Topology Identification in Distribution Systems using Line Current Sensors: An MILP Approach

Mohammad Farajollahi, Student Member, IEEE, Alireza Shahsavari, Student Member, IEEE, and Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—This study is motivated by the recent advancements in developing non-contact line sensor technologies that come at a low cost, but have limited measurement capabilities. While they are intended to measure current, they cannot measure voltage and power. This poses a challenge to certain distribution system applications, such as topology identification (TI), because they commonly use voltage and power measurements. To address this open problem, a new TI algorithm is proposed based on measurements from a few line current sensors, together with available pseudo-measurements for nodal power injections. A TI problem formulation is first developed in the form of a mixed integer nonlinear program (MINLP). Several reformulation steps are then adopted to tackle the nonlinearities to express the TI problem in the form of a mixed integer linear program (MILP). The proposed method is able to identify all possible topologies, including radial, loop, and island configurations, which extends the application of TI to identify switch malfunctions and to detect outages. In addition, recommendations are made with respect to the number and location of the line current sensors to ensure performance accuracy of the TI method. A novel multi-period TI algorithm is also proposed to use multiple measurement snapshots to improve the TI accuracy and robustness against errors in pseudo-measurements. The effectiveness of the proposed TI algorithm is examined on the IEEE 33-bus test case as well as a test case based on a real-world feeder in Riverside, CA.

Keywords: Topology identification, line current sensors, distribution network, mixed integer linear program, single-period and multi-period optimization, radial topology, loop topology.

NOMENCLATURE

Sets

\(\mathcal{K} \) Set of lines equipped with current sensor.
\(\mathcal{L} \) Set of lines.
\(\mathcal{N} \) Set of nodes.
\(\mathcal{N}_i \) Set of lines which are connected to node \(i \).
\(\mathcal{T} \) Set of snapshots

Main Decision Variables

\(b_i \) Binary variable for switching status of node \(i \).
\(s_{ij} \) Binary variable for switching status of line \(\{i, j\} \).

Auxiliary Decision Variables

\(\gamma[t] \) Probability of snapshot \([t]\).
\(\Psi[t] \) TI objective function of snapshot \([t]\).
\(E_{ij}, F_{ij} \) Auxiliary variables used in Step 3 of Section II.B.
\(G_i, H_i \) Auxiliary variables used in Section III.B.

The authors are with the Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA. This work was supported in part by DoE grant EE 0008001 and NSF grant 1253516. The corresponding author is H. Mohsenian-Rad, e-mail: hamed@ece.ucr.edu.

I. INTRODUCTION

Correct knowledge of the network topology is vital for distribution system operation, with applications to state estimation, fault location, Volt-VAR control, demand response, etc. If the network topology is known incorrectly, then these applications produce incorrect results. Therefore, the topology of the network must frequently be identified. However, in practice, topology identification (TI) is a challenging task for distribution systems due to the limited measurements as well as unavailable or unreliable information about the status of switches and circuit breakers across distribution feeders.

The most common TI approach in practice is to dispatch utility crew members to examine the status of switches. But this is costly and cannot be done frequently in order to continuously track changes in topology. An alternative approach is to use measurement-based TI algorithms that estimate the status of switches based on available sensor data.

Different measurement-based methods have been proposed in the literature. One class of TI algorithms uses various field measurements to do distribution system state estimation for every possible topology configuration, and then chooses the topology with the minimum residue errors in state estimation.
power flow, such as those in [14] and [15], are not applicable for the networks with non-contact line sensors.

Addressing the above open issues is the focus in this paper. The contributions in this paper can be summarized as follows:

1) A novel TI method is proposed for distribution networks that uses the measurements from line current sensors. To the best of our knowledge, this is the first paper proposing a TI method that is specifically concerned with utilizing the type of measurements that come from these emerging low-cost line current sensors.

2) A TI problem formulation is first developed in this context in the form of a mixed integer nonlinear program (MINLP). Then, proper reformulation is made to tackle the non-linearities in order to express the problem in the form of a mixed integer linear program (MILP).

3) Some of the less expensive line current sensors do not directly measure the phase angle for current; instead, they measure the relative phase angle with respect to the electric field around the conductor. This results in less accurate readings of the phase angle. Importantly, our proposed TI algorithm can work accurately under such errors. There are also other sources of significant error in pseudo-measurements. Those errors too are tackled in this paper by developing a novel multi-period-based TI algorithm which uses multiple measurement snapshots, beyond the moment that a change in topology is detected, to improve the TI accuracy and robustness.

4) The proposed method can identify all possible topologies including radial, loop, and island configurations. Thus, the application of TI is extended to identifying switch malfunctions that are important concerns in practical operation of distribution systems, c.f. [21], [22].

5) Our case studies include both IEEE test cases and a real-world feeder in Riverside, CA. The performance of both the single-period and multi-period TI algorithms are evaluated for identifying radial, loop, and island configurations, as well as the impact of errors in measurements and pseudo-measurements are examined.

6) A theorem is also expressed with respect to the number and location of the line current sensors to ensure accurate TI performance.

