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Abstract—Continuous streaming of synchro-waveforms, i.e.,
time-synchronized waveform measurements, can provide a com-
prehensive record of the status of the power system. The key to
unmask the value of such massive data recording is to extract
the most informative aspects of the data. In this paper, we
develop and test new methods to detect and characterize sub-
cycle events in continuous streaming of synchro-waveforms. The
measurements in this study are collected by the authors in a
practical test-bed in California. The measurements are made
at low-voltage circuits under two different substations, using
GridSweep devices with GPS time stamping. Over 40 billion
data points were collected during one month. Several practical
challenges are addressed, including the computational complexity
due to the enormous size of data, the need for realignment
between waveform samples and cycles, and the challenges in
extracting differential waveforms to reveal the event signatures.
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I. INTRODUCTION

Synchro-waveform is an emerging concept in power sys-
tem monitoring and situational awareness. It refers to time-
synchronized voltage and/or current waveform measurements
from multiple locations in power system, e.g., see [1], [2].

The device to measure synchro-waveforms is referred to as
Waveform Measurement Unit [3, Section 4-6]. WMUSs mea-
sure and time-stamp the raw waveforms; therefore, they can
provide more details about various events and abnormalities
in power systems, compared to Phasor Measurement Units
(PMUs). WMUs can help reveal a wide range of waveform
events and abnormalities that are typically missed by PMUs,
due to the short duration or the small magnitude of the event.

A. Approach and Contributions

In this paper, our focus is on a new frontier in the analysis of
synchronized waveform data, namely the continuous stream-
ing of synchro-waveforms. This is also sometimes referred
to as time-synchronized Continuous Point-on-Wave (CPOW)
measurements in the literature; e.g., see [4], [S].

Although this is a promising new area, the limited access to
real-world synchro-waveform streaming poses a research chal-
lenge. The authors have addressed this obstacle by utilizing a
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Fig. 1. One of the four GridSweep devices that was used in this study.

new device, called GridSweep [6], see Fig. 1, to obtain one
month of continuous streaming of synchro-waveforms at low-
voltage circuits at multiple locations in Riverside, CA. The
details of the experiments are explained in Section II.

Our focus in this paper is on event detection and event
characterization. To the best of our knowledge, this is the
first study that addresses these two tasks based on real-world
continuous streaming of synchro-waveform data from multiple
locations on low-voltage circuits over a long period of time.

The practical nature of this study unmasks several real-
world challenges, ranging from the samples not being aligned
with waveform cycles or the computational challenges of
working with an enormous amount of waveform data.

Another key aspect of our work is its emphasis on capturing
and analyzing sub-cycle events, i.e., the events that last less
than one AC cycle. We study and characterize such events
based on coordinated analysis of time-synchronized waveform
data from four GridSweep devices at low-voltage circuits, and
one utility-grade three-phase waveform sensor at a substation.

B. Literature Review

Continuous streaming of synchro-waveforms is generally a
new concept. Doing it in low-voltage circuits is also particu-
larly new. In fact, to the best of our knowledge, GridSweep is
the first device that provides continuous streaming of synchro-
waveforms at regular 120 V power outlets. However, so far,
the primary application of GridSweep has been on steady-state
analysis, such as low-voltage probing over several minutes to
hours [6], or the analysis of harmonics/inter-harmonics [7].

In this paper, our focus is rather on detecting and character-
izing transient events in the continuous streaming of synchro-
waveforms from GridSweep devices. We are interested in not
only the events that are captured by a single GridSweep device,
but also those events that have regional or system-wide impacts
and are captured by multiple GridSweep devices.



When it comes to the first type of events, i.e., the analysis
of waveform measurements from one sensor at one location,
the relevant literature includes [8]-[12]. In [8], an abnormality
detection is done based comparing the statistical distributions
of the variations in the current waveforms that are measured
by power quality sensors. In [12], deep auto-encoder is used
to build an event identification method over the harmonic
distortion data. A common approach in the literature is to
apply the proposed methods to waveforms that are generated
by a Real-Time Digital Simulator (RTDS); such as in [10]. For
the methods that use real-world data, the focus is waveform
data for events that are previously detected by power quality
or fault sensors from utility substations; such as in [9].

