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Abstract— This study is motivated by the recent advancements
in developing non-contact line sensor technologies that come at a
low cost, but have limited measurement capabilities. While they
are intended to measure current, they cannot measure voltage
and power. This poses a challenge to certain distribution system
applications, such as topology identification (TI), because they
commonly use voltage and power measurements. To address
this open problem, a new TI algorithm is proposed based on
measurements from a few line current sensors, together with
available pseudo-measurements for nodal power injections. A TI
problem formulation is first developed in the form of a mixed
integer nonlinear program (MINLP). Several reformulation steps
are then adopted to tackle the nonlinearities to express the TI
problem in the form of a mixed integer linear program (MILP).
The proposed method is able to identify all possible topologies,
including radial, loop, and island configurations, which extends
the application of TI to identify switch malfunctions and to detect
outages. In addition, recommendations are made with respect to
the number and location of the line current sensors to ensure
performance accuracy of the TI method. A novel multi-period
TI algorithm is also proposed to use multiple measurement
snapshots to improve the TI accuracy and robustness against
errors in pseudo-measurements. The effectiveness of the proposed
TI algorithms is examined on the IEEE 33-bus test case as well
as a test case based on a real-world feeder in Riverside, CA.

Keywords: Topology identification, line current sensors, distri-
bution network, mixed integer linear program, single-period and
multi-period optimization, radial topology, loop topology.

NOMENCLATURE

Sets

K Set of lines equipped with current sensor.
L Set of lines.
N Set of nodes.
Ni Set of lines which are connected to node i.
T Set of snapshots

Main Decision Variables

bi Binary variable for switching status of node i.
sij Binary variable for switching status of line {i, j}.

Auxiliary Decision Variables

γ[t] Probability of snapshot [t].
Ψ[t] TI objective function of snapshot [t].
Eij ,Fij Auxiliary variables used in Step 3 of Section II.B.
Gi, Hi Auxiliary variables used in Section III.B.
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Iij Current variable of line {i, j}.
Ii Injection current variable of node i.
t Time index for the snapshots.
Uij Auxiliary variable used in Step 1 of Section II.B.
Vi Voltage variable of node i.
Wij Auxiliary variable used in Step 2 of Section II.B.

Operators and Parameters

(·)∗ Conjugate transpose.
αij Standard deviation of error in current measurement.
βi Standard deviation of error in pseudo-measurement.
η Bound of measurements/pseudo-measurements error.
σ Standard deviation of errors.
z̃ Contaminated measurement vector
Imij Current measurement at line {i, j}.
L Number of lines in the network.
M A large number in the big-M method.
N Number of nodes in the network.
n Number of nodes in an independent loop.
Si Load injection at node i.
yij Admittance of line {i, j}.
z True measurement vector.
Im{·} Operator for imaginary part.
Re{·} Operator for real part.

I. INTRODUCTION

Correct knowledge of the network topology is vital for
distribution system operation, with applications to state es-
timation, fault location, Volt-VAR control, demand response,
etc. If the network topology is known incorrectly, then these
applications produce incorrect results. Therefore, the topology
of the network must frequently be identified. However, in
practice, topology identification (TI) is a challenging task for
distribution systems due to the limited measurements as well
as unavailable or unreliable information about the status of
switches and circuit breakers across distribution feeders.

The most common TI approach in practice is to dispatch
utility crew members to examine the status of switches. But
this is costly and cannot be done frequently in order to con-
tinuously track changes in topology. An alternative approach
is to use measurement-based TI algorithms that estimate the
status of switches based on available sensor data.

Different measurement-based methods have been proposed
in the literature. One class of TI algorithms uses various field
measurements to do distribution system state estimation for
every possible topology configuration, and then chooses the
topology with the minimum residue errors in state estimation
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[1], [2]. However, such exhaustive approach is often computa-
tionally complex. A remedy is to integrate the TI problem into
the state estimation problem formulation to simultaneously
estimate both the system states and the status of the switches
[3], [4]. This can help improve computational efficiency. But
the issue with any TI algorithm that involves state estimation
is that one may not have sufficient field measurements to do
full state estimation; even though the available measurements
could be sufficient for the sole purpose of TI.

There are other TI methods in the literature that use rather
limited measurements solely for the purpose of TI. A common
approach in this line of work is to use voltage measurements
[5]–[9]. For example, in [8], the authors reconstruct the grid
topology by conducting a correlation analysis of voltage mea-
surements. In [9], a time-series signature verification method is
employed to identify the network topology using synchronized
voltage phasor data. Another approach is to use smart meter
data, e.g., in [10] where voltage measurements are used; in
[11] where energy measurements are used; and in [12] where
both voltage and energy measurements are used.

There are also TI methods that work based on measuring
line power flow, such in [13]–[16]. In practice, measuring
power at each measurement point requires installing instru-
mentation devices such as CTs and PTs, which are known to
be expensive. It should be added that, for the method in [16], it
uses the Distflow model which works only in radial topologies
and cannot be used in loop configurations that can occur for
example due to switching malfunction or cyber-attacks.

In this paper, a novel TI algorithm is proposed based on
two types of measurements: 1) line current measurements
at a few lines where line current sensors are installed; and
2) pseudo-measurements in form of measured or otherwise
estimated nodal power injections at all buses. Specifically, this
study is motivated by the recent advancements in developing
non-contact line current sensors. These sensors have recently
been adopted in the utility industry for installation on power
distribution lines. They are cheaper in cost and easier to be
installed, in comparison with the traditional utility sensors that
measure voltage and power. Non-contact line sensors can also
measure e-field, which can be used to estimate the relative
phase angle for the current measurements. In other words,
these sensors can estimate the phasor, just like micro-PMUs
[17], but only for current and at a much lower cost. These
line current sensors measure current greater than 1 mA with
1% error and phase angle with 1.5◦ error, with a second-by-
second reporting rate [18]. There already exists a variety of
commercial choices for non-contact line current sensors, e.g.,
see [19], [20], and a growing number of utilities, such as
in Riverside, CA, are looking into installing such low-cost
sensors on their medium and low voltage distribution lines.