II. TOPOLOGY IDENTIFICATION METHODOLOGY

A. TI Problem Formulation in Non-linear Form

Suppose all switches are closed and all lines and nodes are in-service. According to the Kirchhoff Current Law (KCL), the current injection to each node is equal to the summation of the currents associated with the lines connected to that node:

\[I_i = \sum_{j \in N_i} I_{ij}, \quad i \in \mathcal{N}. \] \hspace{1cm} (1)

The current that flows at a line between two nodes depends on the switching status of the line, the voltage of the two nodes, and the admittance of the line. According to the Kirchoff Voltage Law (KVL), we have:

\[I_{ij} = s_{ij}(V_i - V_j) y_{ij}, \] \hspace{1cm} (2)
If line \(\{i, j\} \) is in-service, \(s_{ij} \) is one; otherwise it is zero, which ensures \(I_{ij} \) to be zero, indicating that the line is out-of-service.

According to the Power Law, the relationship between nodal voltage \(V_i \) and current injection \(I_i \) can be given as:

\[
V_i I_i^* = b_i S_i. \tag{3}
\]

If node \(i \) is connected to the grid, then \(b_i \) is one; otherwise, it is zero, indicating that there exists an island node. In such cases, the TI algorithm can determine an outage area; thus extending its use-cases beyond basic TI. The TI problem is expressed in form of the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{b_{ij} \in \mathcal{E}} \sum_{ij \in \mathcal{K}} |I_{ij} - I_{ij}^0|, \\
\text{subject to} & \quad \text{Eqs (1)-(3)}.
\end{align*}
\tag{4}
\]

In the above optimization problem, the main decision variables are the binary line switching status variables \(s_{ij} \) and the binary node switching status variables \(b_i \). Other variables, i.e., the line current \(I_{ij} \), the nodal current injection \(I_i \), and the nodal voltage \(V_i \), are auxiliary variables. All other notations, i.e, the complex load \(S_i \) and the line current measurement \(I_{ij}^0 \), are parameters. This problem tends to match the line current phasors that are calculated by (1)-(3) with those that are measured by the line sensors. The solutions to binary variables \(s_{ij} \) for all lines \(\{i, j\} \) provide the status of line switches; thus they indicate the network topology. As for the solutions to binary variables \(b_i \) for all nodes \(i \), they indicate whether a node is connected to the rest of the grid; thus they indicate outage areas. The auxiliary variables, such as \(V_i \), can be interpreted as a rough estimation of the state of the system.

B. TI Problem Formulation in MILP Form

The optimization problem in (4) involves several nonlinear terms both in its objective function and in its constraints. In this section, it is explained how this problem can be converted into a more tractable MILP formulation.

Step 1: The non-linearity in (2) is due to the multiplication of binary variable \(s_{ij} \) with continuous phasor variables \(V_i \) and \(V_j \). In order to overcome this nonlinearity, first, (2) is substituted with the following linear equation:

\[
I_{ij} = y_{ij} U_{ij}, \tag{5}
\]

where \(U_{ij} \) is an auxiliary variable which is equivalent to the multiplication of \(s_{ij} \) and \(V_i \) - \(V_j \). If \(s_{ij} = 1 \), i.e, if line \(\{i, j\} \) is in-service, then \(U_{ij} = V_i - V_j \), otherwise \(U_{ij} = 0 \). The above relationship between \(U_{ij} \), \(s_{ij} \), and \(V_i - V_j \) can be achieved by adding the following new linear constraints [23, Ch. 5]:

\[
\begin{align*}
-M(1 - s_{ij}) & \leq \Re\{U_{ij}\} - \Re\{V_i - V_j\} \leq M(1 - s_{ij}), \tag{6} \\
-M s_{ij} & \leq \Re\{U_{ij}\} \leq M s_{ij}, \tag{7} \\
-M(1 - s_{ij}) & \leq \Im\{U_{ij}\} - \Im\{V_i - V_j\} \leq M(1 - s_{ij}), \tag{8} \\
-M s_{ij} & \leq \Im\{U_{ij}\} \leq M s_{ij}. \tag{9}
\end{align*}
\]

Because \(U_{ij} \) and \(V_i - V_j \) are in complex form, the equations in (6)-(7) and (8)-(9) are used to respectively achieve the intended real part and the intended imaginary part of \(U_{ij} \). If \(s_{ij} = 0 \), then (6) and (8) are not binding; from (7) and (9), we have \(U_{ij} = 0 \). From this, together with (5), we have \(I_{ij} = 0 \). Thus, the nonlinear equality constraint in (2) is enforced when \(s_{ij} = 0 \). If \(s_{ij} = 1 \), then (7) and (9) are not binding. From (6) and (8), we have \(U_{ij} = V_i - V_j \). From this, together with (5), we have \(I_{ij} = (V_i - V_j) y_{ij} \). Thus, the nonlinear equality constraint in (2) is enforced also when \(s_{ij} = 1 \). Together, the linear constraints in (5)-(9) are equivalent to the nonlinear constraint in (2).