The new field of synchro-waveforms has started to emerge
only recently. We are not aware of any study in this domain
that works with continuous streams of real-world synchro-
waveforms; due to lack of access to such time-synchronized
data streams. Instead, the existing literature has only showed
some examples of such events; again with focus on mea-
surements at high-voltage and medium-voltage circuits; e.g.,
see [1], [13], [14]. On the contrary, in this paper, we do
a comprehensive analysis of such events using continuous
steaming of synchro-waveform data from GridSweep devices.

II. SETUP OF THE EXPERIMENT

Fig. 2 shows the setup of our experiments in Riverside, CA.
Four GridSweep devices are used in this study, plugged into
120 V power outlets to measure voltage waveforms at their
respective locations. They are denoted by WMU 1, WMU 2,
WMU 3, and WMU 4. WMU 1 is plugged into a power outlet
on Phase A. Through multiple transformers (12.47 kV /480 V
and 480 V / 120 V), the outlet at this location is connected to
a 12.47 kV power distribution feeder, served by Substation 1.
WMUs 2, 3, and 4 are individually plugged into three different
power outlets that are three different phases (Phases A, B, and
C) in another building, about two miles away from the location
of WMU 1. The building where WMU 2, 3, and 4 are located
is served by a 12.47 kV power distribution feeder, through
Substation 2. Substation 1 and Substation 2 are connected to
each other through a 69 kV transmission line.

Each GridSweep records single-phase voltage waveform at
a sampling rate of 4.3 kHz, i.e., roughly 72 to 73 samples per
cycle. Each device is equipped with a GPS signal receiver with
precise pulse per second (PPS) capability. The PPS pulses at
the beginning of each GPS clock second. The pulse is marked
on the data stream to time-stamp the waveform measurements.

The period of this study was from October 1 till October
31, 2022. A total of roughly 11 billion (4.3 x 60 x 60 x 24
x 30) samples were recorded per device during this period.

This study also included an industry-grade WMU at Sub-
station 2, namely a three-phase SEL power quality meter. It is
marked as WMU 5 in Fig. 2. WMU 5 is capable of capturing
major events in the power system using an event-triggered
mechanism. We will use data from WMU 5 in Section V to
gain additional insight about the system-wide events that are
observed by all the WMUSs in this study. Importantly, WMU
5 has a higher sampling rate at 7.68 kHz, i.e., 128 samples
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Fig. 2. The setup of the experiments in Riverside, CA. Four GridSweep
devices are used to stream synchro-waveforms from two buildings that are
served by different substations. The GridSweep devices serve as four WMU s,
marked as WMUs 1, 2, 3, and 4. A utility-grade three-phase SEL power
quality meter is available at Substation 2 to serve as an event-triggered WMU.

per cycle. However, it is common for WMU 5 to miss some
of the events that are observed by the rest of the WMUSs.
Note that, GridSweep devices provide continuous waveform
data streaming; therefore, there is no concern in missing any
event with WMUs 1, 2, 3, and 4; as long as we can detect the
event. This is the topic of our discussion in Section III.
Throughout this paper, an “event” is defined as any anomaly
in voltage waveforms. Since GridSweep is installed at low
voltage circuits, the events that it captures may have diverse
root causes, such as local events that are visible only on the
same distribution feeder, or system-wide events that are visible
across the sub-transmission system or the transmission system.

III. EVENT DETECTION

Given the extremely large volume of data in the continuous
streaming of synchro-waveforms, event detection must be done
by methods that have light-weight computational complexity.
Accordingly, in this paper, we use total harmonic distortion
(THD) [15] as the quantity to help us with event detection. In
this regard, we seek to answer two questions: 1) Over what
window of time we should calculate THD to detect an event
in the stream of voltage waveforms? 2) What practical issues
may arise when we work with real-world waveform data that
may affect the performance of event detection, and how can
we address them to achieve reliable event detection results?

