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Abstract—In this paper, we consider the problem of random
access in wireless local area networks (WLANs) with each station
generating either elastic or inelastic traffic. Elastic traffic is
usually non-real-time, while inelastic traffic is usually coming
from real-time applications. We formulate a network utilit y
maximization (NUM) problem, where the optimization variables
are the persistent probabilities of the stations and the utilities are
either concave orsigmoidal functions. Sigmoidal utility functions
can better represent inelastic traffic sources compared to concave
utility functions commonly used in the existing random access
literature. However, they lead to non-convex NUM problems
which are not easy to solve in general. By applying the dual
decomposition method, we propose a subgradient algorithm to
solve the formulated NUM problem. We also developclosed-
form solutions for the dual subproblems involving sigmoidal
functions that have to be solved in each iteration of the proposed
algorithm. Furthermore, we obtain a sufficient condition on the
link capacities which guarantees achieving the global optimal
solution when our proposed algorithm is being used. If this
condition is not satisfied, then we can still guarantee that the
optimal value of the objective function is within some lowerand
upper bounds. We perform various simulations to validate our
analytical models when the available link capacities meet or do
not meet the sufficient optimality condition.

Index Terms—Wireless random access, medium access control,
network utility maximization, non-convex optimization, sigmoidal
function, elastic and inelastic traffic, real-time applications.

I. I NTRODUCTION

I N a wireless network, a medium access control (MAC)
protocol is used to coordinate access to the shared wireless

medium for mobile stations. In general, there are two types of
MAC protocols in a wireless network:scheduling-basedand
contention-based. Contention-based random access protocols
are scalable and flexible, and are widely used in wireless local
area networks (WLANs).

In this paper, we study random access in WLANs within
the network utility maximization(NUM) framework. Most of
the previous work in NUM-based random access (e.g., in [1])
focuses only onnon-real-time applications, such as file trans-
fer and e-mail, where the data traffic iselastic. Additionally,
we considerreal-time applications, such as video streaming
and voice over IP services, which entailinelastic traffic.

Manuscript received on October 7, 2009; revised on February5, 2010 and
March 27, 2010; and accepted on March 29, 2010. The review of this paper
was coordinated by Dr. Daniele Tarchi.

This research is funded by AUTO21, a member of the Network of Centres
of Excellence of Canada program. The authors are with the Department of
Electrical and Computer Engineering, The University of British Columbia,
Vancouver, BC, Canada, V6T 1Z4, e-mail:{mhcheung, hamed, vincentw,
rschober}@ece.ubc.ca.

Unlike elastic data sources that are modeled byconcaveutility
functions, inelastic sources are modeled by non-concave utility
functions, in particularsigmoidalutility functions, leading to
NUM problems which are usually difficult to solve. NUM
problems with sigmoidal utility functions have previouslybeen
considered in various networking design problems such as
Internet congestion control [2], [3], downlink power allocation
[4], power control [5], and radio resource allocation [6]. But
no prior work has addressed NUM problems with sigmoidal
utility functions in random accesssystems.

To tackle the non-convexity of of a random access NUM
problem, we use thesubgradient projection method. For
concave utility functions, we extend the work in [1] by not
restricting the utility functions to remain concave after a
logarithmic change of variables, but allowing the possibili-
ties of concave, convex, or sigmoidal utility functions. For
sigmoidal utility functions, each iteration in our algorithm
involves only updating the dual variables with someclosed-
form expressions. The Karush-Kuhn-Tucker (KKT) optimality
conditions of the dual problem are also derived. Moreover, we
provide a sufficient condition on the wireless link capacities
which guarantee our algorithm to find the exact global optimal
solution of the NUM problem. If this condition isnot satisfied,
we can still obtainupper and lower bounds for the optimal
objective value. The bounds approach each other when the
duality gap is zero.

The rest of this paper is organized as follows. The system
model is described in Section II. We present our centralized
algorithm and the optimality conditions for the dual problem
in Section III. We study the condition on capacity that results
in optimal or sub-optimal solutions in Section IV. Simulation
results are given in Section V. The paper is concluded in
Section VI.