Step 2: Another nonlinearity term in (4) is associated with the multiplication of phasors \(V_i \) and \(I_i \) in (3), which is known as power flow equation nonlinearity. There are different options to relax such nonlinearity. For example, one may use Linearized DistFlow (LDF) approximation [24]. However, LDF works only in radial feeders and cannot be used for loop configuration. Another limitation with LDF is that line current variables must be removed in the process of deriving the linear approximation, which makes LDF inappropriate in the context of TI algorithm proposed in this paper. In addition, there are some other linear approximation methods which would rather increase computational complexity, such as the one in [25] which introduces multiplications of two or more binary variables and the one [26] which utilizes Newton’s method in an iterative Benders decomposition framework. Therefore, in this paper, the method in [27] is used, which works based on Taylor expansion and engineering approximation. To this end, a linear approximation is developed on complex numbers as opposed to on real numbers as in the conventional load flow formulations. Suppose the voltage at each bus \(i \) is expressed in per unit and in relationship with the voltage at the reference bus at the substation. That is, suppose

\[
V_i = 1 - \Delta V_i. \tag{10}
\]

By applying the Taylor series around zero and neglecting the high order terms, we can write [27], [28, Ch. 5]:

\[
\frac{1}{V_i} - \frac{1}{1 - \Delta V_i} \approx 1 + \Delta V_i = 2 - V_i. \tag{11}
\]

The accuracy of this approximation is validated in the domain of complex numbers in [29]; and in particular for power flow equations in [27]. The approximation error is calculated as

\[
\Phi = \left| \frac{1}{V_i} - (2 - V_i) \right|. \tag{12}
\]

The above error index is evaluated in each point inside the disc in Fig. 1(a), resulting in the area in Fig. 1(b). For example, at \(\Delta V = 0.1 \) p.u., the approximation error is only around 1%. In practice, \(\Delta V \) is often 0.05 p.u. or less; therefore, the approximation error is only 0.3% or less; which is negligible.

Next, the approximation in (11) is substituted into (3) and constraint (3) is rewritten in a reordered form as

\[
I_i^* = S_i (2 - V_i) b_i. \tag{13}
\]

However, the above equation is still nonlinear due to the multiplication of binary variable \(b_i \) and phasor variable \(V_i \).
Hence, next, a new auxiliary variable W_i is introduced, and (13) is replaced with the following linear equation:

$$I_i^* = S_i(2b_i - W_i),$$

where W_i is equivalent to the multiplication of b_i and V_i. If b_i is one, i.e., if node i is connected to the grid, then $W_i = V_i$; otherwise $W_i = 0$, indicating the node is not connected to the grid. The mentioned relationship between W_i, b_i, and V_i can be achieved by enforcing the following new linear constraints:

$$-M(1 - b_i) \leq \text{Re}\{W_i\} - \text{Re}\{V_i\} \leq M(1 - b_i),$$

$$-M b_i \leq \text{Re}\{W_i\} \leq M b_i,$$

$$-M(1 - b_i) \leq \text{Im}\{W_i\} - \text{Im}\{V_i\} \leq M(1 - b_i),$$

$$-M b_i \leq \text{Im}\{W_i\} \leq M b_i.$$

For the same reason as mentioned for the constraints in (6)-(9), the equations in (15)-(16) and (17)-(18) can respectively achieve the intended real and imaginary parts of W_i. From (15)-(16), if $b_i = 1$, then $\text{Re}\{W_i\} = \text{Re}\{V_i\}$; and if $b_i = 0$, then $\text{Re}\{W_i\} = 0$. Similarly, the equations in (17)-(18) result in achieving the imaginary part of W_i. Together, the linear equality and inequality constraints in (14)-(18) are equivalent to the nonlinear equality constraint in (3).

It is worth mentioning that, from (14), the current injection associated with a disconnected node is assured to be zero. However, the equality in (14) does not require that the voltage of a disconnected node is also zero. Next, it is needed to also add the following new set of constraints to make sure that the disconnected node indeed has zero voltage:

$$-M b_i \leq \text{Re}\{V_i\} \leq M b_i,$$

$$-M b_i \leq \text{Im}\{V_i\} \leq M b_i.$$

Step 3: The objective function in (4) is an absolute value which is not linear. The absolute value in the objective function is substituted with a linear objective function as well as several linear inequality constraints using the technique introduced in [30, Ch.1]. In this regard, minimizing the objective function in (4) is equal to minimizing both the real part and the imaginary part of $(I_{ij} - I_{ij}^m)$, where $ij \in K$. Let E_{ij} and F_{ij} denote two auxiliary variables, where $|\text{Re}\{I_{ij} - I_{ij}^m\}| \leq E_{ij}$ and $|\text{Im}\{I_{ij} - I_{ij}^m\}| \leq F_{ij}$. These auxiliary variables are integrated into the problem through the following constraints:

$$-E_{ij} \leq \text{Re}\{I_{ij}\} - \text{Re}\{I_{ij}^m\} \leq E_{ij},$$

$$-F_{ij} \leq \text{Im}\{I_{ij}\} - \text{Im}\{I_{ij}^m\} \leq F_{ij},$$

$$E_{ij} \geq 0 \text{ and } F_{ij} \geq 0.$$

Step 4: By combining Steps 1 to 3, the TI optimization problem is expressed in a linear form as follows:

$$\text{minimize} \sum_{i,j \in L} E_{ij} + F_{ij},$$

$$\text{subject to} \ Eqs (1), (5)-(9), \text{and} (14)-(23).$$

The above problem is a MILP. It can be solved efficiently using various software packages, e.g., see [31].

