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Abstract—State estimation is often a challenging task in dis-
tribution systems due to deploying a limited number of measure-
ment devices. Moreover, the integration of precise distribution-
level phasor measurement unites, a.k.a micro-PMUs, along with
inaccurate pseudo-measurements in state estimation introduces
another challenge. These issues might decrease the efficiency
of traditional standard weighted least squares (WLS) for dis-
tribution system state estimation. This paper proposes a novel
linear distribution system state estimation with taken different
types of measurements, including micro-PMU measurements and
line current measurements, into account. To involve pseudo-
measurements into the linear state estimation, a linearization
method based on the Taylor’s approximation is adopted to
reformulate pseudo-measurement functions in a linear form.
The results obtained via numerical simulations show that the
proposed linear state estimation method performs similarly to
the standard nonlinear WLS estimator. In addition, the sensitivity
analyses results show that our method has a better performance
compared to WLS once a limited number of highly precise micro-
PMUs are accompanied with inaccurate pseudo-measurements in
state estimation.

Keywords: State estimation, distribution system, micro-PMU, line
current sensor, pseudo-measurement, linearization.

I. INTRODUCTION

Real-time monitoring plays a key role in the effective
management and control of distribution system applications,
e.g., [1]. Distribution System State Estimation (DSSE) is a
cornerstone tool in advance distribution system monitoring. It
uses the measurements to best approximate the states of the
system which best fit the available measurements. Over the
past few decades, transmission system state estimation (TSSE)
has been well developed. However, there exist some funda-
mental differences between transmission system and distribu-
tion system, which makes TSSE methods unsuitable for DSSE.
Typically, transmission systems have sufficient measurement
redundancy that makes them beyond the observability. Such
assumption may not be applied to distribution systems, be-
cause they are either unobservable beyond the substation or
monitored through a few measurement units installed across
the feeder. In this regard, it is required to make use of some
historical data of nodal loading conditions, so-called pseudo-
measurements, to run DSSE. Recently, there is a growing
interest among electric utilities to deploy distribution-level
phasor measurement units, a.k.a., micro-PMUs, for different
applications, c.f., [2]–[4]. Of interest application in this paper,
micro-PMUs could substantially enhance the DSSE results by
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providing the direct voltage phasor measurements. However,
due to limited number of potential deployed micro-PMUs in
distribution system, it is not possible to run a full PMU-
based state estimation as proposed for transmission level [5].
Therefore, the integration of highly precise micro-PMU data
along with less accurate pseudo-measurements is introduced
as another challenge in DSSE.

Among the existing DSSE techniques, the weighted least
squares (WLS) technique is the most widely used method. In
WLS, either bus voltages [6] or branch currents [7] can be
selected as the state variables, and the measurement functions
are expressed based on them. Typically, the measurements
are nonlinear function of state variables, which necessitates
utilizing some numerically iterative methods, e.g., Newton-
Raphson, to deal with the measurements nonlinearity [8, Ch.
2]. The main challenge of WLS method is instability issue of
the iterative solution, which may either fail to convergence or
become sensitive to initial point. In particular, once the use of
some highly accurate mciro-PMUs measurement, having very
large weights in the WLS objective, are accompanied with
inaccurate pseudo-measurement, having very small weights in
WLS objective, the significant variation among the weights
may causes issues in iterative solution.

Several methods have been developed to overcome the
issues with the standard nonlinear WLS method. In [9], the
authors proposed the semidefinite programming (SDP) tech-
nique for DSSE. This method indeed relaxes nonconvex WLS
problem into a solvable convex problem by the semidefinite
relaxation. For large networks, SDP method may be computa-
tionally complex and reaches to local optimum solution due to
the nonconvex rank-one constraint relaxation. Another alterna-
tive for standard nonlinear WLS is linear WLS state estimator,
which is highly of interest for the integration of synchropahsor
data in DSSE. In [10], the authors developed a DSSE by
linearizing load injection measurements and using the current
injections as the measurements. This method requires a load
flow pre-analysis to calculate the current measurements. In
[11], authors proposed Bayesian linear state estimator (BLSE)
based on micro-PMU data as well as pseudo-measurements.
The method use a fully linear approximation of the power flow
equations, but it should be solved in an iterative manner.

