorithms to run data
centers more efficiently. One approach in this line of research
is dynamic cluster server configuration to reduce the total
power consumption by consolidating load on only a subset
of machines and turning off the rest, during low workload
periods when the system is under-utilized. Additional servers
are powered on only when the workload increases [5], [6].
Another approach is to dynamically scale the CPU clock
frequency of the computer servers in response to the varying
workload [7], [8]. A high frequency, imposing higher energy
consumption, is chosen only at peak workload hours. This
allows the energy consumption at data centers to be elastic.

Another thread of research, that has emerged only recently,
aims to take the advantage of price-diversity in the deregulated
electricity markets to develop algorithms that distribute the
workload among data centers in multiple locations to minimize
the total cost of electricity of the data centers [9], [10].
The idea is to constantly monitor the price of electricity
at different regions and forward the workload towards data
centers that are located in regions with the lowest price of
electricity. Migrating an existing workload from one data
center to another to benefit from the lower price of electricity
in the new location has also been recently examined in [11].

In this paper, we take a very different approach and investi-
gate reducing the energy cost of data centers, where each data
center is equipped with a local behind-the-meter renewable
power generator. In general, the main challenges in integrating
renewable energy resources are their intermittency and inter-
temporal variations [12]. However, we will show that due to
the elasticity of data centers’ energy consumption, they can
be among the most appropriate types of load to be run by
renewable power. In this regard, our focus is on developing
optimal workload distribution algorithms that distribute the
incoming service requests among geographically dispersed
data centers based on renewable power availability. To the best
of our knowledge, this paper is the first to investigate the inte-
gration of behind-the-meter renewable power generators into
the Internet and cloud computing data centers using workload
distribution with explicit quality-of-service provisioning. The
results in this paper can complement those in [3]–[11] not only
by further reducing data center’s total energy cost but also by
advancing the design and development of green data centers.
The contributions in this paper can be summarized as follows.

• We develop a mathematical framework to investigate
optimal workload distribution among geographically dis-
persed data centers with different types of behind-the-
meter renewable generators. In this regard, we take into
account computer servers’ power consumption profiles,
data centers’ power usage effectiveness, total workload
in terms of the number of service requests received at
each time of day, instantaneous queue lengths at each
data center, availability of renewable power at different
locations, and price of electricity at different locations.

• We propose an optimization-based workload distribution
algorithm that allocates the workload among data centers
such that for each data center its total power consumption
can follow the time-varying trend of power generated by
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Fig. 1. The system model studied in this paper. The load assignment server distributes service requests among N geographically dispersed greed data centers.

the data center’s behind-the-meter renewable generators.
Moreover, our design constantly monitors the number of
service requests waiting at data centers’ queues and seeks
to stabilize short queues to assure quality-of-service.

• We use various experimental data, e.g., for wind power
generation, time-of-day price of electricity, and workload
trends, to assess the performance of the proposed optimal
workload distribution scheme via computer simulations.
Simulation results over a 10 days service period show that
our design can significantly reduce data centers’ cost of
electricity while maintaining the quality-of-service.

The rest of this paper is organized as follows. The system
model is introduced in Section II. It provides mathematical
models for power consumption at data centers, workload
distribution, and renewable power generation. The proposed
optimal workload distribution algorithm is presented in Section
III. The performance of the proposed algorithm is evaluated
using experimental data and computer simulations in Section
IV. Conclusions and future work are discussed in Section V.

II. SYSTEM MODEL

Consider a group of N data centers that are geographically
dispersed at different locations to offer the same types of
service such as content distribution [13], [14] or cloud com-
putation [15]. We are interested in a scenario where each data
center is equipped with a behind-the-meter renewable power
generator. Such generator can be, for example, a wind farm
or an array of solar panels, which are the most common types
of commercial renewable generators [12], [16]. The system
model to be investigated in this paper in shown in Fig. 1.

A. Workload Distribution
As a key element in the system model, a workload distribu-

tion server is used in order to distribute the incoming service
requests from all users among the data centers as shown in
Fig. 1. We assume that time is divided into several equal-
length time slots. For example, each time slot can indicate one

second. Let L[t] denote the total number of service requests
received by the workload distribution server from all users at
time slot t. Also let δi[t] denote the number of service requests
that are forwarded to each data center i. In order to assure that
all service requests will be handled, we should always have

N∑
i=1

δi[t] = L[t]. (1)

The service requests forwarded to each data center are en-
queued until they are handled in a first-in-first-served order.
The rate at which service requests are pulled from the queue to
be handled in data center i at time slot t is denoted by µi[t].
Such rate can be adjusted by changing the CPU frequency
of the data center’s computer servers or by changing the
utilization level of the computer clusters. Depending on the
type and number of service requests that each computer server
can handle and also based on the total number of computer
servers at each data center, for each data center i and at each
time slot t, it is required that we select µi[t] such that

µmin
i ≤ µi[t] ≤ µmax

i , (2)

where µmin
i and µmax

i are parameters specific to data center i.