While the aforementioned line current sensor technologies
are capable of measuring electric field, they are not capable of
measuring voltage. More precisely, they cannot measure volt-
age while keeping their cost down at a level that justifies their
application in power distribution systems. As a result, they
cannot measure the power that flows through the conductor
either. Therefore, the TI methods that are built based on either
measuring voltage, as mentioned in [8]–[11], or measuring line

power flow, such as those in [14] and [15], are not applicable
for the networks with non-contact line sensors.

Addressing the above open issues is the focus in this paper.
The contributions in this paper can be summarized as follows:

1) A novel TI method is proposed for distribution networks
that uses the measurements from line current sensors.
To the best of our knowledge, this is the first paper
proposing a TI method that is specifically concerned
with utilizing the type of measurements that come from
these emerging low-cost line current sensors.

2) A TI problem formulation is first developed in this
context in the form of a mixed integer nonlinear program
(MINLP). Then, proper reformulations is made to tackle
the nonlinearities in order to express the problem in the
form of a mixed integer linear program (MILP).

3) Some of the less expensive line current sensors do not
directly measure the phase angle for current; instead,
they measure the relative phase angle with respect to
the electric field around the conductor. This results in
less accurate readings of the phase angle. Importantly,
our proposed TI algorithm can work accurately under
such errors. There are also other sources of significant
error in pseudo-measurements. Those errors too are
tackled in this paper by developing a novel multi-period-
based TI algorithm which uses multiple measurement
snapshots, beyond the moment that a change in topology
is detected, to improve the TI accuracy and robustness.

4) The proposed method can identify all possible topolo-
gies including radial, loop, and island configurations.
Thus, the application of TI is extended to identifying
switch malfunctions that are important concerns in prac-
tical operation of distribution systems, c.f. [21],[22].

5) Our case studies include both IEEE test cases and a
real-world feeder in Riverside, CA. The performance of
both the single-period and multi-period TI algorithms
are evaluated for identifying radial, loop, and island
configurations, as well as the impact of errors in mea-
surements and pseudo-measurements are examined.

6) A theorem is also expressed with respect to the num-
ber and location of the line current sensors to ensure
accurate TI performance.

II. TOPOLOGY IDENTIFICATION METHODOLOGY

A. TI Problem Formulation in Non-linear Form
Suppose all switches are closed and all lines and nodes are

in-service. According to the Kirchhoff Current Law (KCL), the
current injection to each node is equal to the summation of
the currents associated with the lines connected to that node:

Ii =
∑
j∈Ni

Iij , i ∈ N . (1)

The current that flows at a line between two nodes depends
on the switching status of the line, the voltage of the two
nodes, and the admittance of the line. According to the
Kirchoff Voltage Law (KVL), we have:

Iij = sij(Vi − Vj)yij , (2)
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If line {i, j} is in-service, sij is one; otherwise it is zero, which
ensures Iij to be zero, indicating that the line is out-of-service.

According to the Power Law, the relationship between nodal
voltage Vi and current injection Ii can be given as:

ViI
∗
i = biSi. (3)

If node i is connected to the grid, then bi is one; otherwise,
it is zero, indicating that there exists an island node. In such
cases, the TI algorithm can determine an outage area; thus
extending its use-cases beyond basic TI. The TI problem is
expressed in form of the following optimization problem:

minimize
sij ,ij∈L
bi,i∈N

∑
ij∈K
|Iij − Imij |,

subject to Eqs (1)-(3).
(4)

In the above optimization problem, the main decision vari-
ables are the binary line switching status variables sij and
the binary node switching status variables bi. Other variables,
i.e., the line current Iij , the nodal current injection Ii, and the
nodal voltage Vi, are auxiliary variables. All other notations,
i.e, the complex load Si and the line current measurement
Imij , are parameters. This problem tends to match the line
current phasors that are calculated by (1)-(3) with those that
are measured by the line sensors. The solutions to binary
variables sij for all lines {i, j} provide the status of line
switches; thus they indicate the network topology. As for the
solutions to binary variables bi for all nodes i, they indicate
whether a node is connected to the rest of the grid; thus they
indicate outage areas. The auxiliary variables, such as Vi, can
be interpreted as a rough estimation of the state of the system.

B. TI Problem Formulation in MILP Form

The optimization problem in (4) involves several nonlinear
terms both in its objective function and in its constraints. In
this section, it is explained how this problem can be converted
into a more tractable MILP formulation.

Step 1: The non-linearity in (2) is due to the multiplication
of binary variable sij with continuous phasor variables Vi
and Vj . In order to overcome this nonlinearity, first, (2) is
substituted with the following linear equation:

Iij = yijUij , (5)

where Uij is an auxiliary variable which is equivalent to the
multiplication of sij and Vi−Vj . If sij = 1, i.e, if line {i, j} is
in-service, then Uij = Vi − Vj , otherwise Uij = 0. The above
relationship between Uij , sij , and Vi−Vj can be achieved by
adding the following new linear constraints [23, Ch. 5]:

−M(1− sij) ≤ Re{Uij} − Re{Vi − Vj} ≤M(1− sij) (6)

−M sij ≤ Re{Uij} ≤M sij (7)

−M(1− sij) ≤ Im{Uij} − Im{Vi − Vj} ≤M(1− sij) (8)

−M sij ≤ Im{Uij} ≤M sij . (9)

Because Uij and Vi−Vj are in complex form, the equations in
(6)-(7) and (8)-(9) are used to respectively achieve the intended

real part and the intended imaginary part of Uij . If si = 0, then
(6) and (8) are not binding; from (7) and (9), we have Uij =
0. From this, together with (5), we have Iij = 0. Thus, the
nonlinear equality constraint in (2) is enforced when si = 0. If
si = 1, then (7) and (9) are not binding. From (6) and (8), we
have Uij = Vi−Vj . From this, together with (5), we have Iij =
(Vi − Vj)yij . Thus, the nonlinear equality constraint in (2) is
enforced also when si = 1. Together, the linear constraints in
(5)-(9) are equivalent to the nonlinear constraint in (2).