II. SYSTEM MODEL

Consider a WLAN with a single access point (AP) and a
set ofN mobile stations, denoted byN = {1, 2, . . . , N}. All
stations are one-hop neighbors to the AP. We only consider the
uplink scenario, where each stationi∈N can access the shared
medium with apersistent probabilitypi. We consider using a
slotted Aloha MAC protocol, where time is divided into equal
time slots. The stations attempt to access the shared channel
at the beginning of each time slot according to their persistent
probabilities. Notice that the choice of persistent probabilities
can be transformed into equivalent contention window sizes
that can be implemented directly in IEEE 802.11 WLANs [7].
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Let psucc
i denote the probability that a transmission from station

i ∈ N is successful, i.e., the transmission does not experience
any collision. We have

psucc
i (p) = pi

∏

j∈N\{i}

(1 − pj), ∀ i ∈ N , (1)

wherep = (pi, i ∈ N ). For the rest of the paper, we will
use bold symbols to denote vectors with components∀ i ∈ N .
Given thecapacity ci for user i, the average data ratefor
station i is xi = ci psucc

i (p), which is a function of bothci
andp. We denote the utility function of each stationi ∈ N by
Ui(xi), which is anon-decreasingfunction in xi. So we can
control the level of satisfaction of stationi by tuningxi. Each
station may have eitherelasticor inelastic traffic. LetNE and
NI denote the sets of stations with elastic and inelastic traffic,
respectively. We notice thatNE ∩NI = φ andNE ∪NI = N .
For each userv ∈ NE , we can use aconcavefunction to model
the utility. A common example is theα-fair utility function
(see Fig. 1) [8]:

Uv(xv) =
{

ln (xv + 1) , if αv = 1,

(1−αv)
−1
[

(xv + 1)(1−αv) − 1
]

, if αv ∈ (0, 1) ∪ (1,∞),

(2)

whereαv is a fixed utility parameter.
On the other hand, for each userw ∈ NI , the utility function

depends on the quality of service (QoS) requirements of the
running voice and video applications. We can use a sigmoidal
utility function Uw(xw) to model these applications such that
U ′′
w(xw) > 0 for xw < xin

w andU ′′
w(xw) < 0 for xw > xin

w ,
wherexin

w is thepoint of inflection. In particular, we can use
the sigmoidal function (see Fig. 1) defined as [9]:

Uw(xw) =
xaw
w

kw + xaw
w

, (3)

wherexw ≥ 0, aw > 1, kw > 0, andxin
w = aw

√

kw(aw−1)
aw+1 .

With the logarithmic change of variables̄xi , lnxi and
Ūi(x̄i) , Ui(e

x̄i), the utility functions becomemore convex.
That is, the concave part may remain concave or turn convex
[1], while the convex part always remains convex. For the
concave functionUv(xv) in (2), we can see that̄Uv(x̄v) is a
sigmoidal function with point of inflection̄xin

v = ln( 1
αv−1 )

for αv > 1, and a convex function for0 < αv ≤ 1. Moreover,
we have

Ūw(x̄w) =
1

1 + e−(awx̄w+bw)
, (4)

which represents a sigmoidal function in standard form with
the point of inflectionx̄in

w = −bw/aw, wherekw = e−bw .
Note that x̄in

w 6= lnxin
w in general. In the sequel, we will

assume that̄Ui(x̄i) is sigmoidal for x̄min
i ≤ x̄i ≤ x̄max

i ,
∀ i ∈ N . We will omit the cases wherēUi(x̄i) is either a
convex or a concave function for brevity, because the dual
problem is straightforward in these cases. It should be noted
that the solution approach discussed in the following sections
can be applied to concave, convex, and sigmoidal utility
functions in general.
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Fig. 1. Utility functionsUi versus data ratex for utility functionsU1(x) =

1− (x+1)−1 , U2(x) =
x
2

x2+20
, U3(x) =

1

2
[1− (x+1)−2], andU4(x) =

x
4

x4+300
. Notice thatU1 andU3 are concave functions, andU2 andU4 are

sigmoidal functions. We address both concave and sigmoidalutility functions
in this paper.

