DESL EPFL

Synchronized Sensing for Wide-Area Situational Awareness of Power Distribution Networks

Dr. Asja Derviškadić, Dr. Guglielmo Frigo, Prof. Mario Paolone Distributed Electrical Systems Laboratory

2019 IEEE SmartGridComm 21/10/19 Beijing, China

 École polytechnique fédérale de Lausanne

DESL EPFL Outline

- Synchrophasor Networks and Phasor Measurement Units
- The Iterative-Interpolated Discrete Fourier Transform and its Application to Synchrophasor Estimation
- Advanced Calibrator for the Metrological Characterization of PMUs
- Time Dissemination Techniques for PMUs

DESL EPFL Outline

- Synchrophasor Networks and Phasor Measurement Units
- The Iterative-Interpolated Discrete Fourier Transform and its Application to Synchrophasor Estimation
- Advanced Calibrator for the Metrological Characterization of PMUs
- Time Dissemination Techniques for PMUs

DESL Situational Awareness in Power Grids via PMUs

DESL The Synchrophasor Model vs Power System Signals

Phasor → Nominal operating conditions signal model

 $x(t) = A_0 \cdot \cos(2\pi f_0 t + \varphi_0) = A_0 \cdot \cos \Phi_0$

 $\leftrightarrow \qquad X = A_0 \cdot e^{j\Phi_0}$

Dr. Asja Derviškadić o

DESL EPFL The Synchrophasor Model vs Power System Signals

Distorted operating conditions: static

 $x(t) = A_0 \cdot \cos(2 \pi f_0 t + \varphi_0) + v(t) + \eta(t)$

DESL The Synchrophasor Model vs Power System Signals

Distorted operating conditions: dynamic

 $x(t) = A_0(t) \left(1 + \varepsilon_{A_0}(t)\right) \cdot \cos\left(2\pi f_0(t)t + \varphi_0 + \varepsilon_{\varphi_0}(t)\right) + \nu(t) + \eta(t) + \gamma(t)$

DESL The Synchrophasor Model vs Power System Signals

Phasor

$$x(t) = A_0 \cdot \cos(2\pi f_0 t + \varphi_0) = A_0 \cdot \cos(\Phi_0) \leftrightarrow A_0 \cdot e^{j\Phi_0}$$

Realistic non-stationary power system signal model

$$x(t) = A_0(t) \left(1 + \varepsilon_{A_0}(t)\right) \cdot \cos\left(2\pi f_0(t) t + \varphi_0 + \varepsilon_{\varphi_0}(t)\right) + \eta(t) + \gamma(t) + \nu(t)$$

• Synchrophasor signal model [IEEE Std. C37.118 & IEEE/IEC 60255-118-1-2018] $x(t) = A_0(t) \cdot \cos(2 \pi f_0(t) t + \varphi_0) \leftrightarrow A_0(t) \cdot e^{j\Phi_0(t)}$

DESL EPFL Outline

- Synchrophasor Networks and Phasor Measurement Units
- The Iterative-Interpolated Discrete Fourier Transform and its Application to Synchrophasor Estimation

A. Derviškadić, P. Romano, M. Paolone, "Iterative-interpolated DFT for synchrophasor estimation: A single algorithm for P- and M- class compliant PMUs," in IEEE Transactions on Instrumentation and Measurements, March 2018.

• Advanced Calibrator for the Metrological Characterization of PMUs

Time Dissemination Techniques for PMUs

DESL Motivation

i-IpDFT for Synchrophasor Estimation

- Grids characterized by high shares of harmonic and interharmonic components
- IEEE Std. C37.118 (IEEE/IEC 60255-118-1-2018)

Z

P-class Protection → Latency

M-class Measurement → Accuracy

Single PMU satisfying both the P and M-class PMU requirements at the same time?

