
1

Implicit Neural Representation of Waveform
Measurements in Power Systems Waveform Data Analysis

Narges Ehsani, Student Member, IEEE, Vishwanath Saragadam, and Hamed Mohsenian-Rad, Fellow, IEEE

Abstract—There is currently a paradigm shift in several
power system monitoring applications, such as incipient fault
detection and monitoring inverter-based resources, to transition
from traditional phasor analytics to more informative waveform
analytics. This paper contributes to this transition by developing
a novel approach to modeling voltage and current waveform
measurements using implicit neural representations (INRs). INRs
are continuous function approximators that are recently used
in vision and signal processing. The proposed INR models are
specifically designed to meet the requirements of waveform
analytics in power systems, such as by using sinusoidal activation
functions that capture the periodic nature of voltage and current
waveforms. We also propose extended models that can efficiently
represent correlated waveforms, such as three-phase waveforms
and synchro-waveforms. Real-world case studies demonstrate the
effectiveness of the proposed INR models in terms of accuracy
(<1-2% MSE) and model size (4-6× compression). We also inves-
tigate the application of INR models in oscillation monitoring, for
single mode oscillations and dual mode modulated oscillations.

Keywords: Waveform measurements, waveform analytics, im-
plicit neural representation, sinusoidal activation, model size,
three-phase measurements, synchro-waveform measurements.

I. INTRODUCTION

A. Waveform Analytics: A New Big Data Challenge
Waveforms are the most authentic and granular represen-

tation of voltage and current in power systems. Nevertheless,
the traditional approach in power system monitoring has been
to measure RMS values, phasors, or other filtered/processed
representations of voltage and current; which results in losing
some important details that are only visible in waveforms.

However, with the recent advancements in power sys-
tem sensor technologies, including the advent of synchro-
waveforms, and also because of the increasing complexity
in power system operation caused by the high-penetration of
inverter-based resources (IBRs), there is now a growing inter-
est in conducting analysis and inference directly on waveform
measurements; e.g., see the detailed discussions in [1]–[3].

Waveform data are obtained from waveform measurement
units (WMUs), through event-triggered waveform capture or
continuous streaming of waveform measurements [4, Ch 4].
The latter is similar to how phasor measurements are streamed
by phasor measurement units (PMUs). However, WMUs report
data at a much higher rate than PMUs. For example, each
three-phase WMU reports 3,981,312,000 voltage readings per
day (at a sampling rate of 256 samples per cycle), which can
exceed one gigabyte of data per day per sensor [2], [5].

Collecting data at such high reporting rate creates a new
challenge in big data analytics in power systems, moving
beyond the existing big data analytics practice for traditional
measurements such as from smart meters and PMUs.
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B. Approach and Contributions
We seek to address some of these challenges by developing

a novel approach to model waveform (and synchro-waveform)
measurements. We propose to utilize the latest advancements
in the field of implicit neural representation (INR). INRs
are continuous function approximators based on multilayer
perceptrons (MLPs). Since their first widespread usage in
novel view synthesis in graphics [6], INRs have been quickly
adopted in all fields of vision and signal processing, including
rendering [7], medical imaging [8], and virtual reality [9].

The main contributions in this paper are as follows:
• To the best of our knowledge, this is the first study to

develop INR models for waveforms in power systems. The
proposed INR models are designed to meet the requirements
in this new application domain, such as by using sinusoidal
activation functions [10] that can capture the inherently
periodic nature of voltage and current waveforms.

• The INR models with single and double hidden layers
are analyzed. We show that a single hidden layer INR
resembles a Fourier transform and hence cannot capture
transient distortions. In contrast, we show that a double
hidden layer INR does capture these complexities. This
enables an approximately 3× increase in accuracy for the
same number of parameters as a single hidden layer INR.

• Unlike classical signal representations, INRs enable repre-
senting correlated signals with a single model. We hence
extend our INR model to enhance efficiency in modeling
correlated waveforms, such as among three phases, among
synchro-waveforms, and between voltage and current. Ex-
periments on real-data demonstrate that such an approach is
highly advantageous in modeling sub-cycle transients that
are otherwise difficult to model with separate INRs.