A. Event Detection based on THD

A waveform event is often manifested in form of a waveform
distortion. Let THDpesene denote the present calculation of
THD. Similarly, let THD,,; denote the prior calculation of
THD. We detect an event when the following inequality holds:

ATHD = |THDpresem - THDprior‘ > a, (1)
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Fig. 3. THD calculation for one minute of voltage waveforms: (a) per-second
THD; (b) per-cycle THD using the original waveform samples; (c) per-cycle
THD using up-sampled waveform with better sample-to-cycle alignment.

where « is a parameter act as the threshold for event detection.
Notice that, what matters here is the change in THD; not
the actual value of THD itself. In fact, THD could take any
value depending on the presence of steady-state background
harmonics in the system. Regarding the choice of detection
threshold «, it can act as a knob to control the level of
sensitivity in event detection; e.g., see [3, Section 4.2.1].

Traditionally, THD is considered a long-term factor, which
is calculated over a long period of time, such as one hour.
Per IEEE Standard 519-2014, the shortest interval over which
THD is calculated is three seconds. However, when it comes
to event detection in waveform measurements, THD must be
calculated in much smaller time frames in order to be useful.
Next, we discuss this issue and the challenges that it may arise
in a practical event detection task in synchro-waveforms.

B. Per-Second vs Per-Cycle THD Analysis

A much shorter time-frame is to calculate THD once every
second. Fig. 3(a) shows an example for per-second THD
calculations based on GridSweep data over a period of one
minute. Next, consider the per-cycle THD values in Fig. 3(b)
that are obtained by using the exact same data set during the
exact same one minute. In total, 3600 (60 x 60) per-cycle
THD values are calculated in this figure (at 60 Hz AC power
system). Here, we can see a sudden jump in the THD value
at time 00:00:53. Interestingly, there was no indication of any
such jump in the per-second THD values in 3(a). The reason
is that the event in this example was a sub-cycle event, i.e.,
it lasted for one cycle or less. The impact of such sub-cycle
event cannot be seen in the per-second THD values in 3(a).
We must instead check the per-cycle THD values in 3(b).

Therefore, throughout this paper, we use per-cycle THD val-
ues for the purpose of event detection in synchro-waveforms.

C. Impact of Samples Not Being Aligned with Cycles

Next, consider the THD values in Fig. 3(c). This figure
too is based on per-cycle THD calculation. The THD values
shown in Fig 3(b) and Fig 3(c) are calculated from exactly the
same continuous synchro-waveforms. But in the Fig 3(c), the
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Fig. 4. Conceptual illustration (not from real data) of the lack of alignment
between the measurement samples and the waveform cycles. Even though the
samples have fixed time-intervals, they are not aligned to the cycles.

waveform samples are up-sampled prior to THD calculation.
The results are much more smooth. In fact, the presence of
the event is much more evident in Fig. 3(c) than in Fig. 3(b).

To understand the reasons behind the better results in Fig.
3(c), let us consider the waveform in Fig. 4. To accurately
compute per-cycle THD, individual full cycles must be exam-
ined. This necessitates identifying two data points that mark
the start and end of each cycle. However, when sampling
points are not aligned with the cycles, it becomes impossible
to have equal number of samples in each cycle. Here, the time
offset of the first available sample in each cycle with respect
to the true start of the cycle is defined as dt. Accordingly, §t|c]
is the time offset corresponding to cycle c. Since the sampling
rate of GridSweep is not an integer multiple of fundamental
frequency (i.e. 60 Hz), the samples are not precisely aligned
with the cycles. Therefore, in practice, we almost always have:

6t[61] 75 6t[62] 75 0, (2)

where c¢; and ¢y are two consecutive cycles in the measured
waveform. Misalignment between samples and cycles can hap-
pen also because of the variations in power system frequency.
This too can lead to sample-to-cycle-misalignment. Samples
that are not aligned with cycles result in some residues from
neighboring cycle in the calculation of the per-cycle THD.
This is the main reason behind the fluctuations in Fig. 3(b).
This issue is amplified, particularly, when the sampling rate
per cycle is relatively low. Therefore, up-sampling can mitigate
the problem by bringing the values of dt[c] close to zero.