B. Power Consumption

The total amount of power consumption in a data center
is obtained by adding the total power consumption at the
computer servers to the total power consumption at the facility,
e.g., for cooling, lighting, etc. For each data center, power
usage effectiveness (PUE), denoted by Eusage, is defined as
the ratio of the data center’s total power consumption to the
data center’s power consumption at the computer servers [2].
The PUE is considered as a measure for data center’s energy
efficiency. Currently, the typical value for most enterprise data
centers is 2.0 or more. However, recent studies have suggested
that many data centers can soon reach a PUE of 1.7. A few
state-of-the art facilities have reached a PUE of 1.2 [2].
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Let Pidle denote the average idle power draw of a single
computer server in a data center and Ppeak denote the average
peak power when a computer server is handling a service re-
quest. The ratio Ppeak/Pidle denotes the power elasticity of the
servers. A higher value of this ratio indicates greater elasticity,
leading to less power consumption when the computer server
is idle not handling any service request. Let mi denote the
number of computer servers that are ‘on’ at data center i.
Also let κ denote the total number of service requests that each
computer server can handle at each time slot. We can obtain
the total power consumption at data center i as a function of
the rate of handling service requests µi[t] [17] as follows:

Pi(µi[t]) = ai µi[t] + bi, (3)

where

ai , (Ppeak − Pidle)/κ, (4)

bi , mi (Pidle + (Eusage − 1) Ppeak). (5)

Here, bi is the base load, i.e., the amount of power consump-
tion even if some of the turned ‘on’ computer servers are idle.
On the other hand, ai µi[t] is an added load which indicates
the extra power consumption depending on the rate at which
service requests are handled at data center i at time slot t. The
faster service requests are handled at a data center the higher
the data center’s total power consumption will become.

We note that, in addition to carefully adjusting the rate of
handling service request, i.e., µi, the power consumption at
data center i can be controlled by also adjusting the number
of ‘on’ servers, i.e., mi. This can be done easily, for example,
by turning on only as many servers as are needed to handle
the expected number of incoming service requests at each data
center, given a reasonable margin to keep some additional
computer servers on stand-by mode at each time of day [18].

C. Renewable Power Generation

Due to the intermittency of most renewable energy re-
sources, the amount of renewable power available at each
data center can significantly fluctuate at different times of day.
Therefore, in addition to a local renewable generator, each data
center is also equipped with a sub-station that is connected to
the electric grid in order to compensate lack of local generation
when the amount of renewable power is not enough to run data
centers. Let Wi[t] denote the renewable power generated by
each data center i’s renewable generator. Also let Gi[t] denote
the amount of power exchange with the power grid. We have

Gi[t] = Pi(µi[t])−Wi[t]. (6)

If local renewable generation is lower than local consumption,
i.e., Pi(µi[t]) > Wi[t], then Gi[t] is positive and the power
flow is in the direction from the power grid to the data center.
If Pi(µi[t]) = Wi[t], then the data center operates as a zero-
net energy facility [19]. Since the behind-the-meter renewable
power markets have not been established in most regions
yet, for the special case when local renewable generation is
greater than local consumption, we make the assumption that
the amount of renewable power generated will be instantly
reduced to match local consumption. This can be done, for

example, by braking the rotors for a sub-set of wind turbines
or by applying dynamic pitch and yaw control [20]. The
alternative scenario where data centers sell their excessive
renewable power generation is beyond the scope of this paper
and can be considered as an interesting extension in a future
study. Therefore, for the rest of this paper, we assume that
Gi[t] ≥ 0 for all i = 1, . . . , N and at any time slot t.

D. Renewable Power Prediction

The amount of renewable generation at each data center can
be predicted for the next few minutes (short term predictions)
based on past measurements. In this regard, at the beginning
of each time slot t and for each data center i, the predicted
renewable power can be denoted as [21]:

Ŵi[t] = E {Wi[t]|Wi[t− 1],Wi[t− 1], . . .} , (7)

where E denotes conditional expectation. For example, when
it comes to wind power, the prediction in (7) can be done using
Markov Chain models based on monthly wind speed statistics
[22]. As we will explain in Section III, the predictions on
available renewable power in (7) can be used to adjust the
operation of the load assignment server and the data centers
such that the total cost of electricity is minimized.