III. ADDITIONAL NOTES AND EXTENSIONS

A. Observability and Sensor Placement

Observability analysis and sensor placement is often studied for a particular application, such as in [32]–[35] where specific micro-PMUs allocation is considered for each application. In the context of this paper, observability analysis is concerned with the following. In order to determine the topology of a network, it is needed to know the status of switches. The lines whose switches are opened carry no current; thus, the status of switches is obtained by estimating the lines current; which ultimately leads to identifying the topology of the network. Therefore, observability analysis boils down to answering the following question: how many line sensors (and at what locations) are needed in order to estimate all lines current? The answer will automatically determine how many line sensors (and at what locations) are needed in order to solve TI problem in this paper.

Theorem 1. If at least one line current sensor is placed in each independent loop in a distribution network, then the topology of the distribution network can be identifiable, i.e., problem (4) can be solved to provide the correct topology.

Proof:

In a circuit with N nodes and L branches, L independent equations are needed in order to estimate the branch currents. From the N current injection equations that are available, $N - 1$ equations are independent [36, Ch. 2]. Therefore, in order to reach a total of L independent equations, $L - (N - 1)$ additional independent equations are needed, which is exactly the circuit nullity, and can be obtained by measuring $L - (N - 1)$ line currents.

A loop is a closed path that starts from a node, passes through a set of nodes, and returns back to the initial starting node, without passing through any node more than once. A loop is said to be independent if it does not contain any loop in itself. In circuit theory, independent loops result in independent KVL equations, the number of which is $L - (N - 1)$, which is known as circuit nullity [37]. Therefore, an immediate result of the nullity theorem is that all line currents can be estimated as long as the current of $L - (N - 1)$ lines in independent loops are measured directly using line current sensors.

Next, consider an independent loop, as shown in Fig. 2. Suppose the nodal injection currents, i.e. I_1, I_2, \ldots, I_n, are...
known. We want to calculate the current of each line segment in the loop, i.e. $I_{n-1,n}, I_{1,2}, \ldots, I_{n-1,n}$. Due to KCL, we have:

$$
\begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \ddots \\
0 & 0 & 0 & \cdots & 1 & -1 & \cdots & 0 \\
-1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
\begin{pmatrix}
I_{n-1,i} \\
I_{1,i} \\
\vdots \\
I_{n-2,n-1} \\
I_{n-1,n} \\
\end{pmatrix}
=
\begin{pmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{n-1} \\
I_n \\
\end{pmatrix}
$$

where A is an $n \times n$ matrix. The rank of matrix A is $n-1$; thus, there exist infinite solutions for the choice of line current. However, we can assure a unique solution for this system of linear equations if one row is replaced with an independent equation based on measurement of a line current sensor. Such additional equation is $I_{i-1,i} = I_{m_{i-1,i}}$, where $I_{m_{i-1,i}}$ denotes the measured line current on line segment between bus $i-1$ and bus i. This results in the following new system of linear:

$$
\begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \ddots \\
0 & 0 & 0 & \cdots & 1 & -1 & \cdots & 0 \\
-1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
\begin{pmatrix}
I_{n-1,i} \\
I_{1,i} \\
\vdots \\
I_{n-2,n-1} \\
I_{n-1,n} \\
\end{pmatrix}
=
\begin{pmatrix}
I_1 \\
I_2 \\
\vdots \\
I_{n-1} \\
I_n \\
\end{pmatrix}
$$

Unlike in (25), the system of equations in (26) has a unique solution. It can be concluded that installing exactly one line current sensor anywhere in an independent loop provides an independent equation to be added to the KCL equations. Since there are $L-(N-1)$ independent loops in a network; installing $L-(N-1)$ line current sensors, one at each independent loop, results in solving the line current estimation problem.

Next, an illustrative example is used to demonstrate the observability results in the Theorem. Specifically, consider the network in Fig. 3 with $N=4$ buses and $L=5$ lines. In this network, loop 1231, denoted by ℓ_1, and loop 1341, denoted by ℓ_2, are two independent loops. However, loop 12341 is not an independent loop because it contains other loops, ℓ_1 or ℓ_2, inside itself. The set of equations for this network can be written as follows:

$$
\begin{pmatrix}
-1 & 0 & 0 & 1 & -1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
I_2 \\
I_{1,2} \\
I_3 \\
I_{1,3} \\
\end{pmatrix}
=
\begin{pmatrix}
I_1 \\
I_{1,2} \\
I_3 \\
I_{1,3} \\
\end{pmatrix}
$$

Matrix A has rank 3, which means one row is dependent. In order to find the unique solution for all the 5 line currents, it is needed to add 2 more independent rows to matrix A. This is achieved by installing one line sensor at each of the two independent loops ℓ_1 and ℓ_2. Note that, out of the $^{10}_{\binom{n}{2}}=10$ possible combinations for choosing the location to install the two sensors, 8 combinations result in measuring the line currents in both loops ℓ_1 and ℓ_2; as denoted by Scenarios III to X in Table I. These results are consistent with Theorem I. It should be noted that, if two independent loops share a line, such as line $[1,3]$ in Fig. 3 that is shared between loops ℓ_1 and ℓ_2, then placing a line sensor on such shared line will provide only one new independent equation. That is why two separate sensors are needed to be placed on two neighboring independent loops to obtain two independent equations in order to reach the number of independent equations that are needed to conduct topology identification.

Finally, there exist several graph theoretic methods to find the independent loops in a graph. Here, Kruskal’s algorithm
[38] is used to identify the independent loops; which allowed us to place one line sensor at each independent loop.