Step 2: Another nonlinearity term in (4) is associated
with the multiplication of phasors Vi and Ii in (3), which is
known as power flow equation nonlinearity. There are different
options to relax such nonlinearity. For example, one may
use Linearized DistFlow (LDF) approximation [24]. However,
LDF works only in radial feeders and cannot be used for loop
configuration. Another limitation with LDF is that line current
variables must be removed in the process of deriving the linear
approximation, which makes LDF inappropriate in the context
of TI algorithm proposed in this paper. In addition, there
are some other linear approximation methods which would
rather increase computational complexity, such as the one in
[25] which introduces multiplications of two or more binary
variables and the one [26] which utilizes Newton’s method in
an iterative Benders decomposition framework. Therefore, in
this paper, the method in [27] is used, which works based on
Taylor expansion and engineering approximation. To this end,
a linear approximation is developed on complex numbers as
opposed to on real numbers as in the conventional load flow
formulations. Suppose the voltage at each bus i is expressed
in per unit and in relationship with the voltage at the reference
bus at the substation. That is, suppose

Vi = 1−∆Vi. (10)

By applying the Taylor series around zero and neglecting the
high order terms, we can write [27], [28, Ch. 5]:

1

Vi
=

1

1−∆Vi
' 1 + ∆Vi = 2− Vi. (11)

The accuracy of this approximation is validated in the
domain of complex numbers in [29]; and in particular for
power flow equations in [27]. The approximation error is
calculated as

Φ =

∣∣∣∣ 1

Vi
− (2− Vi)

∣∣∣∣ . (12)

The above error index is evaluated in each point inside the disc
in Fig. 1(a), resulting in the area in Fig. 1(b). For example,
at ∆V = 0.1 p.u., the approximation error is only around
1%. In practice, ∆V is often 0.05 p.u. or less; therefore, the
approximation error is only 0.3% or less; which is negligible.

Next, the approximation in (11) is substituted into (3) and
constraint (3) is rewritten in a reordered form as

I∗i = Si(2− Vi)bi. (13)

However, the above equation is still nonlinear due to the
multiplication of binary variable bi and phasor variable Vi.
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Fig. 1. Validating the accuracy of the linearization in (11). (a) Voltage phasor
in complex domain; (b) Approximation error in percentage.

Hence, next, a new auxiliary variable Wi is introduced, and
(13) is replaced with the following linear equation:

I∗i = Si(2bi −Wi), (14)

where Wi is equivalent to the multiplication of bi and Vi. If bi
is one, i.e., if node i is connected to the grid, then Wi = Vi;
otherwise Wi = 0, indicating the node is not connected to the
grid. The mentioned relationship between Wi, bi, and Vi can
be achieved by enforcing the following new linear constraints:

−M(1− bi) ≤ Re{Wi} − Re{Vi} ≤M(1− bi), (15)

−M bi ≤ Re{Wi} ≤M bi, (16)

−M(1− bi) ≤ Im{Wi} − Im{Vi} ≤M(1− bi), (17)

−M bi ≤ Im{Wi} ≤M bi. (18)

For the same reason as mentioned for the constraints in (6)-
(9), the equations in (15)-(16) and (17)-(18) can respectively
achieve the intended real and imaginary parts of Wi. From
(15)-(16), if bi = 1, then Re{Wi} = Re{Vi}; and if bi = 0,
then Re{Wi} = 0. Similarly, the equations in (17)-(18) result
in achieving the imaginary part of Wi. Together, the linear
equality and inequality constraints in (14)-(18) are equivalent
to the nonlinear equality constraint in (3).

It is worth mentioning that, from (14), the current injection
associated with a disconnected node is assured to be zero.
However, the equality in (14) does not require that the voltage
of a disconnected node is also zero. Next, it is needed to also
add the following new set of constraints to make sure that the
disconnected node indeed has zero voltage:

−M bi ≤ Re{Vi} ≤M bi, (19)

−M bi ≤ Im{Vi} ≤M bi. (20)

Step 3: The objective function in (4) is an absolute value
which is not linear. The absolute value in the objective function
is substituted with a linear objective function as well as several
linear inequality constraints using the technique introduced in
[30, Ch.1]. In this regard, minimizing the objective function in
(4) is equal to minimizing both the real part and the imaginary
part of (Iij − Imij ), where ij ∈ K. Let Eij and Fij denote
two auxiliary variables, where |Re{Iij − Imij }| ≤ Eij and
|Im{Iij − Imij }| ≤ Fij . These auxiliary variables are integrated
into the problem through the following constraints:

−Eij ≤ Re{Iij} − Re{Imij } ≤ Eij , (21)

−Fij ≤ Im{Iij} − Im{Imij } ≤ Fij , (22)

Eij ≥ 0 and Fij ≥ 0. (23)

Step 4: By combining Steps 1 to 3, the TI optimization
problem is expressed in a linear form as follows:

minimize
sij ,ij∈L
bi,i∈N

∑
ij∈K

Eij + Fij ,

subject to Eqs (1), (5)-(9), and (14)-(23).
(24)

The above problem is a MILP. It can be solved efficiently
using various software packages, e.g., see [31].

III. ADDITIONAL NOTES AND EXTENSIONS

A. Observability and Sensor Placement

Observability analysis and sensor placement is often studied
for a particular application, such as in [32]–[35] where specific
micro-PMUs allocation is considered for each application. In
the context of this paper, observability analysis is concerned
with the following. In order to determine the topology of a
network, it is needed to know the status of switches. The lines
whose switches are opened carry no current; thus, the status
of switches is obtained by estimating the lines current; which
ultimately leads to identifying the topology of the network.
Therefore, observability analysis boils down to answering
the following question: how many line sensors (and at what
locations) are needed in order to estimate all lines current? The
answer will automatically determine how many line sensors
(and at what locations) are needed in order to solve TI problem
in this paper.