Fig. 3(c) presents a much smoother per-cycle THD profile
for the same time period, achieved by up-sampling the raw
waveform (originally with 72 ~ 73 samples per cycle) to
512 samples per cycle. Up-sampling is done in MATLAB
using command resample [16] over waveforms of length one
second with input parameters 4300 (sampling rate of the orig-
inal waveform) and 30,720 (sampling rate of the upsampled
waveform).

Although up-sampling is a remedy to reduce the fluctuations
in the per-cycle THD calculations, it significantly adds to the
computational burden. Considering the large volume of the
dataset, we have opted not to use up-sampling as part of event
detection. Instead, we use a similar approach affer an event is
detected to resolve the impact of sampling not being aligned
with cycles to characterize the event; see Section IV-B.
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Fig. 5. Two examples for single-phase events: (a) raw voltage waveform of
the first event; (b) the corresponding differential waveform; (c) raw voltage
waveform of the second event; (d) the corresponding differential waveform.

IV. DIFFERENTIAL WAVEFORM ANALYSIS

When it comes to sub-cycle events in waveform measure-
ments from low-voltage circuits, it is often difficult to charac-
terize the event by looking at the raw waveform. Two examples
are shown in Figs. 5(a) and 5(c). Notice that, the event is very
minor compared to the main steady-state waveforms. To tackle
this issue, we rather focus on analyzing differential waveforms.

A. Differential Waveform Extraction

Consider a raw voltage waveform v(¢) from measurements.
The differential waveform corresponding to v(t) is defined as:

Av(t) =v(t) —v(t — NT), 3)

where T is the waveform interval, i.e., T = 1/60 second
for a 60 Hz waveform; and N is a small integer number,
such as 1, 2, 3, 4, or 5; see [3, pp. 151-152]. Here, v(t —
NT) serves as a reference for the “normal” waveform before
the event happens. In this regard, the subtraction in (3) can
approximately remove the normal portion of the waveform,
leaving only the abnormality that was superimposed to the
normal waveform due to the occurrence of the event'.

Fig. 5(b) shows the differential waveform corresponding
to the raw waveform in Fig. 5(a). Also, Fig. 5(d) shows the
differential waveform corresponding to the raw waveform in
Fig. 5(c). We see that the event is much better represented in
the differential waveform than in the raw waveform. Yet, there
are still some considerable residue from the normal waveform
in the differential waveforms, specially in Fig. 5(d).

B. Remedy: Cycle-Aligned Sample Interpolation

To reduce the residue in differential waveforms, we first
need to understand the root cause of the problem. The issue
here is again the lack of alignment between the sampling time
and the waveform cycles, as we also saw in Fig. 4.

Here, the challenge is that we cannot exactly align each
sample of v(t) to its corresponding sample in v(t — NT') in
order to correctly obtain Aw(t) as in (3). To resolve this issue,
we need to estimate the value of the properly aligned sample
in v(t — NT). This can be done using inferpolation. The idea
is shown in Fig. 6. Consider the sample that is marked with
a red arrow. In order to obtain the differential waveform, we
need to subtract this sample from the sample that is exactly

A concept similar to differential waveform but with a different terminology
is called cycle-delayed waveform, e.g., see [17].
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Fig. 6. Conceptual illustration (not from real data) of using interpolation to
resolve the lack of alignment between samples and cycles, while extracting
the differential waveform. Here, we first interpolate v(¢—T') and then subtract
it from a given sample at v(t) to obtain Av(t) using (3), where N = 1.
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Fig. 7. The results after using interpolation. Single-phase at WMU 1.