• Real-world case studies provide detailed sensitivity analysis
and confirm the performance of the proposed INR models,
both in terms of model accuracy and model size. The
direct application of the INR models is investigated in
analyzing two types of oscillatory events, namely single
mode oscillations and dual mode modulated oscillations.

C. Related Literature
In power systems, research on INRs is still emerging, with

limited studies exploring its potential. In [11], INRs are used
for power system dynamic simulations. In [12], [13], INRs
are used in optimal power flow analysis. In [14], INRs are
utilized for load forecasting. While these studies demonstrate
INR’s potential in power systems, they highly differ from
the focus of our research. Here, we leverage INRs not for
optimization or solving partial differential equations, but to
compactly represent high-resolution power system waveforms.
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Fig. 1. The proposed INR architecture to model a single time-series of
waveform measurements. The MLP has two hidden layers. The activation
functions at all neurons in both hidden layers are sinusoidal functions.

The analysis in this paper also falls under the growing
literature on waveform data analytics in power systems. The
advent of synchro-waveform technology has given a recent
boost to this field, with applications, such as for fault loca-
tion identification [15], wildfire monitoring [16], oscillation
monitoring [17], and dynamic modeling of IBRs [18].

The scope of this paper also has some partial overlap with
the literature on data compression, such as in [19] for loss-less
compression, often with focus on generic data compression
techniques, or in [20] for lossy compression, often with focus
on signal processing, such as Fourier and Wavelet transform.
Although our proposed INR models can significantly compress
the waveform data, they are not designed for data compression,
but rather to provide a systematic way to model waveforms.

II. INR MODELING OF WAVEFORM MEASUREMENTS
WITH SINGLE OR DOUBLE HIDDEN LAYERS

The overall architecture of the first proposed INR model is
shown in Fig. 1. The input to the model is time t. The output is
waveform x(t), such as the time-series of voltage waveform
measurements at Phase A, denoted by vA(t). The nonlinear
activation function σ(·) plays a key role in the representation
capacity of the INR model. In this paper, given the dominantly
sinusoidal nature of the waveform measurements in power sys-
tems, we use σ(·) = sin(·). Sinusoidal activation functions are
proven to provide significantly higher representation accuracy
than ReLU, in particular for signals with periodic nature [10].

A. Single Hidden Layer INR

Suppose the INR model has only one hidden layer. Let
a1,b1 and a2,b2 be the weights of the first layer and the
second layer, respectively. We can obtain the output signal as

x(t) =

h∑
i=1

a2,i sin (a1,it+ b1,i) + b2, (1)

where h denotes the number of neurons in the hidden layer.
The number of parameters in the INR model in (1) is:

2h+ h+ 1 = 3h+ 1. (2)

The formulation in (1) can be interpreted as a Fourier trans-
form, where for each i = 1, . . . , h, parameter a1,i acts as
harmonic frequency, a2,i acts as harmonic magnitude, and b1,i
acts as harmonic phase angle. Therefore, the INR model with
one hidden layer is comparable with the phasor representation
of the waveform measurements. However, unlike phasors,

which focus primarily on the fundamental frequency of the
power system, the model in (1) is not biased on any particular
frequency. All the parameters are rather trained by a stochastic
gradient descent approach. Despite this advantage, an INR
with a single hidden layer cannot significantly improve the
model accuracy compared to Fourier transform; because the
formulation in (1) is still very similar to Fourier representation.

B. Double Hidden Layer INR
Next, suppose the INR model has two hidden layers. This

is the same setup as in Fig. 1. Suppose the number of neurons
in the first hidden layer and in the second hidden layer are h1

and h2, respectively. Let a1,b1 and a2,b2 and a3,b3 be the
weights of the first layer and the second layer and the third
layer, respectively. We can obtain the output signal as

x(t) =

h2∑
j=1

a3,j sin

(
h1∑
i=1

a2,i,j sin (a1,it+ b1,i) + b2,i

)
+b3.