Theorem 1. If at least one line current sensor is placed
in each independent loop in a distribution network, then the
topology of the distribution network can be identifiable, i.e.,
problem (4) can be solved to provide the correct topology.

Proof:
In a circuit with N nodes and L branches, L independent

equations are needed in order to estimate the branch currents.
From the N current injection equations that are available,
N − 1 equations are independent [36, Ch. 2]. Therefore, in
order to reach a total of L independent equations, L−(N−1)
additional independent equations are needed, which is exactly
the circuit nullity, and can be obtained by measuring L−(N−
1) line currents.

A loop is a closed path that starts from a node, passes
through a set of nodes, and returns back to the initial starting
node, without passing through any node more than once. A
loop is said to be independent if it does not contain any loop in
itself. In circuit theory, independent loops result in independent
KVL equations, the number of which is L−(N−1), which is
known as circuit nullity [37]. Therefore, an immediate result
of the nullity theorem is that all line currents can be estimated
as long as the current of L − (N − 1) lines in independent
loops are measured directly using line current sensors.

Next, consider an independent loop, as shown in Fig. 2.
Suppose the nodal injection currents, i.e. I1, I2, · · · , In, are
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In,1

I1,2

I1

In-1,n

I2

In

In-1

Ii-1,i

Ii-1,i

m

Ii-1

Ii

In-2,n-1

I2,3

Fig. 2. An independent loop consisting of n buses. A current sensor is
installed at line {i− 1, i} to measure Imi−1,i.

known. We want to calculate the current of each line segment
in the loop, i.e. In,1, I1,2 · · · , In−1,n. Due to KCL, we have:



1 −1 0 · · · 0 0 · · · 0 0
0 1 −1 · · · 0 0 · · · 0 0

. . .
0 0 0 · · · 1 −1 · · · 0 0

. . .
0 0 0 · · · 0 0 · 1 −1
−1 0 0 · · · 0 0 · · · 0 1


︸ ︷︷ ︸

MatrixA



In,1
I1,2

...
Ii−1,i

...
In−2,n−1
In−1,n


=



I1
I2
...
Ii
...

In−1
In


,

(25)
where A is an n×n matrix. The rank of matrix A is n−1; thus,
there exist infinite solutions for the choice of lines current.
However, we can assure a unique solution for this system of
linear equations if one row is replaced with an independent
equation based on measurement of a line current sensor. Such
additional equation is Ii−1,i = Imi−1,i, where Imi−1,i denotes
the measured line current on line segment between bus i− 1
and bus i. This results in the following new system of linear:



1 −1 0 · · · 0 0 · · · 0 0
0 1 −1 · · · 0 0 · · · 0 0

. . .
0 0 0 · · · 1 0 · · · 0 0

. . .
0 0 0 · · · 0 0 · 1 −1
−1 0 0 · · · 0 0 · · · 0 1





In,1
I1,2

...
Ii−1,i

...
Ln−2,n−1
In−1,n


=



I1
I2
...

Imi−1,i
...

In−1
In


.

(26)
Unlike in (25), the system of equations in (26) has a unique
solution. It can be concluded that installing exactly one line
current sensor anywhere in an independent loop provides an
independent equation to be added to the KCL equations. Since
there are L−(N−1) independent loops in a network; installing
L−(N−1) line current sensors, one at each independent loop,
results in solving the line current estimation problem.

Next, an illustrative example is used to demonstrate the
observability results in the Theorem. Specifically, consider the
network in Fig. 3 with N = 4 buses and L = 5 lines. In this
network, loop 1231, denoted by `1, and loop 1341, denoted
by `2, are two independent loops. However, loop 12341 is
not an independent loop because it contains other loops, `1 or
`2, inside itself. The set of equations for this network can be
written as follows:

I1 I2

I3I4

I1,2

I2,3

I3,4

I4,1

I1,3

I1 - I4,1 I2

I3 + I3,4

I1,2

I2,3
I1,3

I1 + I1,2

I3 – I2,3I4
I3,4

I4,1

I1,3

ℓ1 ℓ1 

ℓ2 

(a) (b) (c)

ℓ1 

ℓ2 

Fig. 3. A circuit with 4 buses and 2 loops. Nodal currents I1, I2, I3, I4 are
known. Line currents I1,2, I1,3, I2,3, I3,4, I4,1 are unknown.

TABLE I
SENSOR LOCATION SCENARIOS FOR THE NETWORK IN FIG. 3

Scen # Lines Sensor Loops Added Rows to Matrix A Rank

I {1,2},{2,3} `1,`1

(
1 0 0 0 0
0 1 0 0 0

)
4

II {3,4},{4,1} `2,`2

(
0 0 1 0 0
0 0 0 1 0

)
4

III {1,2},{3,4} `1,`2

(
1 0 0 0 0
0 0 1 0 0

)
5

IV {1,2},{4,1} `1,`2

(
1 0 0 0 0
0 0 0 1 0

)
5

V {1,2},{1,3} `1,`2

(
1 0 0 0 0
0 0 0 0 1

)
5

VI {2,3},{3,4} `1,`2

(
0 1 0 0 0
0 0 1 0 0

)
5

VII {2,3},{4,1} `1,`2

(
0 1 0 0 0
0 0 0 1 0

)
5

VIII {2,3},{1,3} `1,`2

(
0 1 0 0 0
0 0 0 0 1

)
5

IX {3,4},{1,3} `1,`2

(
0 0 1 0 0
0 0 0 0 1

)
5

X {4,1},{1,3} `1,`2

(
0 0 0 1 0
0 0 0 0 1

)
5


−1 0 0 1 −1
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0


︸ ︷︷ ︸

MatrixA


I1,2
I2,3
I3,4
I4,1
I1,3

 =


I1
I2
I3
I4

 (27)

Matrix A has rank 3, which means one row is dependent. In
order to find the unique solution for all the 5 line currents,
it is needed to add 2 more independent rows to matrix A.
This is achieved by installing one line sensor at each of
the two independent loops `1 and `2. Note that, out of the(
5
2

)
=10 possible combinations for choosing the location to

install the two sensors, 8 combinations result in measuring the
line currents in both loops l1 and l2; as denoted by Scenarios
III to X in Table I. These results are consistent with Theorem
I. It should be noted that, if two independent loops share a
line, such as line {1,3} in Fig. 3 that is shared between loops
`1 and `2, then placing a line sensor on such shared line will
provide only one new independent equation. That is why two
separate sensors are needed to be placed on two neighboring
independent loops to obtain two independent equations in
order to reach the number of independent equations that are
needed to conduct topology identification.