In this paper, we develop an linear DSSE (LDSSE)
with considering different types of measurements, including,
micro-PMUs and line current sensors. To involve pseudo-
measurements into LDSSE, a linearization method based on
the Taylor’s approximation is adopted to reformulate pseudo-
measurement functions in a linear form. Numerical results
based on Monte Carlo simulations show that LDSSE of-
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fers a similar performance as the traditional nonlinear WLS
state estimator, even LDSSE outperforms WLS under certain
conditions. We also evaluated the LDSSE algorithm perfor-
mance with respect to phasor measurements accuracy, pseudo-
measurements uncertainty, and number of deployed micro-
PMUs. The results show that the LDSSE is preferable for
the network with limited number of precise micro-PMUs
accompanied with inaccurate pseudo-measurements.

II. LINEAR STATE ESTIMATION METHODOLOGY

A. Weighted Least Squares

Let define the measurement equations as follow

z = h(x) + e, (1)

where x and z denote the state vector and measurement
vector, respectively. Also, h(·) denotes vector of functions that
describes the relationship between measurements and the state
variables. In addition, e denotes vector of measurement errors,
typically assumed to have a Gaussian distribution with zero
mean and covariance matrix R. If the errors are independent,
R is a diagonal matrix with σ2

i values, where σi is the standard
deviation of the error associated with measurement i. Given
W as the R−1, the state vector can be obtained by solving the
following weighted least squares (WLS) optimization problem

minimize J(x) =
∑
i∈Z
‖Wi zi − hi(x) ‖2, (2)

where ||.||2 denotes norm-2 and Z is set of measurements. If
hi(·) is a nonlinear measurement function, then the optimiza-
tion problem in (2) can be solved iteratively, e.g., Newton-
Raphson method [8, Ch. 2], by setting the derivative of J
with respect to x to zero

∂J(x)

∂x
= HT (x)W [z − h(x)] = 0, (3)

where H(x) = ∂h(x)
∂x and (.)T denote the Jacobian matrix

and transpose operator, respectively. The iterative methods are
prone to divergence when there exists significant variation
between measurement errors, e.g., errors in micro-PMUs data
versus errors in pseudo-measurements.

If all the measurement functions are linear, i.e., z = hx,
then there is a closed-form solution for optimization problem
in (2) as:

x̂ = [hTW h]−1hTWz, (4)

The non-iterative state estimation addresses the convergence
challenge mentioned above once the hTW h is well-condition
matrix [12, Ch. 2], which holds in most of situation in
distribution system.

B. Measurement Functions

Let define nodal voltage vector in a n-bus distribution
system as V = e + jf , where e = [e1, · · · , en] and
f = [f1, · · · , fn] vectors denote real part and an imaginary
part of the nodal voltages, respectively. Here, we define the
nodal voltages in rectangular coordinate system as the system
state vector; hence, we will consider x = [e f ] as the state

vector in the rest of the paper. In this regard, we should
consider the measurements as well as measurement functions
in rectangular form. The measurement functions for three sets
of measurements available for DSSE are described as follows.

Nodal Voltage: Recently developed distribution-level syn-
chrophasor, a.k.a micro-PMUs, are able to measure the nodal
voltage phasor. Therefore, PMU technology opens-up the
possibility of directly measuring system state, which could
enhance the quality of state estimation. The measurement
function for the micro-PMU voltage measurement can be
stated as follows:[

ui 0n×1
0n×1 ui

]
︸ ︷︷ ︸

hV
i

x =

[
Re{Vi}
Im{Vi}

]
︸ ︷︷ ︸

zV
i

,
(5)

where ui = [0, · · · , 1, · · · , 0] is 1 × n unitary vector whose
element ith is equal to 1 and other elements are zero; and
Re{.} and Im{.} denote the real part and imaginary part.

