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Abstract— This paper presents a novel practical and
theoretical foundation for detecting and characterizing
events in continuously recorded, time-synchronized volt-
age waveform measurements, a.k.a., synchro-waveforms.
The proposed methods leverage an in-depth analysis of
two waveform concepts through formalized formulations:
per-cycle waveform distortions and differential waveforms
based on varying cycle-shift parameters. Their mathemati-
cal and empirical relationships are established, leading to
algorithms that effectively identify and characterize subtle
disturbances in waveform data. The methods detect and
classify diverse events, including local and non-local, sub-
cycle and multi-cycle, single-phase and three-phase, os-
cillatory and non-oscillatory, and rare as well as recurring
events, and periodic disturbances. Extensive case studies,
based on nearly a terabyte of real-world synchro-waveform
data, provide insightful observations for each scenario.

Index Terms— Synchro-waveform, event detection, fea-
ture extraction, event clustering, sub-cycle and multi-cycle
events, periodic distortion, differential waveform.

I. INTRODUCTION

A. Background and Motivation
Synchro-waveform is an emerging concept in grid monitor-

ing and situational awareness. It refers to time-synchronized
voltage and current waveform measurements from multiple
locations in a power system; e.g., see [1]–[3].

The sensor to measure synchro-waveforms is referred to as
Waveform Measurement Unit (WMU) [4]. A WMU can be
compared to a Phasor Measurement Unit (PMU). However,
a WMU reports time-synchronized raw samples of voltage
and current waveforms, while a PMU uses the raw samples
to calculate and report the time-synchronized phasor repre-
sentations of the fundamental components of the measured
waveforms [5]. Therefore, a WMU provides a more authentic
and granular representation of voltage and current, which can
reveal the most inconspicuous disturbances that are overlooked
by PMUs due to their short duration or small magnitude [6].

In this paper, our focus is on the analysis of continuous (i.e.,
gapless) recording of synchro-waveform measurements, which
is also referred to as time-synchronized Continuous Point-on-
Wave (CPOW) measurements in recent literature [7], [8].

B. Approach and Contributions
By analyzing nearly a terabyte of real-world synchro-

waveform data that is continuously recorded at two sites in
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California and Idaho, new methods are developed and tested
to detect and characterize events in synchro-waveform data.
The contributions in this paper can be summarized as follows:

• A practical and theoretical foundation is developed for de-
tecting and characterizing events in continuously recorded
(gapless) synchro-waveforms. This is achieved by lever-
aging two key factors: changes in per-cycle waveform
distortion and differential waveforms. The mathematical
relationships between these factors are established, and
it is demonstrated how they support the decomposition
of real-world waveform measurements into steady-state
and transient components. The proposed methodologies
effectively identify subtle transient disturbances, provid-
ing granular insights into event dynamics that are often
overlooked or difficult to capture.

• The proposed methods detect and classify a wide range
of events, including local and non-local events, sub-
cycle and multi-cycle events, single-phase and three-
phase events, oscillatory and non-oscillatory events, rare
and recurring events, as well as periodic distortions.

• A mathematical framework is introduced that links the
event detection index to key characteristics of transient
events, such as amplitude, damping, and the frequency of
oscillatory modes. A detailed understanding of sub-cycle
oscillatory events and their defining features is gained by
leveraging modal analysis of differential waveforms.

• Furthermore, a method is proposed to identify and
characterize recurring multi-cycle waveform events by
defining waveform cycles in two different ways: using
both negative-going and positive-going zero-crossings,
combined with dynamic time warping. Additionally, it
is investigated how analyzing differential waveforms with
varying shifts in the subtracted waveform cycles can help
identify periodic behavior in multi-cycle periodic events.

• This paper also presents several real-world case studies
and results that can support power system operations and
diagnostics. These include extracting the dominant fre-
quency of sub-cycle oscillatory events and clustering the
features of multi-cycle events with periodic distortions.

C. Literature Review
The literature on synchro-waveforms is starting to emerge

only recently. Some studies contributed to introducing this
new field [1], [2]. Others explained the importance of time
synchronization among waveform measurements, such as for
monitoring inverter-based resources [29], [30]. There are also
studies on sensor technologies [31], instrumentation [32], and
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TABLE I
OVERVIEW OF COMPARABLE LITERATURE ON EVENT DETECTION AND CHARACTERIZATION

Reference Data / Measurements Algorithm / Methodologies
Measurement

Type
Real-world

Measurements1
Data Recording

Type
Low Voltage

Measurements2
Multi-Location

Events3
Sub-cycle

Events
Recurring

Events
This Paper

Waveform
✓

Continuous
Recording

✓
✓ ✓ ✓

[9] × ✓ ×[10]

×

✓ ✓
[11], [12]

Trigger-Based
Recording

× ✓ ✓
[13] ✓

×
[14], [15], [16], [17]

✓
✓

[18] ×
[19] × - ✓

[20], [21], [22], [23] × ✓
[24], [25], [26],

[27], [28] Phasor ✓
Continuous
Recording Some Some × Some

1 Real-world measurements refer to data collected directly from actual power systems, not simulations or laboratory experiments.
2 If the voltage level of measurements is not explicitly mentioned, determination is done based on figures or overall descriptions.
3 Multi-location events require not only access to synchronized data but also mechanisms to detect and characterize non-local events.

data compression and data storage needs [33], [34]. Various
applications of synchro-waveforms have also been discussed
in the literature, including fault detection [9], [16], [18],
[35], fault location [15], [19], oscillation analysis [36]–[38],
harmonic assessment [23], [39], wildfire mitigation [40], [41],
load disaggregation [8], and frequency estimation [42].

Table I provides a comparison based on several key factors
among the literature on event detection and event charac-
terization. A critical distinction in this area is the type of
measurements, namely waveform measurements from WMUs
versus phasor measurements from phasor measurement units
(PMUs). PMU data has been widely used for anomaly de-
tection and characterization using statistical approaches [24],
spectral kurtosis [25], mode decomposition [26], and machine
learning [27], [28]. However, PMU data is inherently limited in
capturing high-frequency and low-frequency oscillations [43]
and transient dynamics [44]. Thus, this paper rather focuses on
waveform measurements, which provide significantly greater
visibility into voltage distortions than phasor measurements.

The next two key factors for comparison are whether the
analysis is based on real-world measurements versus data from
computer simulations or laboratory testing, and whether it
uses continuous recording of waveform data versus trigger-
based recording. In the latter case, waveform data are recorded
only when a triggering condition is met by the sensor device,
such as the built-in logic commonly used in power quality
meters or fault recorders. In contrast, this paper specifically
focuses on continuous recording of a large volume of real-
world waveform measurements. Such measurements have only
recently become available, as demonstrated in [9] and [10].