B. Addressing Measurement Error

So far, it is assumed that the line measurements and nodal apparent power measurements, considered as pseudo-measurements, do not carry errors. However, this assumption may not hold in practice. In order to incorporate the impact of errors in measurements and pseudo-measurements, one needs to adjust the problem formulation in (24). To resolve this issue, we propose to move the injection current constraint in (1) to the objective function in form of a penalty term as

\[
\minimize_{s_{ij},t\in\mathbb{L}} \sum_{i\in\mathbb{N}} I_i - \sum_{j\in\mathbb{N}_i} I_{ij}.
\]

After that, by adopting a similar method as in Step 3 in Section II-B, the new nonlinearity can be tackled by defining auxiliary variables \(G_i \) and \(H_i \), and adding the following new linear constraints:

\[
-G_i \leq \text{Re}\{I_i\} - \sum_{j\in\mathbb{N}_i}\text{Re}\{I_{ij}\} \leq G_i, \tag{29}
\]

\[
-H_i \leq \text{Im}\{I_i\} - \sum_{j\in\mathbb{N}_i}\text{Im}\{I_{ij}\} \leq H_i, \tag{30}
\]

\[
G_i \geq 0 \text{ and } H_i \geq 0. \tag{31}
\]

The TI problem in the presence of measurement and pseudo-measurement errors can be presented as a MILP as follows:

\[
\minimize_{s_{ij},t\in\mathbb{L}} \sum_{ij\in\mathbb{K}} (\alpha_{ij}^{Re} E_{ij} + \alpha_{ij}^{Im} F_{ij}) + \sum_{i\in\mathbb{N}} (\beta_i^{Re} G_i + \beta_i^{Im} H_i)
\]

subject to Eqs. (5)-(9), (14)-(23), and (29)-(31),

\]

where coefficients \(\alpha_{ij} \) and \(\beta_i \) are calculated based on the standard deviation (SD) of measurements and pseudo-measurements [39]. Parameter \(\alpha_{ij}^{Re} \) corresponds to the real part of \(I_{ij}^m \). It is set to the inverse of the SD for \(\text{Re}\{I_{ij}^m\} \). Parameter \(\alpha_{ij}^{Im} \) corresponds to the imaginary part of \(I_{ij}^m \). It is set to the inverse of the SD for \(\text{Im}\{I_{ij}^m\} \). Coefficients \(\beta_i^{Re} \) and \(\beta_i^{Im} \) are set similarly.

The existence or uniqueness of the solution for the above optimization problem cannot be theoretically proved. But it can be confirmed that a feasible solution is always obtained even in the severe condition that measurements or pseudo-measurements are far from their true values due to major errors.

C. Multi-Period Optimization

The TI optimization problems in (24) and (32) are both defined for a single snapshot of available measurements. In fact, this is typical in the literature to run the TI algorithms based on one set of data, e.g., see [1], [14], [40]. However, in practice, the line current measurements are likely to continue to be available beyond the initial moment after the change in the network topology; thus, allowing the operator to run the TI algorithm in form of a multi-period optimization problem to better alleviate the impact of errors in measurements and pseudo-measurements. Note that, even if the line current measurements are accurate due to the use of higher precision line sensors, it is inevitable for any TI algorithm in practice to deal with the less accurate pseudo-measurements. Therefore, the use of multi-period optimization is likely to be advantageous, as it will be confirmed in a case study in Section IV-C.

Let \(T \) denote the number of available snapshots of measurements and pseudo-measurements. Let us use \([t]\) to indicate the data corresponding to each snapshot \(t \), where \(t = 1, \ldots, T \). Finally, let \(\Psi[t] \) denote the objective value in problem (32) based on the data from snapshot \(t \). The TI problem in a multi-period form can be presented as:

\[
\minimize_{s_{ij},t\in\mathbb{L}} \sum_{i=1}^{T} \gamma[t]\Psi[t],
\]

subject to Eqs. (5)-(9) at \([t]\), \(t = 1, \ldots, T \),

Eqs. (14)-(23) at \([t]\), \(t = 1, \ldots, T \),

Eqs. (29)-(31) at \([t]\), \(t = 1, \ldots, T \).

Notation \(\gamma[t] \) will be explained at the end of this section. An implicit assumption in problem (33) is that all the measurement snapshots are associated with the same topology. In other words, the topology does not change during measurement snapshots 1 to \(T \). The multi-period TI algorithm is reset once a change in topology is detected. This is a reasonable assumption as long as there is a way also to detect a change in topology. There already exist several methods in the literature to detect the changes in topology, such as in [41]-[44].

Before ending this section, it is worth clarifying why problem (33) is referred to as a multi-period optimization problem. In principle, topology identification is an estimation problem to estimate the status of switches based on given measurements and pseudo-measurements as inputs. Each snapshot in (33) essentially provides redundancy for such estimation problem. Here, the status of the switches are fixed from one snapshot to another; however, there are random variations in the measurements and pseudo-measurements due to the randomness in the load at each bus. In this regard, each snapshot generates a new random scenario for such random variables; providing the redundancy in estimating the status of the switches. As a result, the problem in (33) can be seen as a multi-scenario-based optimization, where \(\gamma[t] \) denotes the probability associated with snapshot \(t \). If the randomness across different snapshot follows a uniform distribution, or simply it is unknown, then one can choose \(\gamma[t] = 1/T, \forall t = 1, \ldots, T \). Otherwise, a known non-uniform probability distribution can be used.