III. R ANDOM ACCESS WITHSIGMOIDAL AND CONCAVE

UTILITIES

A. NUM for Random Access

In this work, we consider the following NUM problem:

max
p,x

∑

i∈N

Ui(xi) =
∑

v∈NE

Uv(xv) +
∑

w∈NI

Uw(xw)

s.t. xi ≤ cip
succ
i = cipi

∏

j∈N\{i}

(1− pj), ∀ i ∈ N ,

xmin
i ≤ xi ≤ xmax

i , ∀ i ∈ N ,
0 ≤ pi ≤ 1, ∀ i ∈ N ,

(5)
wherexmin

i andxmax
i are the constraints on the minimum and

maximum data rates for the transmission of useri, respectively.
Notice that problem (5) is a non-convex optimization problem,
because the objective function is non-concave in general, and
the first constraint is non-convex.

B. Dual Method

Using the logarithmic change of variables̄xi , lnxi,
x̄min
i , lnxmin

i , x̄max
i , lnxmax

i , Ūi(x̄i) , Ui(e
x̄i), and

c̄i , ln ci, we can reformulate optimization problem (5) as

max
p,x̄

∑

i∈N

Ūi(x̄i) =
∑

v∈NE

Ūv(x̄v) +
∑

w∈NI

Ūw(x̄w)

s.t. c̄i + ln pi +
∑

j∈N\{i}

ln(1−pj)− x̄i ≥ 0, ∀ i ∈ N ,

x̄min
i ≤ x̄i ≤ x̄max

i , ∀ i ∈ N ,
0 ≤ pi ≤ 1, ∀ i ∈ N .

(6)
Here, the Lagrangian function is derived as

L(p, x̄,λ) =
∑

i∈N

(

Ūi(x̄i)− λix̄i

)

+
∑

i∈N

λi

(

c̄i + ln pi +
∑

j∈N\{i}

ln(1−pj)

)

,

(7)
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and the Lagrangian dual function becomes

g(λ) =
∑

i∈N

sup
x̄i∈X̄i

(

Ūi(x̄i)− λix̄i

)

+ sup
p∈P

∑

i∈N

λi

(

ln pi +
∑

j∈N\{i}

ln(1−pj)

)

+
∑

i∈N

λic̄i,

(8)

whereP = {p : 0 ≤ pi ≤ 1, ∀ i ∈ N} and X̄i = {x̄i :
x̄min
i ≤ x̄i ≤ x̄max

i }. The dual problem is

minimize
λ

g(λ)

subject to λ � 0.
(9)

In order to solve optimization problem (9), we need to solve
two subproblems for eachi ∈ N :

max
x̄i∈X̄i

(

Ūi(x̄i)− λix̄i

)

, (10)

and

max
p∈P

∑

i∈N

λi

(

ln pi +
∑

j∈N\{i}

ln(1−pj)

)

. (11)

C. First Dual Subproblem

To solve the first dual subproblem, we definesi(x̄i, λi) =
Ūi(x̄i)− λix̄i and

x̄∗
i (λi) = arg max

x̄i∈X̄i

si(x̄i, λi). (12)

Notice thatsi is also a sigmoidal function in̄xi with point of
inflection x̄in

i .

Lemma 1: If x̄min
i ≤ x̄in

i ≤ x̄max
i , we have

x̄∗
i (λi) = arg max

x̄i∈{x̄min
i

, x̄v
i
(λi)}

si(x̄i, λi), (13)

where
x̄v
i (λi) , argmax

x̄in
i

≤x̄i≤x̄max
i

si(x̄i, λi). (14)

Proof: It is always true that

max
x̄i∈X̄i

si(x̄i, λi)

= max

{

max
x̄min
i

≤x̄i≤x̄in
i

si(x̄i, λi), max
x̄in
i

≤x̄i≤x̄max
i

si(x̄i, λi)

}

.

(15)

Also notice that si(x̄i, λi) is a convex function
in x̄i for x̄min

i ≤ x̄i ≤ x̄in
i . Thus, we have

argmaxx̄min
i

≤x̄i≤x̄in
i
si(x̄i, λi) = {x̄min

i , x̄in
i }. This

concludes the proof.
Notice that problem (14) is convex. In fact, we can obtain

a closed-form solution for (14) when̄Uw(x̄w) is as in (4):

Lemma 2:For Ūw(x̄w) in (4), we have

x̄v
w(λw) =










[

− ln
((

aw−2λw−
√

a2
w−4awλw

)

/2λw

)