As for the work in [9] and [10], which also focus on
continuous recording of real-world waveform measurements,
there are several fundamental differences compared to the
work in this paper. Neither [9] nor [10] develops algorithms
to automatically identify recurring patterns among events,
whereas this paper does so even without the use of prior
labels. Here, the objective is not merely to group similar events
but to determine whether the same event is repeating over
time, i.e., the same phenomenon is recurring, which is critical
information for uncovering minor but persistent issues such
as incipient faults. Regarding the methodologies, the work

in [9] is novel in its presentation of important observations
from real-world data. However, it does not introduce new
algorithms. In contrast, this paper focuses on developing
algorithms and methods that are grounded in mathematical
foundations and offer direct practical applications. Further-
more, with regards to the methodologies in [10], although
event detection is performed in an unsupervised manner, event
characterization still requires manual labeling across both time
and frequency domains. In contrast, all analyses in this paper
are, in essence, unsupervised, requiring no training or reliance
on labels. Finally, while the methods in [10] are very novel and
innovative, they are inherently more computationally intensive
than the lightweight methods proposed here, due to their multi-
stage design and the central role of machine learning, which
inevitably adds to computational complexity.

II. SETUP OF THE FIELD EXPERIMENTS AND EXAMPLES
OF EVENTS OF INTEREST

A. Field Experiments in California and Idaho
Two field experiments were conducted in California and

Idaho using a new sensor device called GridSweep, which is
plugged into 120 V power outlets [45]. GridSweeps served as
WMUs to continuously record voltage waveforms. GridSweep
has a sampling rate of 4.32 kHz.

Fig. 1 shows the test setup in Riverside, CA. Four Grid-
Sweep devices were used, labeled as WMU 1 to WMU 4.
WMU 1 is on Phase A of a 12.47 kV feeder from Substation
1. WMUs 2, 3, and 4 are on Phases A, B, and C, respectively,
in another building that is served by Substation 2. WMU 5
is a three-phase SEL 735 power quality meter at Substation
2. It has a sampling rate of 7.68 kHz. It only captures major
events using an event-triggered mechanism. The experiment
in California was done from October 1 to October 31.

Fig. 2 shows the test setup in Twin Falls, ID. Five Grid-
Sweep devices were used, labeled as WMU 6 to WMU 10,
all on the same phase. WMU 6 and WMU 7 are on the same
12.47 kV feeder. WMU 8 and WMU 9 are on another 12.47
kV feeder, under the same substation (Substation 3). WMU
10 is on a feeder under another substation (Substation 4, three
miles away from Substation 3). The experiments in Idaho took
place on February 23 and 24, and on March 5, 6, and 7.
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Fig. 1. Experimental setup in California, with four GridSweep WMUs to
record synchro-waveforms at two buildings on two feeders, each served
by a different substation. Substation 2 has a utility-grade, three-phase
SEL power quality meter functioning as an event-triggered WMU.

Substation 3

120V

1
3

8
k

V

12.47kV

12.47kV

120V

WMU 7, GridSweep

WMU 8, GridSweep

WMU 10, GridSweepSubstation 4

WMU 6, GridSweep

120V

WMU 9, GridSweep120V

12.47kV

Fig. 2. Experimental setup in Idaho, with five GridSweep WMUs across
four buildings on three feeders under two different substations.

All the raw measurements, together with a ReadMe docu-
mentation, are made publicly available at [46].

B. Examples of Events of Interest
Two types of events can be distinguished in waveforms:
1) Transient sub-cycle waveform distortions: An example is

shown in Fig. 3(a). The measurements in this example are
from WMUs 2, 3, and 4. Two sub-cycle events are marked by
a pair of arrows. Each event affects all three phases.

2) Multi-cycle waveform distortions: An example is shown
in Fig. 3(b), based on the measurement from WMU 10. No
waveform distortion is present in the first five cycles. In fact,
there was no distortion in any cycle in the past several minutes.
However, waveform distortions emerge starting from the sixth
cycle. Similar distortions continue for several cycles. There are
some repetitive patterns in the waveform distortions, which are
marked by pairs of red arrows. There is also an irregularity
among those patterns, marked by a single black arrow.

Next, the characterization of the events will be discussed,
including both transient sub-cycle and multi-cycle events.

III. EVENT DETECTION IN CONTINUOUS RECORDING
OF SYNCHRO-WAVEFORMS

A. Per-cycle Waveform Distortion Analysis
In traditional power quality analysis, it is common to cal-

culate Total Harmonic Distortion (THD) to quantify the distor-
tions in waveform measurements. Typically, THD is calculated

over an extended period of time, such as over three seconds
(180 cycles) or longer [47]. However, since the goal here is
to detect and study events, a different approach is needed. In
this paper, THD is rather calculated on a per-cycle basis.

Let Vrms denote the RMS value of the voltage waveform
measurement samples during one cycle. Let V1 denote the
magnitude of the fundamental component of the same cycle of
the voltage waveform measurement samples, which is obtained
by applying Fast Fourier Transform (FFT). The following
relationship holds between Vrms, V1, and THD [48, p. 142]:

Vrms = V1
√
1 + THD2. (1)

After reordering the terms, we can obtain:

THD2 = (Vrms/V1)
2 − 1 . (2)

The method in (2) calculates the harmonic distortions in the
waveform without the need to calculate individual harmonics.
This can address two common challenges in calculating THD
from individual harmonics. First, in practice, the number of
harmonic orders that are included in the calculation of THD
is inevitably truncated, such as up to the 50th order, resulting
in approximation errors. In contrast, the method in (2) directly
obtains THD by using V1 and Vrms, where the latter inherently
captures the contributions of all harmonic distortions without
explicitly resolving each harmonic order. Second, the accuracy
in calculating each individual harmonic component is often
affected by factors such as noise, spectral leakage, and win-
dowing effects, which can introduce cumulative errors when
summing up all harmonic components. Therefore, using (2) is
computationally more robust than calculating THD based on
extracting individual harmonics.

Importantly, the value of a per-cycle THD2 by itself is not
of concern here. Our concern is rather the changes in the
per-cycle THD2. A high THD2 by itself can be due to the
steady-state background harmonics. In the contrary, the cycle-
by-cycle changes in the THD2 values can indicate the presence
of an event. Let THD2

present denote the present per-cycle THD2.
Similarly, let THD2

prior denote the prior per-cycle THD2. An
event is detected when the following inequality holds:

∆THD = |THD2
present − THD2

prior| ≥ α, (3)

where α is the threshold for event detection. It can serve as a
control knob to adjust the level of sensitivity in event detection.