(3)
The model in (3) does no longer resemble Fourier transform.

Intuitively, the second hidden layer introduces higher spectral
diversity, which enables a richer representation in (3) than
in (1). Indeed, as explained in [21], INRs with two or more
hidden layers provide a larger convergence of the frequency
space than INRs with only one hidden layer. Since voltage
and current waveform measurements in power systems have
several higher harmonics and transient modes, there is great
potential to leverage INRs based on the architecture in Fig. 1,
to represent waveform measurements in power systems.

The number of parameters in the INR model in (3) is:

2h1 + h1h2 + 2h2 + 1. (4)

As we will see next, this increase in parameter count dramat-
ically increases representation accuracy of the waveforms.

C. Initial Case Study
Fig. 2 provides an example to derive INR representations

for a real-world voltage waveform measurement that contains a
sub-cycle oscillatory event. The raw waveform measurements
capture 62 cycles, with two event cycles in the middle. Here,
we only show the portion of the waveform that contains event.

In Fig. 2(a), the INR model has one hidden layer. The
number of parameters is 1663 = 3 × 554 + 1, where
h = 554. The Mean Squared Error (MSE) is 2.40%, which
is calculated between the raw waveform measurement (blue)
and the reconstructed waveform (red) using the model in (1).
The MSE is calculated across the entire 62 cycles of the
waveform measurements. Although this model can effectively
approximate the steady-state signal, resembling the Fourier
series, it lacks the capability to capture the more complex
behavior in the transient component of the signal.

In Fig. 2(b), the INR model has two hidden layers, with
1661 = 2×30+30×50+2×50+1 parameters, where h1 = 30
and h2 = 50. Thus, the number of parameters in the two-layer
INR in Fig. 2(b) is equal to the number of parameters in the
one-layer INR in Fig. 2(a). However, the MSE in the two-
layer model is 0.82%, which is drastically less than the MSE
of 2.40% for the equal-sized INR model with one hidden layer.
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Fig. 2. Model accuracy in reconstructing a real-world voltage waveform
measurement with a sub-cycle oscillatory event: (a) using the INR model
with single hidden layer; (b) using the INR model with double hidden layers.
The two INR models in this example have equal number of parameters.

We also evaluated the impact of using ReLU as an alterna-
tive to sine activation. The results showed that an INR model
of the same size and architecture but with ReLU activation
performed poorly, with an MSE of 18.88%. Accuracy was
particularly low during steady-state behavior, as ReLU strug-
gles to capture the waveform’s periodic nature. Performance
was also poor during transients, with an MSE of 1.56% for
ReLU compared to only 0.48% for sine activation. Thus, the
sinusoidal activation function clearly outperforms ReLU.

III. EXTENDED MODEL TO ENHANCE EFFICIENCY IN
THREE-PHASE WAVEFORMS AND SYNCHRO-WAVEFORMS

The waveform measurements in power systems are often
correlated. Correlation could exist among different waveforms,
including voltages across three phases, voltages across multi-
ple locations, and voltage and current waveforms at a given
location. Such correlations may help reduce the size of the
INR models. For instance, suppose we seek to model voltage
waveform measurements on Phase A, Phase B, and Phase C.
The waveform measurements are denoted by vA(t), vB(t), and
vC(t), respectively. We have two options to derive the models:

• Develop three separate INR models based on Fig. 1.
• Develop one combined INR model based on Fig. 3.
The first option simply repeats the INR architecture in Fig.

1 three times, once for each phase. The number of parameters
would be three times the number of parameters for one phase.

3× (2h1 + h1h2 + 2h2 + 1) (5)

In the second option, we use one INR model with three
outputs, one for each phase. In this new architecture, the two
hidden layers are shared between the three outputs; as shown
in Fig. 3. The number of parameters in this option is:

2h1 + h1h2 + h2 + 3× (h2 + 1). (6)

This results in significantly fewer parameters than in (5).
We can similarly apply the above approach to other cases

with correlated measurements, including synchro-waveforms.
For example, suppose we need to model the time-synchronized
voltage measurements on the same phase but at five different
locations. One option is to develop five separate INR models
based on Fig. 1. The other option is to develop one combined
INR model based on the architecture in Fig. 3, with five
(instead of three) neurons in its output layer.
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Fig. 3. The proposed model to enhance efficiency in modeling three-
phase waveform measurements. A similar extension can help improve model
efficiency when it comes to synchronized waveform measurements.