E. Locational Price of Electricity

The price of electricity may vary at different locations. For
example, the average price of electricity is higher in Texas
compared to its neighboring states of Oklahoma and Louisiana
[23]. Moreover, the price of electricity may vary at different
times of day when real-time or time-of-use pricing tariffs are
implemented [24]. The prices are usually higher at peak load
hours in the afternoon [25]. We denote the price of electricity
at data center i and at at time slot t by ωi[t].

III. OPTIMAL WORKLOAD DISTRIBUTION ALGORITHM

In this section, we propose an optimization-based workload
distribution algorithm that allocates the workload among data
centers such that for each data center its power consumption
follow the time-varying trend of power generated while taking
into account the price of electricity. As we will see in Section
IV, the proposed design can significantly reduce data centers’
electricity cost while maintaining quality-of-service.

A. Quality-of-Service

Let λi[t] denote the length of the queue in data center i at
time slot t. If µi[t] < δi[t] then the queue length increases
and at the next time slot λi[t + 1] will be greater than λi[t].
Similarly, if µi[t] > δi[t] then the queue length decreases and
at the next time slot λi[t+ 1] will be less than λi[t]. In fact,
given λi[t] and based on the choice of µi[t] and δi[t] we can
predict λi[t+ 1] at the beginning of time slot t+ 1 as

λ̂i[t+ 1] = λi[t]− µi[t] + δi[t]. (8)

Note that, as the queue length increases, it takes longer to
respond to the incoming service requests. However, most
service-level agreements, e.g., for web-based services, require
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data centers to limit the delay in responding to service requests
they receive. For example, based on some commonly used
step-wise service-level agreements, a data center / service
provider is paid only if the response time is less than 200
ms [15]. If the response time goes beyond this limit, the
data center will be penalized. Therefore, to assure quality-
of-service and to limit the response time within an acceptable
range, we can impose an upper bound D on queue lengths.
Therefore, we should control the operation of data centers such
that we always have λ̂i[t+ 1] ≤ D for all i = 1, . . . , N .

B. Optimization Problem

At the beginning of each time slot t, we propose to solve
the following problem at the workload distribution server:

minimize
δ[t],µ[t]

N∑
i=1

ωi[t]
(
aiµi[t] + bi − Ŵi[t]

)2
−

N∑
i=1

ψi λi[t] µi[t]

subject to
N∑
i=1

δi[t] = L[t],

λi[t] + δi[t]− µi[t] ≤ D, i = 1, . . . , N,

(9)

where δi[t] ≥ 0 and 0 ≤ µi[t] ≤ µmax
i for all i = 1, . . . , N .

Here, there are two set of variables: δ[t] = {δ1[t], . . . , δN [t]}
and µ[t] = {µ1[t], . . . , µN [t]}. They both affect the queue
lengths and quality-of-service. The latter also affects total
power consumption across data centers. Note that, there two
components in the objective function in problem (9). The first
one, i.e.,

∑N
i=1 ωi[t](aiµi[t] + bi − Ŵi[t])

2, is a weighted
summation of N quadratic terms, each one indicating the
difference between the predicted amount of renewable power
to be generated and the total power to be consumed at
each data center at the next time slot, where the weights
are the locational electricity prices. By minimizing the first
component in the objective function, we seek to minimize
the difference between local renewable generation and local
power consumption (this minimizes the total electricity to be
purchased from the power grid), particularly in those regions
where the price of electricity is higher. The second component,
i.e.,

∑N
i=1 ψi λi[t] µi[t], is added to the objective function for

the purpose of stabilizing the queues at all data centers in
order to enforce quality-of-service, together with constraint
λi[t] + δi[t]−µi[t] ≤ D for all i = 1, . . . , N . Note that, ψi is
a design parameter for each data center and is used to adjust
the trade-off between cost minimization and improving the
quality-of-service. As the number of service requests waiting
in data center i’s queue, i.e., queue length λi[t], increases, we
push the optimal solution towards increasing µi; thus, handling
service requests faster and also tackling incoming bursts.