The term ∆THD in (3) can be further analyzed to provide
more insights about the proposed event detection method.
Suppose vk(t) is the voltage waveform at cycle k. The length
of vk(t) is one cycle. Suppose vk−1(t) is the voltage waveform
at cycle k− 1, also one cycle. The following relationship can
be written between these two waveforms:

vk(t) = vk−1(t) + ∆vk(t), (4)

where
∆vk(t) = vk(t)− vk−1(t) (5)

too has the length of one cycle, and is called the differential
waveform at cycle k, as it will be discussed in more details in
Section V. The expression in (4) breaks down vk(t) into two
parts, a steady-state part which is similar to the waveform in
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Fig. 3. Examples of events in voltage waveform: (a) three-phase measurement during two back-to-back transient sub-cycle events from the
experiment in Riverside, CA; and (b) single-phase measurement during a multi-cycle event from the experiment in Twin Falls, ID. The arrows mark
the distortions in the waveforms. The sole black arrow in the second sub-figure marks an irregular distortion as explained in the text.

the previous cycle, and a transient part which is new compared
to the waveform in the previous cycle. In the absence of an
event, we have vk(t)≈vk−1(t) and ∆vk(t)≈0. In the presence
of an event, we have vk(t) ̸= vk−1(t) and ∆vk(t) ̸= 0.

Proposition 1:∆THD in (3) can be approximated as follows:

∆THD ≈ RMS2{∆vk(t)}
Fundamental2{vk(t)}

, (6)

where RMS{·} denotes the RMS value and Fundamental{·}
denotes the magnitude of the fundamental component.

Proof: By substituting (2) in (3), we obtain:

∆THD =

∣∣∣∣ ( RMS2{vk(t)}
Fundamental2{vk(t)}

− 1

)
−(

RMS2{vk−1(t)}
Fundamental2{vk−1(t)}

− 1

)∣∣∣∣
=

∣∣∣∣ RMS2{vk(t)}
Fundamental2{vk(t)}

−
RMS2{vk−1(t)}

Fundamental2{vk−1(t)}

∣∣∣∣.
(7)

Next, the decomposition in (4) can be used to obtain:

RMS2{vk(t)} = RMS2{vk−1(t) + ∆vk(t)}
= RMS2{vk−1(t)}+ RMS2{∆vk(t)}

+
2

T

∫ T

0

vk−1(t)∆vk(t)dt,

(8)

where T is the interval of each cycle of the voltage waveform
and the integral in the last term is over interval T . In
essence, the integral calculates the cross-correlation between
the voltage waveform in the previous cycle, i.e., vk−1(t)
and the differential/transient voltage waveform in the current
cycle, i.e., ∆vk(t). In the absence of an event, we have
∆vk(t) ≈ 0, and the integral is approximately zero. In the
presence of an event, i.e., when an event initiates at cycle
k, the differential/transient voltage waveform that is caused
by the event is unrelated to the voltage waveform before the
event; therefore, the integral is again approximately zero. It is
worth adding that the sample-by-sample multiplication of the
two waveforms vk−1(t) and ∆vk(t) can be both positive and
negative, which can cancel out each other when the integral

is calculated; thus, resulting in an approximately zero cross-
correlation integral. This leads to the following:

RMS2{vk(t)} ≈ RMS2{vk−1(t)}+ RMS2{∆vk(t)}. (9)

Next, it is also noted that, in practice, the magnitude of the
fundamental component of the voltage waveform does not
change significantly in two consecutive cycles; therefore, the
following approximation can be made:

Fundamental{vk(t)} ≈ Fundamental{vk−1(t)}. (10)

By substituting (9) and (10) in (7), the following is obtained:

∆THD ≈
∣∣∣∣RMS2{vk(t)} − RMS2{vk−1(t)}

Fundamental2{vk(t)}

∣∣∣∣
≈

∣∣∣∣ RMS2{∆vk(t)}
Fundamental2{vk(t)}

∣∣∣∣
=

RMS2{∆vk(t)}
Fundamental2{vk(t)}

,

(11)

where the first line is due to (10), the second line is due to (9),
and the third line is due to the fact that both the numerator and
the denominator in the second line are always non-negative;
therefore, the absolute value can be removed. ■

From (3) and the approximation in (6), an event is detected
when the RMS value of the differential waveform is high
compared to the magnitude of the fundamental waveform.

This interpretation of the event detection method in (3) is
insightful. Despite the role that the differential waveform plays
in event detection, as revealed in Proposition 1, the method
in (3) does not require explicitly calculating the differential
waveform for event detection. Nevertheless, as it will be shown
in Section V, explicit calculation of the differential waveform
is useful when it comes to characterizing a detected event.

To the best of our knowledge, the analysis in Proposition 1
marks the first instance in the literature where the RMS value
of the differential waveform has been encountered.

B. Detecting Non-Local Events
A non-local event is an event that affects voltage waveforms

at multiple locations. To detect non-local events, the event de-
tection outcomes across multiple WMUs at different locations
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Fig. 4. Per-cycle THD profiles for one minute of voltage waveforms
events during the multi-cycle event in Fig. 3(b).

must be aligned and compared. To that end, suppose S WMUs
are installed on a network. At each time slot, none, one, or
more than one WMU may detect an event. The total number
of WMUs that detect an event can be obtained as:

SEvent =

S∑
s=1

1 (∆THD ≥ α) , (12)

where 1(·) is the 0-1 indicator function. If SEvent = 0,
then no event is detected. If SEvent = 1, then an event is
detected at only one sensor location. Such event is local;
because it did not cause considerable waveform distortion at
other sensor locations. If SEvent > 1, an event is detected by
multiple sensors. Such event is non-local; because it caused
considerable waveform distortion at multiple sensor locations.
The operator can adjust this process to require that a certain
minimum number of WMUs (such as at least five WMUs)
detect the event before the event is designated as non-local.

IV. ANALYSIS OF RECURRING EVENTS

Once an event is detected, a question arises as to whether the
event is an isolated occurrence or a repetition of a previously
detected event. The latter would indicate the presence of a
recurring phenomenon, which could provide critical insights
into minor but persistent issues, such as incipient faults.

This section aims to develop a methodology to identify re-
curring instances of the multi-cycle event previously discussed
in Fig. 3(b). The waveform distortion in this event lasted for
several seconds, creating the special signature in the per-cycle
THD profile that is shown in Fig. 4. Here, THD is obtained
by taking the square root of the left-hand side in (2). Fig.
4 reveals several characteristics of this multi-cycle event. For
instance, the duration of the event is 7.5 seconds, and it causes
a 1.2% change in the per-cycle THD. Next, it is shown that
the above event is a recurring event.