Line Current: Line current sensors are inexpensive and can be
installed very quickly in distribution systems; hence, utilities
are highly of interest to integrate line current sensors in
their system. A typical line current sensor can provide phasor
current either of the following two types of measurements:

1) Magnitude and Phase Angle
2) Magnitude and Relative Phase Angle to Electric Field

The first type of measurements are available in those line
current sensors equipped with GPS devices; and phase angle
is measured relative to a GPS-synchronized reference signal.
The second type of measurements are available practically in
any line current sensor even if no GPS device is available.
In fact, almost all commercially available line current sensors,
whether electric or optic, are capable of measuring electric
field (e-field) around the line. Relative phase angle to e-filed
could be an good estimation of current phasor angle because,
first, the e-field around a conductor is almost in-phase with the
voltage of the conductor; second, the voltage of the conductor
at any point on a distribution feeder are relatively close to
each other. Therefore, we can assume that the line current
phasor measurements are available regardless the technology
used for measuring the phase angle. Without loss of generality,
by considering short line models, the measurement function for
the line current sensor measurement can be stated as follows:

Iij = (Vi − Vj)Yij , (6)

which by separting the real part and imagiary part in (6), we
can write

Re{Iij} = (ei − ej)Gij − (fi − fj)Bij

Im{Iij} = (ei − ej)Bij + (fi − fj)Gij ,
(7)

where Gij and Bij are the real part and imaginary part
of Yij which is the admittance of line ij. Hence, the line
measurement matrix is written as follows:[

Gf [ij] −Bf [ij]
Bf [ij] Gf [ij]

]
︸ ︷︷ ︸

hI
ij

x =

[
Re{Iij}
Im{Iij}

]
︸ ︷︷ ︸

zI
ij

(8)
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where Gf [ij] = [0, · · · , Gij , · · · ,−Gij , · · · , 0] is a 1 × n
vector whose ith element is Gij and jth element is −Gij ;
and Bf [ij] = [0, · · · , Bij , · · · ,−Bij , · · · , 0] is a 1×n vector
whose ith element is Bij and jth element is −Bij .
Load Measurement: In distribution system, the power load
injections are not measured directly; therefore, load mea-
surements are often obtained through pseudo-measurements.
Pseudo-measurements are typically calculated using short-
term load forecasting by smart meters kWh data or historical
data information regarding the customer usage. The power
injection equation can be written as follows:

Vi I
∗
i = Si (9)

where Ii is the current injection at node i and (.)∗ is conjugate
operator; Si is apparent power injection at node i which is
assumed to be obtained from pseudo-measurement. Measure-
ment function (9) is nonlinear due to the multiplication of
phasors Vi and Ii, so it is not compatible for the linear form
of state estimation in (4). There are some methods to make this
equation linear. For example in [10], the authors proposed to
substitute this equation with the current injection equation as
a linear function of state variables and calculate the current
measurement injections from pseudo-measurements. In this
paper, we use the method based on Taylor expansion and
engineering approximation [13] to make this equation linear.
To this end, a linear approximation is developed on complex
numbers as apposed to on real numbers as in the conventional
load flow formulations. Suppose we express the voltage at each
bus i in per unit and in relationship with the voltage at the
reference bus at the substation. That is, suppose we write

Vi = 1−∆Vi. (10)

By applying the Taylor series around zero and neglecting the
high order terms in the Taylor series, we can write [13]:

1

Vi
=

1

1−∆Vi
' 1 + ∆Vi = 2− Vi. (11)

Experimental results have shown that the error associated with
this approximation is very minor, e.g., see [14, Ch. 4]. In
particular, for a typical operation range where |∆Vi| ≤ 0.1, i.e.
0.9 ≤ |Vi| ≤ 1.1, the error is less than 1%. Next, we substitute
the approximation in (11) into (9) and rewrite constraint (9)
in a reordered form as