C. Implementation

Problem (9) is a quadratic convex optimization problem and
can be solved effectively at the workload distribution server
using convex programming techniques such as the interior

point method (IPM) [26]. The optimal solution can then be
implemented by properly modifying some of the existing
workload distribution software such as Apache Hadoop [27]
which is commonly used, e.g., by Google and Yahoo! for Web
search query. In this regard, the workload distribution server
will periodically collect data center’s queue length and other
local information and will constantly update the workload
distribution plan according to the optimal solution of the
optimization problem (9), e.g., once every few seconds.

IV. PERFORMANCE EVALUATION

A. Simulation Setting

Consider N = 3 data centers that are located at three
geographical regions and all offer the same type of Internet or
cloud computing service. We assume that there is a local wind
farm associated with each data center, each one comprising
of 20 General Electric (GM) 1.5 megawatts wind turbines.
The trends of wind power in our simulations are based on
the measurements at three wind farms in Texas [22]. A daily
example for the considered wind power trends are shown in
Fig. 2(a). The electricity price information in our simulations
are based on the real-time pricing tariffs currently practiced
in three different areas in Chicago, IL [24]. An example for
daily prices are shown in Fig. 2(b). Finally, to simulate the
total workload, we used the World Cup 98 web requests which
are available in [28]. As an example, the number of service
requests received at the World Cup 98 servers on June 2, 1998
are shown in Fig. 2(c). Each time slot is assumed to take one
second. We assume that each data center i has up to 400,000
servers. The exact number of turned on servers varies and is
set at each time of day based on the mechanism explained at
the end of Section II-B. For each server, Ppeak = 200 watts
and Ppeak = 100 watts. We also have Eusage = 1.2 which is
the reported state of the art power usage effectiveness [2]. The
type of service to be offered by data centers is assumed to be
video streaming. Each service takes 45 minutes which is equal
to the time it takes for each soccer game in each half time.
Therefore, we have κ = 4

3 ×
1

3600 requests per second.

B. Cost Reduction and Quality-of-Service

The optimal workload distribution for a single day simula-
tion is shown in Fig. 2(d) where the simulation data are as in
Fig. 2(a)-(c). We can see that the optimal workload distribution
is not uniform and some data centers receive more workload
at different times of day. Let us examine the two scenarios
marked in this figure. For Scenario 1 between hours 7 and
8, the total incoming workload in the system is low, as we
can see in Fig. 2(c). Therefore, it is possible to handle most
of the workload using only wind power, making wind power
availability the key factor in decision making. As a result,
the majority of the workload is forwarded to Data Center 1
which has significantly higher wind power availability at this
time of day, as we can see in Fig. 2(a). However, for Scenario
2 between hours 20 and 21, the total incoming workload in
the system is high. Therefore, the wind power available is not
enough to run data centers and we need to purchase electricity
from the grid, making the price of electricity the key factor for
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Fig. 2. An example daily simulation results: (a)-(c) The experimental data used for simulations. (d) The resulting optimal workload distribution.

decision making in this case. As a result, the majority of the
workload is forwarded to Data Center 2 which has the lowest
price at this time of day, as we can see in Fig. 2(b). Finally, we
can see from the results in Fig. 3 that the optimal workload
distribution scheme can stabilize queues and maintain short
queue lengths in all data centers to assure quality-of-service.

Comparing to a uniform workload distribution plan that
allocates workload among data centers equally, the optimal
workload distribution scheme can significantly reduce the
cost of running data centers as shown in Fig. 4(a). We can
see that the proposed design outperforms uniform workload
distribution at any time of day. Repeating the simulations for
10 different days, based on the World Cup 98 workload data
from May 28, 1998 to June 6, 1998, we can see that the cost
of running data centers will reduce by 29.2%, i.e., $8,797 on
average, leading to a total saving of $87,970 over 10 days.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an optimization-based workload
distribution framework for Internet and cloud computing data

centers with behind-the-meter renewable generators. In this
regard, we took into account computer servers’ power con-
sumption profiles, data centers’ power usage effectiveness,
total workload in terms of the number of service requests
received at each time of day, instantaneous queue lengths at
each data center, availability of renewable power at different
locations, and price of electricity at different locations. Each
data center is designed to adapt its power consumption to
constantly follow the time-varying trend of renewable power
generated while the number of service requests waiting at the
data centers’ queues are monitored to assure quality-of-service.
Using various experimental data, simulation results show that
the proposed design can significantly reduce data centers’ cost
of electricity while maintaining quality-of-service.

This paper can be extended in several directions. For ex-
ample, we are currently working on also incorporating service
differentiation, statistical whether forecasting information, and
propagation delays between user and data center locations into
the problem formulation to achieve more accurate designs.
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