A. Defining Cycles with Positive/Negative Zero-Crossing
To establish a foundation for identifying recurring events,

we first examine how the definition of waveform cycles
influences THD-based analysis. In fact, the signature of the
intended multi-cycle event that was previously shown in the
per-cycle THD profile in Fig. 4 directly depends on the
definition of the cycle. Note that, the ‘cycle’ of a waveform
can be defined from either the negative-going zero-crossing
point, or the positive-going zero-crossing point. This choice
can significantly alter the per-cycle THD profile, as shown in
Fig. 5. If a cycle is defined based on negative-going zero-
crossings, then each cycle would include one of the two back-
to-back distortions at the red arrows in Fig. 3(b), resulting

Fig. 5. The multi-cycle event in Fig. 3(b) results in two distinct signa-
tures in per-cycle THD profile depending on how a ‘cycle’ is defined: (a)
per-cycle THD profile using negative-going zero-crossings; (b) per-cycle
THD profile using positive-going zero-crossings.

in the flat shape of the per-cycle THD signature during the
event as in Fig. 5(a). However, if the cycle is defined based
on positive-going zero-crossings, then one cycle would include
both of the two back-to-back distortions while the next cycle
would include no distortion, resulting in the zigzag shape of
the per-cycle THD signature as in Fig. 5(b).

The above observation reveals how the same physical phe-
nomenon can create different per-cycle THD profiles depend-
ing on how a cycle is defined. Hence, both choices for defining
a cycle are examined to identify all instances of the event.

Accordingly, we reuse the definition of ∆THD in (3) and
propose to detect the start of a multi-cycle event by checking
the following condition, which incorporates both possible
definitions of cycle that we explained earlier:

∆THD(+)
i ≥ α OR ∆THD(−)

i ≥ α, (13)

where ∆THD(+)
i and ∆THD(−)

i are defined based on positive-
going zero-crossing and negative-going zero-crossing, respec-
tively. The start cycle of the event is denoted by Cstart. Also
the THD values at the start of the event are denoted by
THD(+)

start and THD(−)
start . Parameter α in (13) is a pre-determined

threshold. It can be the same as the threshold in (3) in Section
III-A.

Once the start of a multi-cycle event is detected, the end of
the event is identified by checking the following condition:

|THD(+)
i − THD(+)

start | ≥ β AND

|THD(−)
i − THD(−)

start | ≥ β.
(14)

We denote the ending cycle of the event by Cend. Parameter β
in (14) is a pre-determined threshold. We set α = 0.0002 and
β = 0.006. Higher value of β is due to the fact that ∆THD in
(3) and (13) are based on the square of the THD value while
the expression in (14) is based on the THD value itself.

B. Event Signature Matching via Dynamic Time Warping

In this section, the multi-cycle event in Fig. 3(b) is used as a
reference to find other similar multi-cycle events. Given Cstart
and Cend, a window of per-cycle THD values is taken that starts
from cycle Cstart − 100 and ends at cycle Cend + 100. Here,
100 cycles before and 100 cycles after the event is included to
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Algorithm 1 Detect Recurring Multi-cycle Events

Input: ∆THD(+)
i and ∆THD(−)

i for waveform cycles.
Output: Cstart, Cend, and Recurring Event Flag.

1: Set Reference Event: ∆THD(+)
1 and ∆THD(−)

1 .
2: Set Event Flag = 0.
3: Set Recurring Event Flag = 0.
4: for each cycle i do
5: Obtain ∆THD(+)

i and ∆THD(−)
i .

6: if Event Flag = 0 then
7: if Condition (13) Holds then
8: % Detect Start of Event
9: Record Cstart, THD(+)

start, and THD(−)
start.

10: Set Event Flag = 1.
11: end if
12: else
13: if Condition (14) Holds then
14: % Detect End of Event
15: Record Cend.
16: Obtain DTWPP, DTWPN, DTWNP, DTWNN.
17: if Condition (21) Holds then
18: % Detect Recurring Event
19: Set Recurring Event Flag = 1.
20: Exit
21: end if
22: Set Event Flag = 0
23: end if
24: end if
25: end for

make sure that the entire event signature is inside the window.
Suppose the per-cycle THD values in this window are indexed
from 1 to n, where n = Cend−Cstart+1+200. The vector of the
per-cycle THD values within this window for the cycles that
are defined based on the positive-going zero-crossing and the
cycles that are defined based on negative-going zero-crossing,
are denoted as follows:

THD(+)
1 := [THD(+)

1,1 ,THD(+)
1,2 , ..,THD(+)

1,n ], (15)

THD(−)
1 := [THD(−)

1,1 ,THD(−)
1,2 , ..,THD(−)

1,n ]. (16)

Next, suppose another multi-cycle event is detected, for which
the per-cycle THD values are obtained as follows:

THD(+)
2 := [THD(+)

2,1 ,THD(+)
2,2 , ..,THD(+)

2,m], (17)

THD(−)
2 := [THD(−)

2,1 ,THD(−)
2,2 , ..,THD(−)

2,m], (18)

where m may or may not be equal to n. Accordingly, we have:

Event 1 (Reference): THD(+)
1 ,THD(−)

1

Event 2 (Candidate): THD(+)
2 ,THD(−)

2 .
(19)

An event signature comparison between Event 1 and Event 2
is conducted based on the vectors in (15)-(18).

Dynamic Time Warping (DTW) [49] is proposed to compare
the two time-series in (19). Since Events 1 and 2 can have
different time frames, DTW is a proper metric to compare
their signatures. DTW is applied to all four possible pair-wise
matches of the time-series in (19) to obtain:

DTWPP = min
p∈P

dp(THD(+)
1 ,THD(+)

2 ), (20)

where dp(·, ·) is the Euclidean distance between two time-
series for warping path of p, and P is the set of all acceptable
warping paths [49]. Similarly, DTWPN is obtained as the DTW
between (15) and (18), DTWNP as the DTW between (16) and
(17), and DTWNN as the DTW between (16) and (18).

Given the above DTW distances, Event 2 is considered to be
a recurrence of Event 1 if the following condition is satisfied:

min {DTWPP,DTWPN,DTWNP,DTWNN} ≤ γ, (21)

where γ is a threshold for minimum similarity to consider
Event 2 as a recurrence of Event 1. We set γ = 0.001.

The above approach is summarized in Algorithm 1.
Using Algorithm 1, 39 instances of the target event are

identified across five days in Twin Falls. Table II shows the
values of DTWPP, DTWPN, DTWNP, and DTWNN for all the
identified events. The minimum value according to (21), i.e.,
the best signature match, is highlighted in bold. Recall from
Fig. 5(a) that, for the Reference Event in this example, the
signature of the Reference Event is best captured when wave-
form cycles are defined using negative-going zero crossings.
Thus, the minimum DTW values for all the candidate events in
this example are achieved either in DTWNN or in the DTWNP.
Table III shows the start and end time of all the identified
recurring events. Seven instances occurred on Test Day 1, and
eight instances occurred on Test Days 2 through 5. There are
similarities in the timing of these 39 events.

C. Clustering of the Multi-Cycle Periodic Events
To further analyze the 39 detected multi-cycle periodic

events in Table III, the following four features are considered
that represent different characteristics of these events:

• Event Duration: The number of cycles during the event.
For example, the first event (Reference Event) lasted
448 cycles (about 7.5 seconds) as it is marked with the
horizontal double-arrow in Fig. 4.