I∗i = Si(2− Vi). (12)

By writing Ii based on the nodal voltages, (12) can be re-write
as follows: ∑

j∈Ni

(Vi − Vj)Yij = S∗i (2− V ∗i ). (13)

where notation Ni is the set of the nodes that are connected
to node i. By rearranging (13) and separating the imaginary
part and real part, we would have:∑

j∈Ni

[(ei − ej)Gij − (fi − fj)Bij ] + eiPi − fiQi = 2Pi∑
j∈Ni

[(ei − ej)Bij + (fi − fj)Gij ]− eiQi − fiPi = −2Qi

(14)

we can write this equation in matrix form as follows:[
Gbus[i] + uiPi −Bbus[i]− uiQi

Bbus[i]− uiQi Gbus[i]− uiPi

]
︸ ︷︷ ︸

hS
i

x = 2

[
Pi

−Qi

]
︸ ︷︷ ︸

zS
i

(15)

where, Gbus[i] is a 1 × n vector whose ith element is∑
j∈Ni

Gij and jth element is −Gij ; Bbus[i] is a 1×n vector
whose ith element is

∑
j∈Ni

Bij and jth element is −Bij ;
All in all, by considering the measurement functions in (5),

(8), and (15) for all the measurements, we can have the system
measurement function as follows:hVhI

hS


︸ ︷︷ ︸

h

x =

zVzI
zS


︸ ︷︷ ︸

z

(16)

By substituting z and h obtained from (16) into (4), the linear
state estimation is solved and the state variables are estimated.

III. CASE STUDIES

This section demonstrates the effectiveness of the proposed
LDSSE method by applying it to the IEEE 33 bus test system.
The single line diagram of the feeder is shown in Fig. 1, and
the relevant technical data can be found in [15]. Unless stated
otherwise, we assume that the voltage phasor and line current
phasor are respectively measured by the micro-PMUs and line
current sensors whose locations are shown in Fig.1. We also
assume that the net power load of the feeder is measured at
the feeder-head using a standard substation SCADA system.
Otherwise, one can install another line current sensor at
feeder-head. Pseudo-measurements are calculated for all the
buses based on the total feeder net power and load allocation
according to the low-voltage transformers capacities [16].

A. Base Case

Here, we assume that micro-PMUs provide the voltage
phasor measurements with accuracy 0.1% (σV = 0.1%); line
current sensors provide the current phasor measurements with
accuracy 1% (σI = 1%); and pseudo-measurements provide
the active and reactive power injection measurements with
accuracy 25% (σS = 25%). We examine the performance
of LDSSE method through different measurement scenarios
generated by Monte Carlo method [17].

Fig. 2 shows the error box results for estimated voltage
magnitude of all buses in the test system. As can be seen, the
mean value of estimated voltages (boxes center) are on the
blue line which shows the correct voltage magnitude of buses.
In addition, the 25th and 75th percentiles are close to the
true value, which indicates that in most of the scenarios, the
estimated voltages are so closed to the true value. Moreover,
the maximum errors and outliers (pluses) are not much far
away from the true value, which makes the proposed LDSSE
method reliable for voltage magnitude estimation. The error
box results for estimated voltage angles are also shown in Fig.
3. Although some outliers show large deviation of estimated
voltage angle from the true value, the majority of the estimated
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Fig. 1. The IEEE 33 bus test system that is used in our case studies. Three micro-PMUs are deployed on buses 1, 12, 28; and five line current sensors are
deployed on line segments <7>, <15>, <18>, <22>, and <30>.
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Fig. 2. Accuracy of voltages magnitude estimated by LDSSE in IEEE 33 bus
test system.
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Fig. 3. Accuracy of voltages angle estimated by LDSSE in IEEE 33 bus test
system.

voltage angles (boxes) are very close to the true value. There-
fore, the results statistically demonstrate the effectiveness of
LDSSE for voltage angle estimation as well. The probability
distributions of estimated voltages magnitude and estimated
voltages angle for a few selected buses are shown in Fig. 4 and
Fig. 5, respectively. As expected, probability density functions
associated with the errors follow the Gaussian distribution.