Finally, there exist several graph theoretic methods to find
the independent loops in a graph. Here, Kruskal’s algorithm
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[38] is used to identify the independent loops; which allowed
us to place one line sensor at each independent loop.

B. Addressing Measurement Error

So far, it is assumed that the line measurements and
nodal apparent power measurements, considered as pseudo-
measurements, do not carry errors. However, this assumption
may not hold in practice. In order to incorporate the impact of
errors in measurements and pseudo-measurements, one needs
to adjust the problem formulation in (24). To resolve this issue,
we propose to move the injection current constraint in (1) to
the objective function in form of a penalty term as

minimize
sij ,ij∈L
bi,i∈N

∑
i∈N

∣∣∣∣∣∣Ii −
∑
j∈Ni

Iij

∣∣∣∣∣∣. (28)

After that, by adopting a similar method as in Step 3 in Section
II-B, the new nonlinearity can be tackled by defining auxiliary
variables Gi and Hi, and adding the following new linear
constraints:

−Gi ≤ Re{Ii} −
∑
j∈Ni

Re{Iij} ≤ Gi, (29)

−Hi ≤ Im{Ii} −
∑
j∈Ni

Im{Iij} ≤ Hi, (30)

Gi ≥ 0 and Hi ≥ 0. (31)

The TI problem in the presence of measurement and pseudo-
measurement errors can be presented as a MILP as follows:

minimize
sij ,ij∈L
bi,i∈N

∑
ij∈K

(αRe
ij Eij + αIm

ij Fij) +
∑
i∈N

(βRe
i Gi + βIm

i Hi)

subject to Eqs (5)-(9), (14)-(23), and (29)-(31),
(32)

where coefficients αij and βi are calculated based on
the standard deviation (SD) of measurements and pseudo-
measurements [39]. Parameter αRe

ij corresponds to the real
part of Imij . It is set to the inverse of the SD for Re{Imij }.
Parameter αIm

ij corresponds to the imaginary part of Imij . It is
set to the inverse of the SD for Im{Imij }. Coefficients βRe

i and
βIm
i are set similarly.
The existence or uniqueness of the solution for the above

optimization problem cannot be theoretically proved. But it
can be confirmed that a feasible solution is always obtained
even in the severe condition that measurements or pseudo-
measurements are far from their true values due to major
errors.

C. Multi-Period Optimization

The TI optimization problems in (24) and (32) are both
defined for a single snapshot of available measurements. In
fact, this is typical in the literature to run the TI algorithms
based on one set of data, e.g., see [1], [14], [40]. However, in
practice, the line current measurements are likely to continue
to be available beyond the initial moment after the change in
the network topology; thus, allowing the operator to run the
TI algorithm in form of a multi-period optimization problem

to better alleviate the impact of errors in measurements and
pseudo-measurements. Note that, even if the line current mea-
surements are accurate due to the use of higher precision line
sensors, it is inevitable for any TI algorithm in practice to deal
with the less accurate pseudo-measurements. Therefore, the
use of multi-period optimization is likely to be advantageous,
as it will be confirmed in a case study in Section IV-C.

Let T denote the number of available snapshots of measure-
ments and pseudo-measurements. Let us use [t] to indicate the
data corresponding to each snapshot t, where t = 1, . . . , T .
Finally, let Ψ[t] denote the objective value in problem (32)
based on the data from snapshot t. The TI problem in a multi-
period form can be presented as:

minimize
sij ,ij∈L
bi,i∈N

T∑
t=1

γ[t]Ψ[t],

subject to Eqs. (5)-(9) at [t], t = 1, . . . , T,

Eqs. (14)-(23) at [t], t = 1, . . . , T,

Eqs. (29)-(31) at [t], t = 1, . . . , T.

(33)

Notation γ[t] will be explained at the end of this section. An
implicit assumption in problem (33) is that all the measure-
ment snapshots are associated with the same topology. In other
words, the topology does not change during measurement
snapshots 1 to T . The multi-period TI algorithm is reset
once a change in topology is detected. This is a reasonable
assumption as long as there is a way also to detect a change in
topology. There already exist several methods in the literature
to detect the changes in topology, such as in [41]–[44].

Before ending this section, it is worth clarifying why prob-
lem (33) is referred to as a multi-period optimization problem.
In principle, topology identification is an estimation problem
to estimate the status of switches based on given measurements
and pseudo-measurements as inputs. Each snapshot in (33)
essentially provides redundancy for such estimation problem.
Here, the status of the switches are fixed from one snapshot
to another; however, there are random variations in the mea-
surements and pseudo-measurements due to the randomness in
the load at each bus. In this regard, each snapshot generates a
new random scenario for such random variables; providing the
redundancy in estimating the status of the switches. As a result,
the problem in (33) can be seen as a multi-scenario-based
optimization, where γ[t] denotes the probability associated
with snapshot t. If the randomness across different snapshot
follows a uniform distribution, or simply it is unknown, then
one can choose γ[t] = 1/T, ∀t = 1, . . . , T . Otherwise, a
known non-uniform probability distribution can be used.