• Change in Per-Cycle THD Level: This is obtained based
on the per-cycle THD at the start of the event. For the
Reference Event, the change in the per-cycle THD is
1.2%, marked with a vertical double-arrow in Fig. 4.

• Time of Day: The time when the event occurred, ex-
pressed in hour. For example, for the Reference Event,
this feature is obtained as 2+36/60+5/3600 = 2.60139.

• Number of Irregular Cycles: As it was discussed in
Section II-B, apart from the repeated distortions that
are marked with the pairs of red arrows in Fig. 3(b),
the waveforms in this event also have some occasional
irregular distortions, such as the one that is marked with
the black arrow. The number of cycles with irregular
distortions is used as another feature. For instance, the
Reference Event has 20 cycles with irregular distortions.

The above features are shown in Fig. 6. Three features
demonstrate clear distinctions between two variations of the
recurring multi-cycle events in Table III. While 29 out of 39
events lasted 448 cycles, including the Reference Event, the
remaining 10 events lasted 416 cycles; see Fig. 6(a). All the
10 events with shorter duration occurred between 6 to 8 AM,
while the longer events took place in other times; see Fig. 6(c).
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TABLE II
ANALYSIS OF SIGNATURE MATCHING USING VARIOUS PAIRWISE DTW

COMBINATIONS FOR ALL RECURRING EVENTS COMPARED TO THE

REFERENCE EVENT (EVENT 1)
Event No. DTWPP DTWPN DTWNP DTWNN

1 Reference Event
2 0.0018 0.0317 0.0335 0.0001
3 0.0327 0.0046 0.0002 0.0333
4 0.0040 0.0330 0.0335 0.0002
5 0.0317 0.0019 0.0002 0.0388
6 0.0022 0.0323 0.0375 0.0002
7 0.0018 0.0315 0.0314 0.0001
8 0.0021 0.0322 0.0349 0.0002
9 0.0022 0.0309 0.0379 0.0003

10 0.0042 0.0329 0.0304 0.0002
11 0.0317 0.0038 0.0002 0.0333
12 0.0324 0.0019 0.0002 0.0374
13 0.0313 0.0041 0.0010 0.0436
14 0.0320 0.0017 0.0002 0.0316
15 0.0019 0.0323 0.0320 0.0002
16 0.0330 0.0023 0.0003 0.0342
17 0.0333 0.0021 0.0002 0.0357
18 0.0327 0.0051 0.0002 0.0327
19 0.0044 0.0342 0.0343 0.0004
20 0.0023 0.0342 0.0354 0.0005
21 0.0345 0.0023 0.0004 0.0342
22 0.0019 0.0331 0.0312 0.0003
23 0.0333 0.0018 0.0003 0.0308
24 0.0020 0.0333 0.0354 0.0002
25 0.0340 0.0021 0.0005 0.0336
26 0.0340 0.0054 0.0004 0.0308
27 0.0335 0.0039 0.0002 0.0330
28 0.0322 0.0019 0.0002 0.0376
29 0.0315 0.0023 0.0003 0.0393
30 0.0018 0.0323 0.0337 0.0001
31 0.0022 0.0341 0.0328 0.0004
32 0.0325 0.0006 0.0002 0.0376
33 0.0337 0.0020 0.0004 0.0365
34 0.0333 0.0048 0.0008 0.0334
35 0.0041 0.0338 0.0323 0.0003
36 0.0008 0.0331 0.0368 0.0003
37 0.0319 0.0024 0.0004 0.0374
38 0.0312 0.0011 0.0003 0.0375
39 0.0329 0.0017 0.0001 0.0338

The longer events almost always had either 19 or 20 irregular
cycles, while the shorter events had up to 40 irregular cycles;
see Fig. 6(d). The feature on the change in per-cycle THD
does not seem to indicate a clear distinction between the two
variations of these recurring multi-cycle events.

By applying k-means clustering [50] to the above features,
the recurring multi-cycle events in Table III are divided into
two clusters, marked in blue and red in Fig. 6.

The combination of the analysis in Sections IV-A, IV-B,
and IV-C provides a powerful toolbox to detect, identify, and
characterize the recurring instances of an event of interest.

V. DIFFERENTIAL WAVEFORM ANALYSIS
FOR FURTHER EVENT CHARACTERIZATION

Recall from Proposition 1 that the concept of differential
waveform plays an implicit role in the process of detecting an
event. In this section, the differential waveform is explicitly
extracted for the purpose of characterizing different types of
detected events. Furthermore, the initial definition of differen-
tial waveform in (5) is broadened.

TABLE III
TIMING OF RECURRING MULTI-CYCLE PERIODIC EVENTS

Event
No.

Starting
Time

End
Time

Event
No.

Starting
Time

End
Time

Test Day 1 Test Day 3 (Cont.)
1 02:36:05 02:36:13 21 12:38:01 12:38:08
2 04:37:49 04:37:57 22 18:36:09 18:36:17
3 07:24:29 07:24:36 23 20:37:11 20:37:19
4 08:39:01 08:39:08 Test Day 4
5 10:58:22 10:58:29 24 02:36:06 02:36:14
6 12:39:38 12:39:46 25 04:38:54 04:39:01
7 21:07:34 21:07:42 26 07:19:42 07:19:49

Test Day 2 27 08:45:43 08:45:50
8 02:36:03 02:36:10 28 12:13:39 12:13:47
9 04:37:39 04:37:47 29 13:51:13 13:51:20

10 08:26:44 08:26:51 30 18:36:01 18:36:09
11 09:34:47 09:34:54 31 20:48:48 20:48:56
12 11:24:17 11:24:25 Test Day 5
13 12:59:50 12:59:57 32 02:35:45 02:35:53
14 18:36:05 18:36:12 33 04:48:57 04:49:04
15 20:54:45 20:54:52 34 07:20:52 07:20:59

Test Day 3 35 08:35:45 08:35:53
16 02:50:45 02:50:53 36 10:54:56 10:55:04
17 04:38:01 04:38:08 37 12:39:33 12:39:41
18 07:21:21 07:21:28 38 18:45:05 18:45:12
19 08:35:51 08:35:58 39 20:35:46 20:35:54
20 10:52:35 10:52:42
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Fig. 6. The four features introduced in Section IV-C, for all 39 recurring
events in Table III. These recurring events can be divided into two
clusters as marked by two different colors, blue and red. The two clusters
are clearly separable based on the scatter plots in (a), (c), and (d). The
Reference Event (Event 1) belongs to the blue cluster.