B. Comparison: LDSSE vs. WLS

In this section, we compare the performance of our proposed
method with standard nonlinear WLS state estimation method.

Fig. 4. Probability distribution of errors for estimated voltages magnitude at
buses (a) 3, (b) 11, (c) 19, and (d) 33.

Fig. 5. Probability distribution of errors for estimated voltages angle at buses
(a) 3, (b) 11, (c) 19, and (d) 33.

In order to have a fair comparison, we applied both methods
to the same practical test scenarios, where both methods have
access to the measurements and pseudo-measurements as in
Section III-A. WLS method has not an closed form solution
and it should be solved through heuristic or iterative methods
with the choice of an initial point. Here, we employ the
Newton-Raphson iterative method [8, Ch. 2] with the flat
initial point, where all the buses have voltage magnitude 1
p.u. and voltage angle 0◦, to solve nonlinear WLS in (2).

Fig. 6 shows the expected error for estimated voltages in
both methods. The results demonstrate that LDSSE and WLS
methods have relatively similar performance, even LDSSE
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Fig. 6. The expected errors for the estimated nodal voltages phasor obtained
from LDSSE and nonlinear WLS.

shows a better performance for some buses. In this regard,
we can conclude that the linearized pseudo-measurement func-
tions proposed in (15) does not deteriorate the accuracy of state
estimation method and guarantees relatively the same accuracy
as WLS method. The reason could be due to the compensation
effect of least squares state estimation which makes up for the
error caused by the Taylor’s approximation in (11).

C. Analysis of Sensitivity and Robustness

In practice, the measurements and pseudo-measurement
may have a wide range of accuracy. Here, we examine the
robustness of the proposed LDSSE method against any given
level of inaccuracy in comparison with WLS method perfor-
mance. We use Mont Carlo approach to generate different
scenarios for the given level of measurements and pseudo-
measurements error.

1) Pseudo-Measurement Accuracy: In practice, the utility’s
knowledge about pseudo-measurements are not precise. The
range of uncertainty associated with pseudo-measurements
may vary significantly.

If pseudo-measurements are obtained from smart meters,
then their error is limited to 10%. For pseudo-measurements
that are calculated based on short-term load forecasting or
historical data, e.g., based on a load allocation according
to the low-voltage transformers capacities, the error can
increase to 50%. The results of both LDSSE and WLS
methods accuracy versus different levels of error in pseudo-
measurements are shown in Fig 7(a). This figure shows
the mean value error associated with the estimated voltages
of all the buses. As shown, once pseudo-measurements are
accurate, i.e., the error is limited to 10%, the WLS has a
better performance. However, by increasing the inaccuracy in
the pseudo-measurements, the LDSSE outperforms WLS. For
accurate pseudo-measurements, the linearization error caused
by Taylor’s approximation is comparable with the pseudo-
measurement errors, therefore the results are affected by such
approximation in LDSSE method and lower efficiency is
achieved in comparison with WLS. However, by increasing the
pseudo-measurement inaccuracy, in one hand, the linearization
approximation error in LDSSE is much smaller respect to the

pseudo-measurements error, so such approximation does not
affect the solution quality; on the other hand, because the
pseudo-measurements are far away from their true value, it
would be much probable for WLS to reach a local optimum.