IV. ADDITIONAL REAL-WORLD CASE STUDIES

A. Modeling Diverse Waveform Signatures

Fig. 4 shows examples of real-world waveform measure-
ments, including raw data (blue) and reconstructed waveforms
(red) based on INR with h1 = h2 = 50. The measurements
are obtained from a three-phase SEL 735 power quality sensor
at 480V (line-to-line). The sampling rate of the waveform
measurements is 128 samples per cycle, i.e., 128 × 60 = 7680
samples per second. Each waveform capture includes 62 cycles
of waveform measurements, centered around the start of the
event. The event signatures are diverse. They include both
voltage waveforms, in Figs. 4(a)-(e), and current waveforms,
in Figs. 4(f)-(i). The MSE varies from 0.77% to 2.85%.

B. Sensitivity Analysis: Number of INR Parameters

Fig. 5 provides a detailed sensitivity analysis with regards
to the number of neurons in the first and second hidden layers,
denoted by h1 and h2, respectively. The results in Fig. 5(a)
and (b) provide the MSE in modeling voltage and current
waveforms, respectively. The results in Fig. 5(c) provide the
corresponding model sizes, which are the same for both
voltage and current waveform for the same choices of h1 and
h2. Each point in any curve in Figs. 5(a) and (b) is the average
of 30×10 = 300 values, from 30 distinct waveform signatures
and 10 runs of INR model training for each event signature.

We can make several important observations based on the
results in Fig. 5. First, there is a clear trade-off between the
accuracy and the size of the model. Increasing both h1 and
h2 can improve model accuracy but increase the model size.
Second, increasing h2 appears to help more than increasing
h1 in order to improve model accuracy. Third, whether we
increase h1 or h2, the gain in model accuracy demonstrates
gradual saturation. Fourth, the model accuracy is clearly
higher for voltage waveforms than current waveforms. This is
because, in practice, current waveforms are often more volatile
and distorted than voltage waveforms, as we saw in Fig. 4.

The computation time for training an INR model depends on
the size of the model. The smallest INR model with h1 = 10
and h2 = 10 takes 3.63 seconds to train. The largest INR
model with h1 = 50 and h2 = 70 takes 7.70 seconds to train.
Training is done on Google Cloud Platform (GCP) using a
Tesla T4 GPU with 15 GB of memory and 28 GB RAM.
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Fig. 4. Various waveform event signatures. Each example shows the raw waveform measurements, the corresponding reconstructed waveforms from an INR
model with double hidden layers, and the corresponding MSE: (a)-(e) event signatures in voltage waveforms; (f)-(i) event signatures in current waveforms.
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Fig. 5. Sensitivity analysis of the INR models to the number of neurons in
each layer, namely h1 and h2: (a) The MSE in modeling voltage waveforms;
(b) The MSE in modeling current waveforms; (c) The size of the model.

C. Three Separate versus One Combined INR Model

Recall that we have two options to model three-phase
waveform measurements: using three separate models as in
Fig. 1 or one combined model as in Fig. 3. Fig. 6 provides a
comparison between these two options. The MSE is obtained
for each approach for a varying number of parameters. Each
point represents the average of 3 × 30 × 10 = 900 experi-
ments, calculated from three phases of 30 distinct waveform
signatures, and 10 runs of INR model training for each event.
The blue points correspond to the INR model in Fig. 1, where
the average output of three separate models is used. The red
points correspond to the combined INR model in Fig. 3.

The results in Fig. 6(a) are for the INR models of the voltage
waveform measurements, and the results in Fig. 6(b) are for
the INR models of the current waveform measurements.