Let v(t) denote the raw voltage waveform during an event.
The differential waveform can be more broadly defined as:

∆v(t) = v(t)− v(t−NT ), (22)

where N is a small integer, such as 1, 2, 3, 4, or 5; see [48, p.
151]. If N = 1, then the expression in (22) reduces to the one
in (5). Here, v(t−NT ) serves as a reference for the “normal”
waveform behavior before the event happens. The subtraction
in (22) can approximately remove the normal portion of the
waveform, leaving only the event signature that is superposed
to the normal waveform. The differential waveform in (22) is
also sometimes referred to as cycle-delayed waveform [51].

A. Analysis of Sub-cycle Oscillatory Events

Oscillatory events can be studied by examining the modal
analysis of the differential waveforms. The differential wave-
form at cycle k, as previously defined in (5), is considered.
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Using modal analysis, ∆vk(t) can be expressed as follows:

∆vk(t) =

M∑
m=1

Bk,mexp(−σk,mt) cos (2πfk,mt+ ψk,m) ,

(23)
where M is the number of oscillatory modes. For each mode
m, notations Bk,m, ψk,m, fk,m, and σk,m > 0 indicate the
amplitude, phase angle, frequency, and damping factor.

Proposition 2: From the modal in (23), the following can
be derived for a sub-cycle waveform oscillatory event:

RMS2{∆vk(t)} ≈ 1

4T

M∑
m=1

B2
k,m

σk,m
(1− exp(−2σk,mT )) .

(24)
If the sub-cycle oscillation has a dominant mode (Bk, ψk, fk,
σk), then the expression in (24) can be simplified as follows:

RMS2{∆vk(t)} ≈ 1

4T

B2
k

σk
(1− exp(−2σkT )) . (25)

The above expression is monotone increasing in Bk and
monotone decreasing in σm > 0. From (6) and (25), ∆THD
is directly related to the amplitude and inversely related to the
damping factor of the dominant sub-cycle oscillatory mode.

Proof: By taking the RMS value of (23), and using trigono-
metric identity cos2(θ) = (1 + cos(2θ))/2, we obtain:

RMS2{∆vk(t)} =
1

T

∫ T

0

M∑
m=1

B2
k,m

2
exp(−2σk,mt) dt +

1

T

∫ T

0

M∑
m=1

B2
k,m

2
exp(−2σk,mt) cos (2(2πfk,mt+ ψk,m)) dt+

1

T

∫ T

0

M∑
m=1

M∑
n=1
n ̸=m

Bk,mBk,n exp(−(σk,m + σk,n)t)×

cos(2πfk,mt+ ψk,m) cos(2πfk,nt+ ψk,n) dt.
(26)

The integral in the first line of (26) is equal to the right-
hand side of (24). Given the sub-cycle nature of the damping
oscillations, we can assume that fk,m ≫ 1/T , i.e., the freq-
uencies of the damping sub-cycle oscillations are much higher
than the fundamental frequency 1/T . Thus, the integral on the
second line of (26), which is over interval T , is approximately
zero. As for the integral on the third line of (26), it is over
orthogonal frequencies. Hence, this integral is also zero. Thus,
(24) can be concluded; which also leads to (25). ■

From (6) in Proposition 1 and (25) in Proposition 2, a sub-
cycle oscillatory event is more likely to be detected if it has
a larger amplitude and a smaller damping factor.

As an example, consider the raw waveform measurements
in Fig. 7(a) that are recorded by WMU 2 (Phase A), WMU 3
(Phase B), and WMU 4 (Phase C) during a three-phase sub-
cycle event. Fig. 7(b) shows the differential waveform on each
phase, where the event signature is more distinctly visible.

During the one-month experiment in Riverside, a total of
26 sub-cycle oscillatory events were observed. All of them,
including the one in Fig. 7, were non-local events that were
observed by all WMUs under both Substations 1 and 2.
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Fig. 7. Extracting the differential waveforms during a three-phase sub-
cycle oscillation event: (a) raw waveforms in which the event’s signatures
are dominated by the steady-state waveforms; (b) differential waveforms
for each phase, in which the effect of the event can be clearly seen.

Fig. 8(a) illustrates the values of ∆THD at WMU 1 versus
the corresponding values of ∆THD at WMU 2 for all the
26 sub-cycle oscillatory events. For almost all these events,
∆THD is larger at WMU 2 than at WMU 1, suggesting
that these events create stronger distortions in the voltage
waveforms at WMU 2. From Proposition 1, ∆THD can be
approximately obtained based on the fraction in (6). This is
illustrated in Fig. 8(b). Notice that the same overall observation
from Fig. 8(a) is evident also in this figure. Finally, from
Proposition 1 together with Proposition 2, the strength of
∆THD at each WMU is inversely related to the damping factor
σ for the dominant mode of oscillation, see (25). Such inverse
relationship is clearly visible in the scatter plot in Fig. 8(c).
Compared to the points in Figs. 8(a) and 8(b), the points in
Fig. 8(c) have significantly moved down and to the right; thus
confirming the analytical perspective in Propositions 1 and 2.

The results in Fig. 8(c) are based on Prony analysis [48, pp.
58-61], which is a method to extract the model representation
in (23). However, FFT can also be used to extract the dominant
frequency of oscillations in sub-cycle oscillatory events.

Applying FFT to the differential waveforms in Fig. 7(b)
reveals the dominant frequency of the oscillations as 842 Hz
on all phases. This event was captured also by WMU 5 at
Substation 2. At WMU 5, the dominant frequency is 834 Hz
on all phases, which is close to the oscillation frequency at
842 Hz that was obtained by WMUs 2, 3, and 4. The slight
discrepancy is due to the higher sampling rate of WMU 5, as
it was previously explained in Section II-A.

Fig. 9 shows the dominant frequency of all the 26 oscillatory
events by applying FFT to the differential waveforms of each
event, at WMU 1, under Substation 1, versus WMU 2, under
Substation 2. Most events displayed similar frequencies at
WMU 1 and WMU 2, marked as “diagonal”. Only four
events showed different dominant frequencies, marked as “off-
diagonal”. It is possible that the dynamics of the system and
the circuit result in different frequencies at different locations.

B. Analysis of Local and Non-Local Oscillatory Events
The differential waveforms from several WMUs can offer

in-depth insights into local and non-local events. Next, two
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Fig. 8. The characteristics of the sub-cycle oscillatory events across
WMU 1 and WMU 2 with respect to the results in Propositions 1 and
2: (a) ∆THD in percentage where points above the diagonal indicate
a greater ∆THD at WMU 2; (b) the fraction in (6) in percentage,
showing the direct relationship with such fraction and ∆THD; thus
confirming Proposition 1; and (c) the damping ratio σ, showing the
inverse relationship in (25); thus confirming Proposition 2.

example events are presented from Twin Falls to demonstrate
the varying impact of the events across different locations.