2) Micro-PMU Measurement Accuracy: In principle, two
sources of error can be considered in the context of using
micro-PMUs for voltage phasor measurements: the error in
the micro-PMU device itself; as well as the error in the
instrumentation channel. The latter is associated with the errors
due to the PTs, control cables, and burden at the input of the
micro-PMU. Based on various field experience and given the
fact that micro-PMUs have very high precision with typical
accuracy at 0.01% in magnitude and 0.003◦ in angle [18]; it is
only the error in the instrumentation channel that is of concern
in practice and should be considered. Typically, PTs used for
micro-PMUs are very precise such that they can guarantee the
accuracy of 0.1%. However, the micro-PMUs may serve with
the typical PT measurement which have the accuracy up to 1%.
The results of both state estimation methods accuracy versus
different levels of error in micro-PMU measurements are
shown in Fig 7(b). As can be seen, for the precise micro-PMU
voltage measurements, the LDSSE has a better performance
compared to WLS method; however, as the measurements
error increases, this superiority decreases such that for error
further than 0.3% (σV ≥ 0.3%), the WLS outperforms the
LDSSE. That is because, for the accurate micro-PMUs, the
weight of voltage measurements in least squares objective is
much larger than those of pseudo-measurements, therefore the
LDSSE approximation error in pseudo-measurement function
is masked. However, by increasing the error in voltage mea-
surements, the pseudo-measurements impact on least squares
objective function increases, whereby decreasing the perfor-
mance of LDSSE due to linearization approximation.

3) Line Sensor Accuracy: As mentioned in Section II-B, the
line current phasors can be measured by line current sensors,
either directly and precisely if the sensor is equipped with
GPS, or indirectly and approximately if the sensor is not
equipped with GPS; which in that case, it measures the relative
phase angle by measuring e-field. Based on the different types
of sensors that are available, the error in current magnitude is
assumed to be 1% to 3%. The results of both state estimation
methods accuracy versus different levels of error in line current
sensors are shown in Fig 7(c). As expected, by increasing
the error level in line current sensor, the performance of both
LDSSE and WLS state estimators deteriorates; however, the
LDSSE maintain the superiority over WLS for whole range
of error in line current sensor.

4) Number of Micro-PMUs: Micro-PMUs can considerably
enhance the performance of state estimation due to directly
measuring the state variables (voltage phasors) and providing
highly accurate measurements. However, the usage of large
number of micro-PMUs has not economic justification for
distribution systems. The results of both state estimation
methods accuracy versus different number of deployed micro-
PMUs are shown in Fig 8. For each micro-PMUs number
scenario, micro-PMUs are deployed evenly across the feeders.
As expected, by increasing the number of micro-PMUs the
accuracy of both LDSSE and WLS state estimators enhances.
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Fig. 7. Performance comparison of both LDSSE and WLS methods against: (a) pseudo-measurement accuracy; (b) micro-PMU measurement accuracy; (c)
line current measurement accuracy.
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Fig. 8. Performance comparison of both LDSSE and WLS methods against
number of deployed micro-PMUs in the test feeder.

The comparison of results shows similar accuracy and sensi-
tivity of both methods respect to the number of micro-PMU
deployment. However, once the number of deployed micro-
PMUs are less that 9, the LDSSE demonstrates relatively better
performance. That is because, by deploying more micro-PMUs
in the system, the number of nodal voltages which directly
measured increases, so the chance of WLS to reach the global
optimum solution increases.

IV. CONCLUSION

This paper proposed a novel linear state estimation method
with considering different types of measurements, includ-
ing synchrophasor measurements and pseudo-measurements.
The numerical results demonstrates the effectiveness of the
proposed method for estimation of both voltage magnitude
and angle. Moreover, we evaluated the performance of the
proposed linear state estimation method in comparison with
the standard nonlinear weighted least squares (WLS) method
with respect to pseudo-measurements, micro-PMUs, and line
current sensors accuracy as well as the number of deployed
micro-PMUs. The results show that our method guarantees
the same performance compare to the WLS method, and
even better performance under certain conditions. Based on
the results, our method shows superiority respect to WLS
method, once limited number of highly accurate micro-PMU
are accompanied with inaccurate pseudo-measurements in

state estimation. All in all, the proposed method could be a
reliable alternative for the traditional standard WLS.
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