IV. CASE STUDIES:

PART I - IEEE TEST NETWORK

This section demonstrates the effectiveness of the proposed TI method by applying it to the IEEE 33-bus test system. The single line diagram of the feeder is shown in Fig. 4, and the relevant technical data can be found in [24]. The normally closed or normally open status of switches for all line segments are listed in Table II. The normally open switches are the five tie-lines that are shown using dashed lines. Since there are
21 switches in this network. 2^{21} different topologies can be created, among which 65 topology configurations, comprising 50 radial, 10 loop, and 5 island, are selected. The criteria for choosing these topologies is mainly to make sure that all three types of topologies, i.e., radial, loop, and island, are covered while they involve all independent loops in the network.

Once the five tie-lines are in closed status, there exist five loops which are marked as ℓ_1, \ldots, ℓ_5. Recall from Section III-A that each loop has to be monitored with at least one line sensor to meet requirement for TI. An arbitrary choice of locations for the five line current sensors in this case study are as marked using red dots in Fig. 4. In addition to the current measurements, it is assumed that the load injections at all the buses are available through pseudo-measurements.

The network simulation and the implementation of the TI algorithm are done in MATLAB; and the optimization problems in (24), (32), and (33) are solved using IntLinProg. In simulations, the measurements are constructed as follows:

$$\tilde{z} = z + e,$$

where \tilde{z} denotes the so-called contaminated measurement vector; z is the true value vector of the measurements; and e is the measurements error vector. It is assumed that the errors are normal distributed with zero mean value and standard deviation vector σ, i.e., $e \sim \mathcal{N}(0, \sigma^2)$. The standard deviation of the error can be computed as follows [16]:

$$\sigma_i = \frac{z_i \times \eta_i}{3},$$

which guarantees that 99.7% of the e_i values fall within $\pm \eta_i$ percentage of the true value. Also, the accuracy of the TI algorithm is given in percentage as

$$\text{TI Accuracy} = 100 \times \frac{\text{Total Number of Correct TIs}}{\text{Total Number of TIs}}$$

A. Errors in Line Current Measurements

The line current phasors can be measured by line current sensors, either directly and precisely if the sensor is equipped with GPS, or indirectly and approximately if the sensor is not equipped with GPS; in which case, it measures the relative phase angle by measuring e-field. Based on the different types of sensors that are available, the error in current magnitude can be 1% to 3%; and the error in current phase angle can be 1° to 5° [45]. Table III shows the result of TI algorithm with considering errors in line current measurements. The results demonstrate a satisfactory performance, with above 99% accuracy in almost all error levels. Thus, it can be concluded that the proposed TI algorithm is robust against errors in measurements; regardless of the exact line sensor technology.

B. Errors in Pseudo-Measurement

In practice, the utility’s knowledge about pseudo-measurements is not precise. Pseudo-measurements are often obtained using short-term load forecasting by smart meter data or historical data. The robustness of the proposed TI algorithm is examined against any given level of measurements inaccuracy by using the Monte Carlo method to generate different scenarios, c.f. [46].

Here, there is not any hard requirement on how the pseudo-measurements are obtained. The range of uncertainty associated with pseudo-measurements may vary based the available information. These pseudo-measurements can be obtained through the aggregation of customer smart meter data as long as such metering data is available. Or they can be estimated solely based on the ratings of the load transformers when no metering data is available. A combination of metering data and transformer ratings may also be used. Depending on how the pseudo-measurements are obtained, they may carry a wide range of errors, as low as 10% [47]–[49], when smart meter data is available, or as high as 50%, when pseudo-measurements are synthesized/estimated purely based on load
TABLE IV
TI ACCURACY VS. ERROR IN PSEUDO-MEASUREMENTS

<table>
<thead>
<tr>
<th>Pseudo-meas. error (%)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI accuracy (%)</td>
<td>99.1</td>
<td>98.3</td>
<td>93.1</td>
<td>84.1</td>
<td>77.1</td>
</tr>
<tr>
<td>Run Time (s)</td>
<td>0.81</td>
<td>0.94</td>
<td>0.91</td>
<td>0.89</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fig. 5. The accuracy of the multi-period TI algorithm gradually improves as more measurement snapshots become available.

C. Improved Accuracy with Multi-Period Optimization

Interestingly, the impact of errors is compensated in pseudo-measurements by making use of the additional snapshots of measurement data; together with the multi-period optimization method that was proposed in Section III-C.

In order to test the performance of the multi-period TI algorithm, a sequence of snapshots is generated using the pseudo-measurement generation method in [50], where we generate errors for pseudo-measurement based on a normal probability distribution, with zero mean and the following standard deviation [16]:

$$\sigma_i = \frac{S_i \times \eta_i}{3}.$$ (37)

The TI multi-period optimization in (33) is then solved and the TI results are updated every time that a new measurement snapshot becomes available. The results are shown in Fig. 5. The TI accuracy is improved as more measurement snapshots become available. This is true regardless of the level of errors in pseudo-measurements. For example, even with 50% error in pseudo-measurements, where the accuracy of the single-period TI algorithm is 77.1%, the multi-period version of our TI algorithm can enhance accuracy to 95.0% after 20 snapshots.