First, consider the time-synchronized differential waveforms
in Fig. 10(a). An oscillatory event is visible only at WMU 7,
with minor signatures at WMUs 6, 8, 9, and 10. This event is a
local event. Next, consider the time-synchronized differential
waveforms in Fig. 10(b), which shows another oscillatory
event, where the event signature is visible at four (of the five)
WMUs in this experiment. Therefore, this is a non-local event.

Fig. 11 shows the spectral analysis of the time-synchronized
differential waveforms (based on applying FFT) during the
event that was previously shown in Fig. 10(b). All four WMUs
observed the same dominant frequency of 323 Hz at their
locations; see the blue bin in Figs. 11(a), (b), (c), and (d).

C. Analysis of Multi-Cycle Periodic Events

Differential waveforms can also help detect and characterize
periodic events. The key here is to obtain the differential
waveforms for different values of N and compare the results.
This is because periodic distortions can cancel out each other.

For instance, for the event in Fig. 3(b), the differential
waveform is shown in Fig. 12(a) for N = 1, and in Fig. 12(b)
for N = 2. The event signatures are visible in Fig. 12(a) in the
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on frequency calculations at two locations of WMU 1 and WMU 2.
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form of several spikes. There are far fewer spikes in Fig. 12(b),
6 versus 13; because they cancel out each other when N = 2.
This is because the periodic distortions in Fig. 3(b) have
a period of two cycles, except for the irregularity that was
marked with the black arrow in Fig. 3(b). Four spikes are
marked in Fig. 12(b) are labeled “Due to Irregular Distortion”.
They are all due to the presence of the irregularly distorted
cycle during the event, as they disrupt the periodic patterns.

Next, the above observation is turned into an algorithm. For
each value of N , the average RMS value of ∆v(t) during all
the cycles of the multi-cycle event is calculated. The results for
different values of N are placed into a single vector RMS∆v .
For instance, for the raw waveform in Fig. 3(b), the differential
waveforms for N = 1, 2, 3, 4, 5, and 6 are examined to obtain:

RMS∆v = [ 2.87 1.00 2.75 1.36 2.70 1.35 ]. (27)

Notice that in (27), the average RMS value of ∆v(t) is twice
larger for N = 1, 3, and 5, than for N = 2, 4, and 6. The
following sign vector is then defined accordingly:

SGN∆v = sign
(
RMS∆v −mean

(
RMS∆v

))
. (28)
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For example, the sign vector for the RMS values in (27) is

SGN∆v = [+1 −1 +1 −1 +1 −1 ]. (29)

The fact that the raw waveform in Fig. 3(b) has a period
of two is clearly visible in (29). As another example, if the
periodic waveform distortions occur once every three cycles,
then the average RMS values of the differential waveforms
can be examined for N = 1, 2, 3, 4, 5, and 6 to obtain:

SGN∆v = [+1 +1 −1 +1 +1 −1 ]. (30)

Again, the fact that the raw waveform has a period of three
is clearly visible in the sign vector in (30). The period of the
periodic waveform distortions can be obtained by obtaining
the period of the sign vector in (28). This can be done by a
simple auto-correlation analysis to the sign vector, as follows:

AC∆v = Auto-Correlation{SGN∆v}, (31)

where auto-correlation is calculated such as by using autocorr
in MATLAB [52]. The auto-correlation vector in (31) mea-
sures the similarity between the original vector SGN∆v and a
shifted version of vector SGN∆v , where the shifting is from
k = 0 (no shift) to k = Length{SGN∆v} − 1. Accordingly,
vector AC∆v has the same length as vector SGN∆v . Period
P of a multi-cycle periodic event is identified as the non-zero
shift, i.e., k > 0, at which the value of AC∆v is maximum:

P = argmax
k>0

AC∆v[k]. (32)

The above process is summarized in Algorithm 2.

Algorithm 2 Detect Periodic Multi-cycle Events
Input: Raw waveform v(t), Maximum cycle delay Nmax.
Output: Detected period P .

1: Suppose Condition (3) Holds → An Event is Detected.
2: Set RMS∆v = [ ].
3: for N = 1 to Nmax do
4: Obtain ∆v(t) as in (22) for the Given N .
5: Obtain RMS Value of ∆v(t).
6: Append RMS∆v by the RMS Value of ∆v(t).
7: end for
8: Obtain SGN∆v in (28).
9: Obtain AC∆v in (31)

10: Calculate P as in (32)

TABLE IV
ANALYSIS OF MULTI-CYCLE PERIODIC EVENTS

FOR DETECTING THEIR PERIODICITY
Event
No. RMS∆v SGN∆v P

1 [ 2.89 1.00 2.78 1.38 2.73 1.36 ] [ +1 −1 +1 −1 +1 −1 ] 2
2 [ 2.91 1.05 2.85 1.54 2.89 1.68 ] [ +1 −1 +1 −1 +1 −1 ] 2
3 [ 2.78 1.34 2.63 1.87 2.60 2.00 ] [ +1 −1 +1 −1 +1 −1 ] 2
4 [ 2.81 1.24 2.72 1.73 2.73 1.81 ] [ +1 −1 +1 −1 +1 −1 ] 2
5 [ 2.94 1.22 2.99 1.88 3.18 2.33 ] [ +1 −1 +1 −1 +1 −1 ] 2
6 [ 2.90 0.98 2.79 1.34 2.74 1.25 ] [ +1 −1 +1 −1 +1 −1 ] 2
7 [ 2.93 1.13 2.88 1.57 2.91 1.64 ] [ +1 −1 +1 −1 +1 −1 ] 2
8 [ 2.92 1.33 2.97 2.08 3.23 2.57 ] [ +1 −1 +1 −1 +1 +1 ] 2
9 [ 2.93 1.23 3.02 2.06 3.36 2.68 ] [ +1 −1 +1 −1 +1 +1 ] 2