- Lower cost: the same PMU simultaneously supplies monitoring and protection functionalities
- Higher measurement reliability: protection and control applications are not degraded by disturbances (interharmonics)

DESL DFT-based Synchrophasor Estimation Algorithms

DESL **DFT-based Synchrophasor Estimation Algorithms** EPFL Aliasing Incoherent Sampling -> Spectral Leakage $X_{s}(j\Omega)$ $F_s \gg f_{max}$ Windowing $2\Omega_s$ Ω_{s} $(\Omega_s - \Omega_N)$ k_m Harmonic/Interharmonic Interference Incoherent Sampling -> Spectral Sampling Interpolation Iterative **IpDFT** $+f_0 k_m$ $-f_0$ **Time-invariant parameters** Short window length

DESL The Interpolated DFT (IpDFT)

The IpDFT is a technique to extract the parameters f_0 , A_0 and φ_0 of a sinusoidal waveform by interpolating the highest DFT bins of the signal spectrum. It mitigates the effects of **incoherent sampling** ($f_0/\Delta f \notin \mathbb{N}$) by:

- Applying special windowing functions → reduce spectral leakage
- Interpolating the highest DFT bins
 minimize spectral sampling $\delta = a \cdot \varepsilon \frac{|X(k_m + \varepsilon)| - |X(k_m - \varepsilon)|}{|X(k_m - \varepsilon)| + 2|X(k_m)| + |X(k_m + \varepsilon)|}, a = 1.5 \cos, a = 2 \text{ hann}$ |X(k)| $f_0 = (k_m + \delta)\Delta f$ $\varphi_0 = \angle X(k_m) - \pi \delta$ $A_{0C} = 4 \cdot |X(k_m)| \left| \frac{\delta^2 - 0.25}{\cos(\pi\delta)} \right|$ $A_{0H} = |X(k_m)| \left| \frac{\pi \delta}{\sin(\pi \delta)} \right| |\delta^2 - 1|$ k DFT bins — Positive image — Negative image

DESL The Interpolated DFT (IpDFT)

Assumptions behind the IpDFT	Possible solutions
The input signal is characterized by time-invariant parameters	Window lengths containing few cycles of a signal at the rated power system frequency
The sampling rate is higher than the highest signal's spectral component	Sampling rate F_S in the order of tens of kHz
The DFT bins used to perform the interpolation are only generated by the positive image of the tone under analysis	 Enhanced IpDFT (e-IpDFT) → Iterative compensation of the spectral interference produced by the main tone negative image Iterative IpDFT (i-IpDFT) → Iterative compensation of the spectral interference produced by the nearby tones

DESL The iterative-lpDFT (i-lpDFT)

DESL The iterative-IpDFT (i-IpDFT)

Parameters	Value
Nominal system frequency	50 Hz
Window length	3-cycles (60 ms)
Window profile	Cosine & Hanning
Sampling rate	50 kHz
PMU reporting rate	50 fps
# DFT bins	11 (cos) & 8 (Hann)
IpDFT interpolation points	3-points
# iterations P	2
# iterations Q	16 (cos) & 28 (Hann)
Noise	80 dB

DESL Performance Assessment – 00BI

21/10/2019 IEEE SmartGridComm, Beijing, China

DESL Embedded Hardware Implementation

19

DESL EPFL Conclusion

i-IpDFT for Synchrophasor Estimation

- We discussed the limits of IpDFT when estimating parameters of a signal corrupted by interharmonic
- We formulated a technique resilient against spectral leakage generated by any interfering tone
- We conducted a sensitivity analysis to tune the algorithm parameters
- IpDFT-based SE algorithm for P and M-class compliant PMUs
- First IpDFT-based synchrophasor estimation technique resilient to OOBI
- During OOBI test the maximum TVE is 0,08% (being 1,3% the maximum allowed limit) and the maximum FE is 4 mHz (being 10 mHz the maximum allowed limit)
- We implemented the i-IpDFT into an embedded device

DESL EPFL Outline

- Synchrophasor Networks and Phasor Measurement Units
- The Iterative-Interpolated Discrete Fourier Transform and its Application to Synchrophasor Estimation

Advanced Calibrator for the Metrological Characterization of PMUs
 G. Frigo, A. Derviškadić, D. Colangelo, J.-P. Braun, M. Paolone, "Characterization of uncertainty contributions in a high-accuracy PMU validation system," in Measurement, vol. 146, pp. 72–86, Nov. 2019.