The computational complexity of solving the multi-period optimization problem in (33) grows as the number of snapshots increases. For example, the multi-period TI algorithm takes about 40 seconds and 125 seconds to run for 10 and 20 snapshots, respectively, which is considerably greater than the single-period TI run time provided in Table IV.

An illustrative example is used to compare the performance of single-period and multi-period TI algorithms on several snapshots. The results are shown in Table V. Note that, the true topology remains the same in all 15 snapshots. The single-period TI algorithm is applied each snapshot separately. In only four snapshots, i.e., snapshots 6, 9, 11, and 13, the correct topology is identified, as denoted by check marks. In 11 snapshots, the single-period TI algorithm results in incorrect topology identification, as denoted by cross marks. This is due to the change in loading and the large error in pseudo-measurements; which are intentional in this case study.

In contrast, when the multi-period TI algorithm is used, the correct topology is identified as soon as sufficient snapshots become available, which is six in this example. Note that, the multi-period TI algorithm is initially the same as the single-period TI method when it is applied to the first snapshot. Then, at the second snapshot, the multi-period TI algorithm is applied to the combination of both the first and the second measurement snapshots. At the third snapshot, the multi-period TI algorithm is applied to the combination of the first, the second, and the third measurement snapshots; and so on and so forth. As more measurement snapshots become available beyond the first six snapshots, the multi-period TI method continues to correctly identify the topology during snapshots 6 to 15.

D. MILP versus MINLP

Both MILP and MINLP are categorized as NP-hard problems [51]. Therefore, in principle, they are roughly similar in terms of their computational complexity. However, in practice, it is often very useful to convert an MINLP into an MILP. The reason is the considerable advancements in developing MILP solvers in the past few decades, such as CPLEX [31], also see [52]. In contrast, MINLP solvers are not matured enough, at least not yet, to be considered stable and reliable. In addition, MILP solvers are guaranteed to ultimately provide the exact optimal solution, by using relatively simple methods, such as branch and bound. Importantly, even when an MILP solver is terminated prior to obtaining the exact optimal solution, it can provide a provable bound on optimality gap [53]. When it comes to the proposed TI optimization problems, the original TI formulation in (4) is in fact a non-convex MINLP. Non-convex MINLPs are particularly difficult to solve; because even when the integer variables are handled using methods such as branch and bound, what is left to solve in each iteration is still a difficult non-linear non-convex optimization problem [54].

Three solvers were tested to solve the original MINLP problem in (4): NOMAD, SCIP, and BONMIN [55]. The first
two always failed to even find a feasible solution. As for the third one, by assuming 5% error in pseudo-measurements, BONMIN correctly identified 10 out of 65 topologies. For those 55 topologies that were identified incorrectly, BONMIN neither could find a correct solution nor it could find any feasible solution at all. For instance, the network configuration with open lines <33>, <34>, <35>, <36>, and <14> is tested for several initial points. The results for six different initial points that converged to some feasible solutions are shown in Table VI. Only in one case, where the initial point is chosen very close to the optimal solution, the solution of the MINLP formulation was correct. Accordingly, the MILP reformulation is necessary.

E. Performance Comparison

Even though there is a rich literature for topology identification, there does not exist a prior study to address the use of line current sensors for topology identification. This is partly because the type of line current sensors that are of interest in this study are just starting to emerge only recently. With this general note in mind, in this section, the performance comparison is conducted with two references. The first reference is [40]. The method in this reference can in essence support utilizing line current sensors, but it is developed based on circuit connectivity and it does not involve the load flow equations. The results are shown in the second row of Table VII. It can be seen that the method in [40] is highly sensitive to errors in pseudo-measurements.

The second reference is [16]. The method in this reference is not directly comparable with our method in this study. Therefore, a somewhat new method that is rather inspired by the method in [16] is used. The new method is essentially the same as the proposed method in this study but it uses a different objective function. Specifically, it uses the objective function in [16], which results in a mixed integer quadratic program (MIQP), as opposed to an MILP. The results are shown in the third row of Table VII. It can be seen that the performance of this new method too degrades as the error in pseudo-measurements increases. This happens because minimizing squared errors as in MIQP, will pull the fit towards the outliers, i.e., the inaccurate pseudo-measurements, much more so than minimizing the absolute error as in this paper.

Also, the computational time of MIQP is more that MILP. From the viewpoint of a cost-benefit analysis, the original MIQP method in [16] requires using 10 line power sensors that are often expensive and labor-intensive to install, while our method uses 5 line current sensors that are inexpensive and easy to install; yet it obtains almost the same performance. This demonstrates the advantages of our method in a simple cost-benefit analysis.

V. Case Studies: Part II - Real-Life Network

In this section, the TI algorithm is applied to two long and interconnected real-life distribution feeders in Riverside, CA. The two feeders are isolated on two different transformers at the substation; however, they are interconnected through tie-lines. The two feeders have about 400 nodes and 37 switches. The understudy network consists of 13 loops. It is assumed that 13 line current sensors are installed on these 13 loops, see Section III.A. A total of 20 different topologies are defined. Suppose the feeder-head voltages are measured for both feeders. Accurate models of these two feeders are simulated in CYME [56]. The results for TI accuracy are shown in Table VIII. It can be seen that the TI algorithm can successfully identify all the topologies for reasonably low pseudo-measurement errors. The results in this Table are comparable to those in Table IV for the IEEE test system in Section IV.