10 [ 2.76 1.18 2.57 1.63 2.45 1.70 ] [ +1 −1 +1 −1 +1 −1 ] 2
11 [ 2.80 1.21 2.71 1.71 2.72 1.78 ] [ +1 −1 +1 −1 +1 −1 ] 2
12 [ 2.94 1.28 3.03 2.03 3.29 2.57 ] [ +1 −1 +1 −1 +1 +1 ] 2
13 [ 2.93 1.11 2.87 1.54 2.87 1.56 ] [ +1 −1 +1 −1 +1 −1 ] 2
14 [ 2.94 1.13 2.92 1.70 3.03 2.02 ] [ +1 −1 +1 −1 +1 −1 ] 2
15 [ 2.94 1.17 2.95 1.80 3.14 2.19 ] [ +1 −1 +1 −1 +1 −1 ] 2
16 [ 2.89 1.15 2.81 1.72 2.89 1.94 ] [ +1 −1 +1 −1 +1 −1 ] 2
17 [ 2.94 1.21 2.99 1.95 3.26 2.48 ] [ +1 −1 +1 −1 +1 +1 ] 2
18 [ 2.75 1.42 2.58 2.07 2.64 2.32 ] [ +1 −1 +1 −1 +1 +1 ] 2
19 [ 2.79 1.26 2.77 1.93 2.97 2.33 ] [ +1 −1 +1 −1 +1 −1 ] 2
20 [ 2.91 1.02 2.81 1.42 2.77 1.43 ] [ +1 −1 +1 −1 +1 −1 ] 2
21 [ 2.93 1.20 2.94 1.81 3.10 2.13 ] [ +1 −1 +1 −1 +1 −1 ] 2
22 [ 2.92 1.11 2.90 1.67 3.10 1.99 ] [ +1 −1 +1 −1 +1 −1 ] 2
23 [ 2.95 1.17 2.94 1.74 3.05 1.99 ] [ +1 −1 +1 −1 +1 −1 ] 2
24 [ 2.93 1.19 2.93 1.78 3.06 2.10 ] [ +1 −1 +1 −1 +1 −1 ] 2
25 [ 2.95 1.31 3.03 2.02 3.30 2.52 ] [ +1 −1 +1 −1 +1 −1 ] 2
26 [ 2.76 1.55 2.65 2.29 2.81 2.61 ] [ +1 −1 +1 −1 +1 +1 ] 2
27 [ 2.78 1.14 2.67 1.67 2.70 1.80 ] [ +1 −1 +1 −1 +1 −1 ] 2
28 [ 2.92 1.13 2.92 1.78 3.08 2.18 ] [ +1 −1 +1 −1 +1 −1 ] 2
29 [ 2.91 1.12 2.92 1.78 3.10 2.17 ] [ +1 −1 +1 −1 +1 −1 ] 2
30 [ 2.92 1.02 2.83 1.42 2.80 1.46 ] [ +1 −1 +1 −1 +1 −1 ] 2
31 [ 2.92 1.03 2.83 1.44 2.82 1.43 ] [ +1 −1 +1 −1 +1 −1 ] 2
32 [ 2.89 1.00 2.77 1.37 2.72 1.33 ] [ +1 −1 +1 −1 +1 −1 ] 2
33 [ 2.92 1.11 2.86 1.54 2.87 1.58 ] [ +1 −1 +1 −1 +1 −1 ] 2
34 [ 2.77 1.47 2.69 2.17 2.83 2.52 ] [ +1 −1 +1 −1 +1 +1 ] 2
35 [ 2.78 1.19 2.69 1.72 2.76 1.91 ] [ +1 −1 +1 −1 +1 −1 ] 2
36 [ 2.90 1.03 2.79 1.42 2.76 1.44 ] [ +1 −1 +1 −1 +1 −1 ] 2
37 [ 2.92 1.21 2.97 1.91 3.23 2.40 ] [ +1 −1 +1 −1 +1 −1 ] 2
38 [ 2.93 1.03 2.82 1.41 2.77 1.41 ] [ +1 −1 +1 −1 +1 −1 ] 2
39 [ 2.94 1.13 2.88 1.55 2.89 1.58 ] [ +1 −1 +1 −1 +1 −1 ] 2

D. Period Calculation of the Multi-Cycle Periodic Events

Recall from Section IV-B that a total of 39 recurring events
were identified and listed in Table III. All those events are
periodic. In this section, we apply Algorithm 2 to all the 39
events that we previously listed in Table III to obtain the period
of their waveform distortions. The results are shown in Table
IV. In each row, i.e., for each event, the table provides vectors
RMS∆v and SGN∆v , where parameter Nmax = 6, as well as
the distortion period estimation result P . Notice that the period
of distortions is obtained at P = 2 for all the 39 recurring
events. This clearly shows the consistency in the results, as
well as the fact that these events are indeed recurring events.

Next, we note that there are two outcomes for SGN∆v in
Table IV, either SGN∆v = [+1 − 1 + 1 − 1 + 1 − 1]
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or SGN∆v = [+1 − 1 + 1 − 1 + 1 + 1]. The
former occurs much more frequently, but the latter also occurs
in a few events. The auto-correlation vectors corresponding
to these two cases of SGN∆v are AC∆v = [+1.00

... −
0.83 +0.67 −0.50 +0.33 −0.17] and AC∆v = [+1.00

... −
0.50 +0.33 − 0.17 0.00 + 0.17], respectively. Therefore,
despite the differences between the two instances of SGN∆v ,
the two auto-correlation vectors have their maximum values
at the same entry. Hence, the exact same period is obtained
by Algorithm 2 in both cases, with P = 2.

If parameter Nmax is increased, then more variations of
vector SGN∆v may occur among the recurring events. This
is illustrated in Table V. Here, parameter Nmax is increased
from 6 to 7, 8, 9, and 10. Note that, the number of SGN∆v

variations among the recurring events increases to 2, 3, 5,
and 6, respectively. Nevertheless, the auto-correlation results
consistently yield the same value for P . In other words,
although increasing Nmax leads to more diverse instances of
SGN∆v , the auto-correlation results continue to provide the
exact same estimation for the period of the periodic waveform
distortions, namely P = 2. Interestingly, the same final results
are obtained even if parameter Nmax is decreased from 6 to 5,
as we can see in the first row in Table V. The results in Table
V clearly demonstrate the robustness of the proposed method
in estimating the period of the periodic waveform distortions.

VI. CONCLUSIONS AND FUTURE WORK

This paper offers an extensive analysis of event detection
and event characterization in real-world continuous recording
of synchro-waveforms in power systems. The methods are
built upon mathematical analysis of key waveform features
and characteristics. Different types of events were analyzed,
including local and non-local events, sub-cycle and multi-cycle
events, single-phase and three-phase events, and oscillatory
and non-oscillatory events. Various features were extracted
and analyzed, derived from the raw waveform measurements,
the differential waveforms, and the event signatures in the
per-cycle waveform distortion profiles. New algorithms were
proposed to address the subtle challenges in handling synchro-
waveform data in practice, such as the impact of defining
cycles based on negative-going versus positive-going zero-
crossing, as well as the impact of delay parameter in the
analysis of differential waveforms. Several case studies were
presented to systematically summarize the results for different
types of events, with focus on oscillatory events, recurring
disturbances, and periodic distortions.

The methods in this paper can be used in various smart grid
applications, such as asset monitoring to detect and character-
ize malfunctions in capacitors, transformers, underground and
overhead power lines, and inverter-based resources. Due to the
low cost of sensor installation at power outlets, the analysis of
event signatures in synchro-waveforms from grid-edge sensor
technologies can be a promising low-cost option to enhance
situational awareness in power systems, in coordination with
the existing high-cost high-voltage utility-scale power system
monitoring equipment. If the locations and parameters of the
utility assets are known, one may expand the analysis to even
identify the root causes of the detected malfunctions.
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