NT seconds before this sample. However, since the sampling
times are not aligned with the waveform cycles, there is no
such available. Therefore, we estimate the value of the missing
sample by using an interpolation of the two samples that are
closest in time, before and after the missing sample.
Interpolation is done in MATLAB using command interpl
with spline interpolation [18]. The results are shown in Figs.
7(a) and (b), respectively. Comparing these new results with
those in Figs. 5(b) and 5(d), we can see that the the latter dif-
ferential waveforms extract the event signatures more clearly.

C. Three-Phase Events at WMUs 2, 3, and 4

Recall from Section II that WMUs 2, 3, and 4 are plugged
in to power outlets that are on three different phases. Accord-
ingly, the continuous synchro-waveforms that are streamed
from these three WMUs can allow monitoring voltage on
all three phases. Accordingly, we can simultaneously conduct
event detection on all three phases. Cycle-alignment can also
be done based on applying sample interpolation on each phase.

Here, we are particularly interested in the events that affect
all the three phases. Two such events are shown in Figs. 8 and
9. First, consider the example in Fig. 8(a), which shows the
raw waveforms, Fig. 8(b) shows the corresponding differential
waveforms. We can see two distinct instances of oscillations
on all the three phases. Each instance takes less than half a
cycle. Next, consider the example in Fig. 9(a), which shows the
raw waveforms. Fig. 9(b) shows the corresponding differential
waveforms. Again, we can see two distinct sub-cycle periods
of oscillations in the voltage waveforms on all the three phases.

Even though the transient event in Fig. 9 is less severe than
the transient event in Fig. 8, it appears that these two three-
phase events generally follow the same patterns. It is possible
that these two events are the repetition of the same physical
phenomena. Identifying such similarities can sometimes has
applications in condition monitoring or identifying incipient
failures in power systems; see [3, Section 4.3].
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Fig. 8. The first example for a three-phase event, i.e., an event that affects all
three phases: (a) raw voltage waveforms; (b) differential voltage waveforms.
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Fig. 9. The second example for a three-phase event; which is less severe
than the first example in Fig. 8, yet it still affects all the three phases: (a) raw
voltage waveforms; (b) differential voltage waveforms.

V. SYSTEM-WIDE EVENTS IN SYNCHRO-WAVEFORMS

So far, our analysis was focused on investigating the events
at each location separately. However, since GridSweep devices
provide time-synchronized measurements using GPS signals,
we can use the data to detect and characterize the system-wide
events in the power system, i.e., those events that are visible
at multiple power distribution feeders on the power system.

A. Detecting System-Wide Events

In order to detect system-wide events, we need to align and
compare the event detection task across multiple locations in
the power system. Fig. 10 shows how this process works.

First, consider the values of ATHD in Fig. 10(a) that are
extracted at WMU 1 in a period of two minutes, from 06:09:00
till 06:11:00. Recall that WMU 1 is served by Substation 1; see
Fig. 2. Two events are flagged during this period, at 06:09:07
and at 06:10:24. Next, consider the values of ATHD in Fig.
10(b) that are extracted at WMU 2 during the exact same
period. Recall that WMU 2 is served by Substation 2; see
Fig. 2. One event is flagged during this period, at 06:10:24.

The event at 06:09:07 at WMU 1 was a local event; because
it was observed only in one location. However, the event at
06:10:24 at WMU 2 was a system-wide event (i.e., a non-
local event); because it was observed not only at WMU 1
under Substation 1 but also at WMU 2 under Substation 2.
Identifying such sub-cycle yet system-wide events is one of
the key advantages of using precise time synchronization in
waveform measurements; see [1] for some related discussions.