IV. CASE STUDIES:
PART I - IEEE TEST NETWORK

This section demonstrates the effectiveness of the proposed
TI method by applying it to the IEEE 33-bus test system.
The single line diagram of the feeder is shown in Fig. 4, and
the relevant technical data can be found in [24]. The normally
closed or normally open status of switches for all line segments
are listed in Table II. The normally open switches are the five
tie-lines that are shown using dashed lines. Since there are
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Fig. 4. The IEEE 33-bus test system that is used in our case studies. The tie-lines are shown by dotted lines. The feeder consists of five loops marked as
`1 to `5. Unless stated otherwise, the line sensors are deployed on line segments <8>, <13>, <20>, <24>, and <29>.

TABLE II
LINE SEGMENTS WITH SWITCHES IN FIG. 4.

Normally Closed Normally Open
4, 6, 7, 9, 10, 11, 12, 14, 15,

16, 17, 18, 26, 28, 30, 32 33, 34, 35, 36, 37

21 switches in this network, 221 different topologies can be
created, among which 65 topology configurations, comprising
50 radial, 10 loop, and 5 island, are selected. The criteria for
choosing these topologies is mainly to make sure that all three
types of topologies, i.e., radial, loop, and island, are covered
while they involve all independent loops in the network.

Once the five tie-lines are in closed status, there exist five
loops which are marked as `1, . . . , `5. Recall from Section
III-A that each loop has to be monitored with at least one
line sensor to meet requirement for TI. An arbitrary choice of
locations for the five line current sensors in this case study are
as marked using red dots in Fig. 4. In addition to the current
measurements, it is assumed that the load injections at all the
buses are available through pseudo-measurements.

The network simulation and the implementation of the
TI algorithm are done in MATLAB; and the optimization
problems in (24), (32), and (33) are solved using IntLinProg.
In simulations, the measurements are constructed as follows:

z̃ = z + e, (34)

where z̃ denotes the so-called contaminated measurement
vector; z is the true value vector of the measurements; and e
is the measurements error vector. It is assumed that the errors
are normal distributed with zero mean value and standard
deviation vector σ, i.e., e = N (0, σ2). The standard deviation
of the error can be computed as follows [16]:

σi =
zi × ηi

3
, (35)

which guarantees that 99.7% of the ei values fall within ±ηi
percentage of the true value. Also, the accuracy of the TI
algorithm is given in percentage as

TI Accuracy = 100× Total Number of Correct TIs

Total Number of TIs
(36)

A. Errors in Line Current Measurements

The line current phasors can be measured by line current
sensors, either directly and precisely if the sensor is equipped

TABLE III
TI ACCURACY VS. THE MEASUREMENT

ERROR IN MAGNITUDE AND ANGLE

Magnitude Angle
Error TI Accuracy Error TI Accuracy
1.0% 99.3% 1◦ 99.7%
1.5% 99.2% 2◦ 99.5%
2.0% 99.2% 3◦ 99.4%
2.5% 99.1% 4◦ 99.1%
3.0% 99.0% 5◦ 98.9%

with GPS, or indirectly and approximately if the sensor is not
equipped with GPS; which in that case, it measures the relative
phase angle by measuring e-field. Based on the different types
of sensors that are available, the error in current magnitude
can be 1% to 3%; and the error in current phase angle can
be 1◦ to 5◦ [45]. Table III shows the result of TI algorithm
with considering errors in line current measurements. The
results demonstrate a satisfactory performance, with above
99% accuracy in almost all error levels. Thus, it can be
concluded that the proposed TI algorithm is robust against
errors in measurements; regardless of the exact line sensor
technology.

B. Errors in Pseudo-Measurement
In practice, the utility’s knowledge about pseudo-

measurements is not precise. Pseudo-measurements are often
obtained using short-term load forecasting by smart meter
data or historical data. The robustness of the proposed TI
algorithm is examined against any given level of measurements
inaccuracy by using the Monte Carlo method to generate
different scenarios, c.f. [46].

Here, there is not any hard requirement on how the pseudo-
measurements are obtained. The range of uncertainty associ-
ated with pseudo-measurements may vary based the available
information. These pseudo-measurements can be obtained
through the aggregation of customer smart meter data as long
as such metering data is available. Or they can be estimated
solely based on the ratings of the load transformers when
no metering data is available. A combination of metering
data and transformer ratings may also be used. Depending on
how the pseudo-measurements are obtained, they may carry a
wide range of errors, as low as 10% [47]–[49], when smart
meter data is available, or as high as 50%, when pseudo-
measurements are synthesized/estimated purely based on load
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TABLE IV
TI ACCURACY VS. ERROR IN PSEUDO-MEASUREMENTS

Pseudo-meas. error (%) 10 20 30 40 50
TI accuracy (%) 99.1 98.3 93.1 84.1 77.1

Run Time (s) 0.81 0.94 0.91 0.89 1.00
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Fig. 5. The accuracy of the multi-period TI algorithm gradually improves
as more measurement snapshots become available.

allocation according to the capacities of the low-voltage trans-
formers. Both of the above ranges of errors are examined in the
simulations in order to assess the performance of the proposed
TI algorithm under a variety of possible scenarios for pseudo-
measurements. The results of TI algorithm accuracy versus
different levels of error in pseudo-measurements are presented
in Table IV. If the error is limited to 30%, then the doing a
correct TI is almost guaranteed. However, if the error increases
to 50%, then the TI accuracy drops significantly; making the
TI results unreliable. Of course, at such high errors, losing
accuracy is inevitable.

C. Improved Accuracy with Multi-Period Optimization

Interestingly, the impact of errors is compensated in pseudo-
measurements by making use of the additional snapshots of
measurement data; together with the multi-period optimization
method that was proposed in Section III-C.