Motivation

DESL

EPFL

21/10/2019 IEEE SmartGridComm, Beijing, China

Dr. Asja Derviškadić 🛛

DESL The proposed PMU calibrator

DESL Reference values estimation

Signal model \rightarrow Generic time-variant noise-less power signal affected by disturbances: $x(t) = A(1 + \varepsilon_A(t)) \cdot cos(2\pi ft + \varphi_0 + \varepsilon_{\varphi}(t)) + \eta(t)$

Working HP $\rightarrow \varepsilon_A(t), \varepsilon_{\varphi}(t)$ and $\eta(t)$ known a priori

Reference values \rightarrow estimation via non-linear least-squares (NL-LSQ) fit:

 $\{\hat{A}, \hat{f}, \hat{\phi}_0\} = \operatorname{argmin}_{\hat{\mathcal{P}}} \|x[n] - \hat{x}[n]\|_2$

1.2

Uncertainty Sources

- DAC & ADC accuracy
- Time-base stability
- Synchronization

- \rightarrow affects magnitude, frequency and phase uncertainty
- \rightarrow affects frequency and phase uncertainty
- → affects phase uncertainty

True value → High-accuracy instrumentation (steady-state only)

- Amplitude \rightarrow HP3458A digital voltmeter (DVM) resolution 1 μ V
- Frequency → SR620 universal time counter (DFM) resolution 10 nHz
- Initial Phase → 5s waveform processed with IpDFT resolution of 10 nrad
- Deviation between reference (*NL-LSQ estimates*) and true (*instrument measures*) values:
 - mean value $\mu \rightarrow$ fixed \rightarrow can be compensated
 - standard deviation $\sigma \rightarrow$ random \rightarrow represents the actual uncertainty (HP: Gaussian)
- Test waveforms: 5 s, NL-LSQ observation interval 60 ms, reporting rate 50 fps

Synchrophasor Magnitude Uncertainty (MU)

- NL-LSQ estimates vs DVM measurements (res. $\pm 1 \mu V$)
- DVM and DAC / ADC triggered by the same clock → guaranteed synchronization
- Signal frequency [45, 55 Hz] \rightarrow Worst-case MU < 12 μ V (1 ppm @ full input range)

Synchrophasor Phase Uncertainty (PU)

- NL-LSQ estimates vs:
 - DFM measurements (res. \pm 10 nHz) : contribution to PU due to frequency
 - IpDFT estimates (res. \pm 10 nrad): contribution to PU due to initial phase
- DFM and DAC / ADC triggered by the same clock → guaranteed synchronization
- Signal frequency [45, 55 Hz] → Worst-case PU < 0.8 µrad

Time Reference Uncertainty (TU) (Stability)

- PPS of PMU calibrator (PXI-PPS) vs UTC-CH (UTC-CH) @ METAS
- Over two days
- Worst-case TU σ < 11.5 ns \rightarrow PU < 4 μ rad @ 50 Hz

DESL EPFL	Metrological Characterization					
	IEEE Std C37.118				Derviška	
	 Based on MU, PU, SU, TU -> equivalent TVE 				Asja [
	 True Value: Steady state single-tone → High-accuracy instruments 				Dr.	
	Dynamic Tests -> User Parameters					
China		Test	TVE [%]	FE [Hz]		
E SmartGridComm, Beijing, (Static TVE < 0.00x %	Nominal	2.03·10 ⁻⁴	2.29·10 ⁻⁶		
		Signal Amplitude	1.84·10 ⁻³	2.02·10 ⁻⁵		
		Signal Frequency	3.56·10 ⁻⁴	4.31·10 ⁻⁶		
		Harmonic Distortion	1.74·10 ⁻⁴	4.19·10 ⁻⁶		
		OOBI	4.02·10 ⁻⁴	1.50·10 ⁻⁶		
21/10/2019 IEE	Dynamic TVE < 0.0x %	Amplitude Modulation	2.53·10 ⁻⁵	6.40·10 ⁻²		
		Phase Modulation	2.52·10 ⁻²	1.34·10 ⁻³		
		Frequency Ramp	9.17·10 ⁻²	4.86·10 ⁻³		
-		Step	4.24.10-4	7.19·10 ⁻⁶		

DESL Conclusion

Advanced Calibrator for the Metrological Characterization of PMUs

- We have developed and characterized a highly accurate calibration system for PMUs in distribution networks, that is able to reproduce all the test conditions defined by the IEEE Std. C37.118.1.
- We described the hardware and the software of the proposed PMU calibrator
- The developed PMU calibrator is characterized by a TVE \approx 0.00x % in static conditions and TVE \approx 0.0x % in dynamic conditions.