B. Overview of Synchronized Events

By following the approach in Section V-A, we identified
26 system-wide events across WMU 1 and WMU 2, which
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Fig. 10. Identifying and separating system-wide events from local events by
comparing the ATHD profiles at WMU 1 (under Substation 1) and WMU 2
(under Substration 2). Here, one system-wide event is detected at 06:10:24.
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Fig. 11. Timing of the detected system-wide oscillatory events.

generally had similar patterns, involving oscillations. The
timing of these 26 system-wide events are shown in Fig. 11.
Out of the total 31 days of this study, this particular system-
wide event was not present on 5 days. We never observed
more than one system-wide event of this type on one day.

The majority of the events happened between 6:00 AM and
9:00 AM. In four cases, the event happened in the afternoon,
on October 23 (Sunday), October 26 (Wednesday), October 29
(Saturday), and October 30 (Sunday). Three of these four days
were weekends. We cannot comment further on the relevance
of the timing of these system-wide events. However, we can
rather focus on characterizing the voltage waveform signatures
of these 26 events; as we will discuss next.

C. Analysis of System-Wide Damping Oscillations

Fig. 12 shows the scatter plot for the frequency of the
oscillations at each of the 26 system-wide oscillatory events.
Each point represents one event. Frequency extraction is done
once at WMU 1 and once at WMU 2, by applying the Fourier
Transform to the differential waveform of the event at each
WMU, and recording the dominant frequency. The majority of
the points in Fig. 12 are in the diagonal area. For these events,
WMU 1 and WMU 2 extracted almost the same frequency.
These system-wide events exhibited the same oscillations
frequency at the waveforms that were independently captured
by WMU 1 and WMU 2 at their respective locations.

As for the (only four) points that are in the off-diagonal area
in Fig. 12, these are the cases where WMU 1 and WMU 2
extracted different frequencies. Two possibilities could account
for the different frequencies at WMU 1 and WMU 2:

o Possibility 1: The true physical event manifested itself
with different frequencies at these two different locations.
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o Possibility 2: The true physical event manifested itself
with the same frequency at these two locations; but the
way that the measurements were collected resulted in ob-
serving two different frequencies at these two locations.

We cannot give a definitive determination on these possi-
bilities. Nevertheless, it is insightful to also check these four
(outlier) system-wide events also at the location of WMU 5,
i.e., the three-phase SEL sensor at Substation 1. The results
are shown for the case of one event in Fig. 13. Here, we show
the spectral analysis of the event signatures of the exact same
system-wide oscillatory event as it is captured by WMU 1
(GridSweep at 120 V), WMU 2 (GridSweep at 120 V), and
WMU 5 (SEL at 12.47 kV). The dominant frequency of the
oscillations is obtained at 728.6 Hz, 874.3 Hz, and 830.3 Hz
by WMU 1, WMU 2, and WMU 5, respectively. Notice that
the frequency that is extracted by WMU 5 is between the two
frequencies that are extracted by WMU 1 and WMU 2. While
this additional observation still does not lead to choosing
between Possibility 1 and Possibility 2, it does yet again show
the power of time-synchronized waveform measurements to
detect and analyze various system-wide waveform events.

VI. CONCLUSIONS

Data from continuous streaming of synchro-waveform mea-
surements from four waveform sensors were analyzed over
a period of one month, consisting a total of over 40 billion
measurement samples. A method was proposed and tested for
event detection. Several practical challenges were addressed,
including the need to maintain light computational complexity
due to the enormous amount of waveform data, the mis-
alignment in the sampling points in relevance to the precise
length of the waveform cycles, and the subtle challenges in ex-
tracting differential waveforms to reveal the event signatures.
Examples of waveform events were presented and discussed,

including single-phase events and three-phase events. Further-
more, a series of system-wide events with oscillations were
characterized by using data from two different locations that
were supplied by two different utility substations. The analysis
in this experimental study will shed light on the practical chal-
lenges in the new field of synchro-waveforms, specifically with
respect to the sub-field of continuous streaming of synchro-
waveforms from low-voltage circuits. This may prompt new
avenues for further research in this area.
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