VI. Additional Discussions

A. Impact of Parameter M

In principle, M must be large enough such that for any combination of decision variables, the inequality constraints in (6)-(9) and (15)-(20) remain feasible. Therefore, since the voltage magnitudes are represented in per unit, M should be at least 1. The impact of parameter M on the TI accuracy is shown in Table IX. It can be seen that both M = 1 and
TABLE IX
THE IMPACT OF PARAMETER M

<table>
<thead>
<tr>
<th>Choice of M</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI Accuracy</td>
<td>99.9%</td>
<td>99.9%</td>
<td>99.8%</td>
<td>99.6%</td>
<td>96.3%</td>
</tr>
</tbody>
</table>

$M = 1.5$ are very good choices. As M increases, numerical issues start to show up; becoming severe when M is too large, e.g., when $M = 10$. To be on the safe side, so as to address any possible over-voltage scenario, we recommend to set $M = 1.5$.

B. Errors in Both Measurements and Pseudo-Measurements

In this section, the performance of the TI algorithm is examined for combinations of errors associated with both line current measurements and pseudo-measurements. In this regard, error in line current measurements is expressed in terms of Total Vector Error (TVE), which includes both magnitude and angle errors. The results are shown in Table X. As can be seen, the proposed TI algorithm is affected more by errors in pseudo-measurements than errors in line current measurements. Of course, here we considered much higher errors for pseudo-measurements because it is indeed the case in practice.

C. Further Discussion on Theorem 1

In the proof of Theorem 1, it was inherently assumed that measurements and pseudo-measurements are precise. Therefore, the estimated current associated with the lines that are switched off is precisely zero, which can be used to determine which lines are switched off; thereby identifying the topology. However, in a non-ideal situation, where the measurements and/or pseudo-measurements carry error, the numerically estimated current associated with a line that is switched off could be non-zero. This issue is addressed by using binary variables and by minimizing the absolute value of errors in the objective function of the TI optimization problem.

As a matter of fact, the proposed theorem determines a requirement for the placement of the line current sensors to support the TI application, rather than indicating the exact locations. That is, there are a large number of line current sensor placement options that would satisfy the requirements in the theorem, as long as there is at least one line sensor at each independent loop. Sensor placement methods however are often developed for specific applications with particular goals. For instance, in [57], authors developed a sensor placement method to improve the state estimation; also, several line sensors placement methods have been reported for outage detection and fault location, e.g., see [58], [59]. As a result, the proposed theorem can be used by itself or in conjunction with other sensor placement methods, as long as the requirement to place at least one sensor in each independent loop is satisfied.

VII. CONCLUSIONS

A distribution-level topology identification method is proposed that is concerned with utilizing the type of measurements that come from an emerging class of low-cost non-contact line current sensors. Three key challenges are addressed: 1) designing a TI algorithm that is compatible with the limitations of the aforementioned line current sensor technologies, such as their inability to measure voltage and power; 2) maintaining a low and tractable level of computational complexity for the TI algorithm; and 3) tackling the various sources of error in measurements and pseudo-measurements that are inevitable in the context of the study in this paper. The third challenge was particularly addressed by developing a novel multi-period TI algorithm which uses multiple measurement snapshots, beyond the moment that a change in topology is detected, in order to gradually improve the TI accuracy and robustness. Both the single-period and multi-period TI algorithms can identify all the possible topologies, including radial, loop, and island configurations. This extends the application of the TI algorithms to identify switch malfunctions and to detect outage. The performance of the proposed TI algorithms are studied in IEEE test cases and also a test case based on a feeder in Riverside, CA. Furthermore, observability analysis was made with respect to the number and location of the line current sensors that are needed to achieve accurate TI performance.

REFERENCES

Mohammad Farajollahi (S’15) received the B.Sc. degree in Electrical Engineering from University of Tehran, Tehran, Iran, in 2014, the M.Sc. degree in electrical engineering from Sharif University of Technology, Tehran, in 2016, and is currently pursuing the Ph.D. degree at University of California, Riverside, CA, U.S. His research interests include power system planning, operation, reliability, as well as optimization. He is specifically working on applications of micro-PMUs and data analysis in distribution system monitoring.

Alireza Shahsavari (S’17) received the M.Sc. degree in electrical engineering - power systems from the University of Tehran, Tehran, Iran, in 2013, and the Ph.D. degree in electrical and computer engineering at the University of California, Riverside, CA, USA, in 2019. His research interests include the data analysis in power systems and smart grid, distribution system planning and operation, and power system reliability.

Hamed Mohsenian-Rad (S’04–M’09–SM’14) received the Ph.D. degree in electrical and computer engineering from the University of British Columbia Vancouver, BC, Canada, in 2008. He is currently an Associate Professor of electrical engineering at the University of California, Riverside, CA, USA. His research interests include modeling, data analysis, and optimization of power systems and smart grids. He received the National Science Foundation CAREER Award, the Best Paper Award from the IEEE Power and Energy Society General Meeting, and the Best Paper Award from the IEEE International Conference on Smart Grid Communications. He serves as an Editor for the IEEE TRANSACTIONS ON SMART GRID and the IEEE POWER ENGINEERING LETTERS.