In order to test the performance of the multi-period TI
algorithm, a sequence of snapshots is generated using the
pseudo-measurement generation method in [50], where we
generate errors for pseudo-measurement based on a normal
probability distribution, with zero mean and the following
standard deviation [16]:

σi =
Si × ηi

3
. (37)

The TI multi-period optimization in (33) is then solved and
the TI results are updated every time that a new measurement
snapshot becomes available. The results are shown in Fig. 5.
The TI accuracy is improved as more measurement snapshots
become available. This is true regardless of the level of errors
in pseudo-measurements. For example, even with 50% error in
pseudo-measurements, where the accuracy of the single-period

TI algorithm is 77.1%, the multi-period version of our TI
algorithm can enhance accuracy to 95.0% after 20 snapshots.

The computational complexity of solving the multi-period
optimization problem in (33) grows as the number of snapshots
increases. For example, the multi-period TI algorithm takes
about 40 seconds and 125 seconds to run for 10 and 20
snapshots, respectively, which is considerably greater than the
single-period TI run time provided in Table IV.

An illustrative example is used to compare the performance
of single-period and multi-period TI algorithms on several
snapshots. The results are shown in Table V. Note that, the
true topology remains the same in all 15 snapshots. The single-
period TI algorithm is applied each snapshot separately. In
only four snapshots, i.e., snapshots 6, 9, 11, and 13, the
correct topology is identified, as denoted by check marks. In 11
snapshots, the single-period TI algorithm results in incorrect
topology identification, as denoted by cross marks. This is
due to the change in loading and the large error in pseudo-
measurements; which are intentional in this case study.

In contrast, when the multi-period TI algorithm is used, the
correct topology is identified as soon as sufficient snapshots
become available, which is six in this example. Note that, the
multi-period TI algorithm is initially the same as the single-
period TI method when it is applied to the first snapshot.
Then, at the second snapshot, the multi-period TI algorithm
is applied to the combination of both the first and the second
measurement snapshots. At the third snapshot, the multi-period
TI algorithm is applied to the combination of the first, the
second, and the third measurement snapshots; and so on and
so forth. As more measurement snapshots become available
beyond the first six snapshots, the multi-period TI method
continues to correctly identify the topology during snapshots
6 to 15.

D. MILP versus MINLP

Both MILP and MINLP are categorized as NP-hard prob-
lems [51]. Therefore, in principle, they are roughly similar in
terms of their computational complexity. However, in practice,
it is often very useful to convert an MINLP into an MILP. The
reason is the considerable advancements in developing MILP
solvers in the past few decades, such as CPLEX [31], also see
[52]. In contrast, MINLP solvers are not matured enough, at
least not yet, to be considered stable and reliable. In addition,
MILP solvers are guaranteed to ultimately provide the exact
optimal solution, by using relatively simple methods, such as
branch and bound. Importantly, even when an MILP solver
is terminated prior to obtaining the exact optimal solution, it
can provide a provable bound on optimality gap [53]. When it
comes to the proposed TI optimization problems, the original
TI formulation in (4) is in fact a non-convex MINLP. Non-
convex MINLPs are particularly difficult to solve; because
even when the integer variables are handled using methods
such as branch and bound, what is left to solve in each iteration
is still a difficult non-linear non-convex optimization problem
[54].

Three solvers were tested to solve the original MINLP
problem in (4): NOMAD, SCIP, and BONMIN [55]. The first
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TABLE V
COMPARING SINGLE-PERIOD AND MULTI-PERIOD TI ALGORITHMS FOR 15 SNAPSHOTS

Snapshots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Single-Period TI 7 7 7 7 7 3 7 7 3 7 3 7 3 7 7
Multi-Period TI 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3

TABLE VI
RESULTS FOR MINLP TI FOR DIFFERENT INITIAL POINTS

Case Result OptGap Iter Time (s) Open Lines
I Correct 3% 27 100 33, 34, 35, 36, 14
II Incorrect 87% 1131 1039 12, 28, 33, 34, 35
III Incorrect 26% 43 386 33, 34, 35, 36, 16
IV Incorrect 96% 732 438 33, 34, 35, 36, 7
V Incorrect 76% 548 424 28, 34, 35, 37

two always failed to even find a feasible solution. As for the
third one, by assuming 5% error in pseudo-measurements,
BONMIN correctly identified 10 out of 65 toplogies. For
those 55 topologies that were identified incorrectly, BONMIN
neither could find a correct solution nor it could find any
feasible solution at all. For instance, the network configuration
with open lines <33>, <34>, <35>, <36>, and <14> is tested
for several initial points. The results for six different initial
points that converged to some feasible solutions are shown in
Table VI. Only in one case, where the initial point is chosen
very close to the optimal solution, the solution of the MINLP
formulation was correct. Accordingly, the MILP reformulation
is necessary.

E. Performance Comparison

Even though there is a rich literature for topology iden-
tification, there does not exist a prior study to address the
use of line current sensors for topology identification. This
is partly because the type of line current sensors that are
of interest in this study are just starting to emerge only
recently. With this general note in mind, in this section, the
performance comparison is conducted with two references.
The first reference is [40]. The method in this reference can
in essence support utilizing line current sensors, but it is
developed based on circuit connectivity and it does not involve
the load flow equations. The results are shown in the second
row of Table VII. It can be seen that the method in [40] is
highly sensitive to errors in pseudo-measurements.

The second reference is [16]. The method in this reference
is not directly comparable with our method in this study.
Therefore, a somewhat new method that is rather inspired by
the method in [16] is used. The new method is essentially
the same as the proposed method in this study but it uses a
different objective function. Specifically, it uses the objective
function in [16], which results in a mixed integer quadratic
program (MIQP), as opposed to an MILP. The results are
shown in the third row of Table VII. It can be seen that
the performance of this new method too degrades as the
error in pseudo-measurements increases. This happens because
minimizing squared errors as in MIQP, will pull the fit towards
the outliers, i.e., the inaccurate pseudo-measurements, much
more so than minimizing the absolute error as in this paper.

TABLE VII
COMPARING THE PERFORMANCE OF THE MILP-BASED

TI ALGORITHMS PROPOSED IN [40] AND [16].