D. Application in Analysis of Waveform Oscillations

Lastly, we use the INR models in the analysis of real-world
waveform oscillations. We study two types of oscillatory
behavior, that have fundamentally different characteristics:
• Single mode oscillations, where the frequency of the dom-

inant mode of oscillation is denoted by fdominant.
• Dual mode modulated oscillations, where the oscillations

occur at a pair of sideband frequencies 60 Hz ± fsideband.
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Fig. 6. Comparing the performance of three separate INR models in Fig. 1
versus one combined INR model in Fig. 3 in modeling three-phase waveform
measurements. The MSE for each model is averaged over three phases and
across several runs: (a) Average MSE for voltage waveforms across three
phases; (b) Average MSE for current waveforms across three phases.

Both analysis require examining the frequency spectrum of
the waveforms. Thus, we compare the frequency spectrum
from the raw data, as well as the INR output, using Discrete
Fourier Transform (DFT). The analysis is done on all phases.
The results on Phase A are shown in Fig. 7. The raw data are
differential waveforms, which are the extracted superimposed
signature of the event on the normal waveform [4, Section
4.2.5]. Each row shows the waveforms in time domain on the
left side, and the derived frequency spectrum on the right side.

The results in Figs. 7(a)-(d) for the INR model in Fig. 1,
where three separate INR models are obtained for the three
phases. The number of parameters in the INR model across
all phases is 8103. The results in Figs. 7(e)-(h) for the INR
model in Fig. 3, where a combined INR model is obtained
for all three phases. The number of parameters in the INR
model for all phases is 5503. The total number of parameters
in the raw data for all phases in each case study is 23,808,
thus achieving 4− 6× compression with INR models.

Fig. 7(a, b, e, f) show the time and frequency content of
a single-mode oscillatory event. Both separate and combined
INRs accurately capture the dominant frequency fdominant at
900 Hz, consistent with the raw data. Importantly, a combined
INR represents the spectrum more accurately, with fewer pa-
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Fig. 7. Analysis of the frequency spectrum (in the right column) for two types
of oscillations and two types of methods: (a)(b) single mode oscillation based
on separate INRs; (c)(d) dual mode modulated oscillation based on separate
INRs; (e)(f) single mode oscillation based on a combined INR; and (g)(h)
dual mode modulated oscillation based on a combined INR.

rameters, enabling a more parameter-efficient representation.
Figs. 7(c, d, g, h) visualize the results for dual mode

modulated oscillatory event. Both separate and combined INRs
accurately model the spectra, with clear peaks at the two side
band frequencies ±fsideband around 60 Hz. Importantly, the
combined INR enables higher accuracy with fewer parameters.

V. CONCLUSIONS AND FUTURE WORK

INR is shown to be a powerful method to model voltage
and current waveform measurements in power systems. A
single hidden layer INR resembles a Fourier transform and
hence cannot capture transient distortions. In contrast, a double
hidden layer INR provides a novel foundation to capture these
complexities in power systems waveforms. In most scenarios,
this enables an approximately 3× increase in accuracy for the
same number of parameters as a single hidden layer INR.

The proposed INR models are modified to model correlated
waveform measurements with significantly fewer parameters,
such as in simultaneously modeling voltage on all three phases.

Detailed sensitivity analysis was conducted based on real-
world data to identify the importance of parameters, as well
as to demonstrate the performance of the proposed INR
models in working with both voltage and current waveform
measurements during various events in power systems.

Importantly, the proposed INR models demonstrated high
accuracy in modeling the key waveform characteristics not
only in time domain but also in frequency domain, providing
a direct application in any event characterization tasks.

This study can be extended in multiple directions. While our
analysis considers up to two hidden layers in the INR architec-
ture, exploring deeper networks and alternative architectures

may further enhance model accuracy. The robustness of INR
models could also be assessed more extensively under a wider
range of operating conditions, including varying noise levels
and diverse event signatures. A more comprehensive compar-
ison with state-of-the-art waveform modeling techniques can
further clarify the advantages and limitations of INR models.
Future work may also focus on integrating INR models into
power systems monitoring and operation use cases, to support
both off-line and on-line monitoring applications.
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