DESL EPFL Outline

- Synchrophasor Networks and Phasor Measurement Units
- The Iterative-Interpolated Discrete Fourier Transform and its Application to Synchrophasor Estimation
- Advanced Calibrator for the Metrological Characterization of PMUs
- Time Dissemination Techniques for PMUs
 - A. Derviškadić, R. Razzaghi, Q. Walger, M. Paolone, *"The White Rabbit Time Synchronization Protocol for Synchrophasor Networks,"* in IEEE Transactions on Smart Grid, 2019. (Special Section on Theory and Application of PMUs in Power Distribution Systems)

Time Dissemination Techniques for PMUs

IEEE Std. C37.118 Common practice State-of-the-art PMUs Accurate: 1 µs GPS ±100 ns uncertainty Phase uncertainty Reliable: 24/7 J J Available: urban area 31 µrad @ 50 Hz 5 µrad Secure: timing attacks

> Transmission grids \rightarrow TVE 1% \rightarrow 1 µs [IEEE Std] Distribution grids \rightarrow TVE 0.01% \rightarrow 10 ns [NASPI]

DESL Time Dissemination Techniques for PMUs

DESL Time Dissemination Techniques for PMUs

	Satellite-based	Network-based	
	Global Position System (GPS)	Precision Time Protocol (PTP)	White Rabbit (WR)
Uncertainty	100 ns	1 µs	1 ns
Features	 Low installation cost Widely used Standard profile for power systems Determinism 		es on the same Ethernet data transfer Reliability Determinism
Limitations	AccessibilitySecurity	AccuracyNon-determinism	 Fiber physical layer

DESL The White Rabbit Protocol

- Ultra-precise timing for CERN's accelerators
- Based on:
 - **PTPv2** [IEEE 1588]
 - Ethernet [IEEE 802.3]
 - Synchronous Ethernet [SyncE]
 - Precise phase measurement
- Deployable on already existing fiber-based networks

DESL The Developed PMU – Hardware Platform

National Instruments compactRIO

FPGA level:

- Time synchronization
- Signal acquisition
- Synchrophasor estimation
- Same hardware platform
- Same synchrophasor estimation →
- Only difference is the time sync

Any phase estimation difference is due to the time synch difference

i-IpDFT: T = 60 ms, Fr = 50 fps, Fs = 50 kHz
$$\rightarrow$$
 phase error ε_{alg} < 5 µrad

Dr. Asja Derviškadić

DESL The Measurement Setup

DESL Performance Assessment – Phase Error

Worst-case scenario: 24 h – single-tone voltage 50 Hz, 300 V, 0 rad

DESL Conclusion

Time Dissemination Techniques for PMUs

- We discussed the uncertainty contribution of the time dissemination technology on the synchrophasor estimation for PMU applications
- We carried out a performance comparison using:
 - Same hardware platform (NI-cRIO)
 - Same synchrophasor estimator (i-IpDFT)
 - Different time synchronization sources: GPS, PTP and WR
- The WR-PMU is capable of minimizing the time dissemination uncertainty contribution and thus optimizing the performance of the synchrophasor estimation algorithm
- The WR-PMU produces a phase error always lower than 8 µs

DESL References

- A. Derviškadić, P. Romano, M. Paolone, "Iterative-interpolated DFT for synchrophasor estimation: A single algorithm for P- and M- class compliant PMUs," in IEEE Transactions on Instrumentation and Measurements, vol. 67, no. 3, pp. 547-558, March 2018.
- G. Frigo, A. Derviškadić, D. Colangelo, J.-P. Braun, M. Paolone, "Characterization of uncertainty contributions in a high-accuracy PMU validation system," in Measurement, vol. 146, pp. 72–86, Nov. 2019.
- A. Derviškadić, R. Razzaghi, Q. Walger, M. Paolone, *"The White Rabbit Time Synchronization Protocol for Synchrophasor Networks,"* in IEEE Transactions on Smart Grid, 2019.
- A. Derviškadić, P. Romano, M. Pignati, M. Paolone, "Architecture and experimental validation of a low-latency phasor data concentrator," in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2885-2893, July 2018.

DESL EPFL

Synchronized Sensing for Wide-Area Situational Awareness of Power Distribution Networks

 École polytechnique fédérale de Lausanne

Dr. Asja Derviškadić, Dr. Guglielmo Frigo, Prof. Mario Paolone asja.derviskadic@epfl.ch