Pseudo-Measurement Error (%)
TI Accuracy (%) 10 20 30 40 50

MILP-based 99.9 98.8 94.4 86.5 78.4
[40] 79.8 75.1 74.8 67.5 61.8

MIQP-based [16] 99.2 96.3 87.9 77.2 68.0

TABLE VIII
TI ACCURACY VERSUS ERROR IN PSEUDO-MEASUREMENTS

Pseudo-meas. error (%) 10 20 30 40 50
TI accuracy (%) 99.6 95.4 90.1 83.6 71.2

Run Time (s) 10.1 12.0 15.4 16.8 16.9

Also, the computational time of MIQP is more that MILP.
From the viewpoint of a cost-benefit analysis, the original
MIQP method in [16] requires using 10 line power sensors
that are often expensive and labor-intensive to install, while
our method uses 5 line current sensors that are inexpensive
and easy to install; yet it obtains almost the same performance.
This demonstrates the advantages of our method in a simple
cost-benefit analysis.

V. CASE STUDIES:
PART II - REAL-LIFE NETWORK

In this section, the TI algorithm is applied to two long and
interconnected real-life distribution feeders in Riverside, CA.
The two feeders are isolated on two different transformers
at the substation; however, they are inter-connected through
tie-lines. The two feeders have about 400 nodes and 37
switches. The understudy network consists of 13 loops. It is
assumed that 13 line current sensors are installed on these
13 loops, see Section III.A. A total of 20 different topologies
are defined. Suppose the feeder-head voltages are measured
for both feeders. Accurate models of these two feeders are
simulated in CYME [56]. The results for TI accuracy are
shown in Table VIII. It can be seen that the TI algorithm
can successfully identify all the topologies for reasonably
low pseudo-measurement errors. The results in this Table are
comparable to those in Table IV for the IEEE test system in
Section IV.

VI. ADDITIONAL DISCUSSIONS

A. Impact of Parameter M

In principle, M must be large enough such that for any
combination of decision variables, the inequality constraints
in (6)-(9) and (15)-(20) remain feasible. Therefore, since the
voltage magnitudes are represented in per unit, M should be
at least 1. The impact of parameter M on the TI accuracy
is shown in Table IX. It can be seen that both M = 1 and
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TABLE IX
THE IMPACT OF PARAMETER M

Choice of M 1 1.5 2 5 10
TI Accuracy 99.9% 99.9% 99.8% 99.6% 96.3%

TABLE X
TI ACCURACY VS. COMBINED ERROR IN

MEASUREMENTS AND PSEUDO-MEASUREMENTS(%)

Error in Pseudo-Measurement
10% 20% 30% 40% 50%

Error in
Measuring

Current

2% 99.8 98.5 94.5 85.8 78.1
4% 99.6 98.8 93.1 86.1 79.6
6% 99.6 98.7 94.0 86.6 77.0
8% 99.1 97.7 92.9 86.6 76.7
10% 98.3 97.0 92.9 85.5 75.2

M = 1.5 are very good choices. As M increases, numerical
issues start to show up; becoming severe when M is too large,
e.g., when M = 10. To be on the safe side, so as to address any
possible over-voltage scenario, we recommend to set M = 1.5.

B. Errors in Both Measurements and Pseudo-Measurements

In this section, the performance of the TI algorithm is
examined for combinations of errors associated with both
line current measurements and pseudo-measurements. In this
regard, error in line current measurements is expressed in
terms of Total Vector Error (TVE), which includes both
magnitude and angle errors. The results are shown in Table X.
As can be seen, the proposed TI algorithm is affected more
by errors in pseudo-measurements than errors in line current
measurements. Of course, here we considered much higher
errors for pseudo-measurements because it is indeed the case
in practice.

C. Further Discussion on Theorem 1

In the proof of Theorem 1, it was inherently assumed that
measurements and pseudo-measurements are precise. There-
fore, the estimated current associated with the lines that
are switched off is precisely zero, which can be used to
determine which lines are switched off; thereby identifying
the topology. However, in a non-ideal situation, where the
measurements and/or pseudo-measurements carry error, the
numerically estimated current associated with a line that is
switched off could be non-zero. This issue is addressed by
using binary variables and by minimizing the absolute value of
errors in the objective function of the TI optimization problem.

As a matter of fact, the proposed theorem determines a
requirement for the placement of the line current sensors to
support the TI application, rather than indicating the exact
locations. That is, there are a large number of line current
sensor placement options that would satisfy the requirements
in the theorem, as long as there is at least one line sensor at
each independent loop. Sensor placement methods however are
often developed for specific applications with particular goals.
For instance, in [57], authors developed a sensor placement
method to improve the state estimation; also, several line

sensors placement methods have been reported for outage
detection and fault location, e.g., see [58], [59]. As a result, the
proposed theorem can be used by itself or in conjunction with
other sensor placement methods, as long as the requirement to
place at least one sensor in each independent loop is satisfied.

VII. CONCLUSIONS

A distribution-level topology identification method is pro-
posed that is concerned with utilizing the type of mea-
surements that come from an emerging class of low-cost
non-contact line current sensors. Three key challenges are
addressed: 1) designing a TI algorithm that is compatible
with the limitations of the aforementioned line current sensor
technologies, such as their inability to measure voltage and
power; 2) maintaining a low and tractable level of com-
putational complexity for the TI algorithm; and 3) tackling
the various sources of error in measurements and pseudo-
measurements that are inevitable in the context of the study
in this paper. The third challenge was particularly addressed
by developing a novel multi-period TI algorithm which uses
multiple measurement snapshots, beyond the moment that a
change in topology is detected, in order to gradually improve
the TI accuracy and robustness. Both the single-period and
multi-period TI algorithms can identify all the possible topolo-
gies, including radial, loop, and island configurations. This
extends the application of the TI algorithms to identify switch
malfunctions and to detect outage. The performance of the
proposed TI algorithms are studied in IEEE test cases and also
a test case based on a feeder in Riverside, CA. Furthermore,
observability analysis was made with respect to the number
and location of the line current sensors that are needed to
achieve accurate TI performance.
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