−bw

aw

]x̄max
w

x̄in
w

, if aw ≥ 4λw,

x̄in
w , otherwise,

(16)

where[z]yw = min{max{z, w}, y}.
Proof: Since sw(x̄w, λw) is concave forx̄in

w ≤ x̄w ≤
x̄max
w , by taking the derivative, we have

Ū ′
w(x̄

v
w)− λw =

awe
−(awx̄v

w+bw)

[1 + e−(awx̄v
w+bw)]2

− λw = 0. (17)

Let yw = e−(awx̄v
w+bw), we obtainλwy

2
w + (2λw − aw)yw +

λw = 0. We can consider two cases:
Case I: If aw ≥ 4λw, since0 ≤ yw ≤ 1, we can take the

root yw =
aw−2λw−

√
a2
w−4awλw

2λw
, so

x̄v
w(λw) =

[

− ln
((

aw−2λw−
√

a2
w−4aλw

)

/2λw

)

−bw

aw

]x̄max
w

x̄in
w

.

(18)
Case II: If aw < 4λw, we haves′w(x̄w , λw) < 0 and

sw(x̄w , λw) is decreasing in̄xw . Thus,

x̄v
w(λw) = argmax

x̄in
w ≤x̄w≤x̄max

w

sw(x̄w , λw) = x̄in
w . (19)

Considering the two cases above, we can fully characterize
x̄v
w(λw) as in (18) and (19).

D. Second Dual Subproblem

For the second dual subproblem, givenλ, we have

max
p∈P

∑

i∈N

λi



ln pi +
∑

j∈N\{i}

ln(1−pj)





=
∑

i∈N

max
0≤pi≤1



λi ln pi +





∑

j∈N\{i}

λj



 ln(1− pi)



 .

(20)

Since the problem at the right hand side in (20) is convex,
we can apply the first ordernecessaryand sufficient opti-
mization condition to obtain the given optimal solution [1]
as follows

p∗i (λ) =
λi

∑

j∈N λj
, if

∑

j∈N

λj 6= 0. (21)

E. Centralized Algorithm for Random Access

We define

λc
i = min

{

λ ≥ 0 : si(x̄
min
i , λ) = max

x̄in
i

≤x̄i≤x̄max
i

si(x̄i, λ)
}

.

(22)
Thus, x̄∗

i (λ
c
i ) has two solutions:̄x∗

i (λ
c
i ) = x̄min

i and x̄in
i ≤

x̄∗
i (λ

c
i ) ≤ x̄max

i . As shown in Fig. 2,̄x∗
i (λi) is discontinuous

at λc
i . Considerg(λ) = supp∈P,x̄∈X̄ L(p, x̄,λ), we apply

Danskin’s Theorem [10] to find the subdifferential∂g(λ) (i.e.,
the set of all subgradients ofg(λ))

∂g(λ) = conv{∇λL(p, x̄,λ) : p ∈ p∗(λ), x̄ ∈ x̄∗(λ)},
(23)

where conv{H} is the convex hull of set H and

∇λL(p, x̄,λ) =
(

∂L(p,x̄,λ)
∂λ1

, . . . , ∂L(p,x̄,λ)
∂λN

)T

denotes the

gradient ofL with respect toλ, and the notation(·)T denotes
vector transpose operator. Moreover,p∗(λ) andx̄∗(λ) are the
solutions of (21) and (12) atλ for all i ∈ N , respectively.
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Fig. 2. The solution of the first dual subproblem̄x∗

i
(λi) versusλi for

sigmoidal utility function Ui(x) = x
2

x2+20
. We can see that̄x∗

i
(λi) is

discontinuous atλi = λc

i
= 0.0780.

We note thatg(λ) is differentiable atλ, if there is only
one element in both setsp∗(λ) and x̄∗(λ). This is always
true unless∃ i ∈ N such thatλi = λc

i , because in that
case there are two possible solutions forx̄∗

i (λ
c
i ) as discussed

above. Using the subgradient projection method, we update
(λi, ∀i ∈ N ) according to the following equation:

λi(t+ 1) =

[

λi(t)− α(t)

(

c̄i + ln p∗i
(

λ(t)
)

+
∑

j∈N\{i}

ln
(

1− p∗j
(

λ(t)
)

)

− x̄∗
i

(

λi(t)
)

)

]+

,

(24)

where [z]+ = max{z, 0} and t is the index of the iter-
ation. With a diminishing step sizeα(t) ≥ 0 such that
limt→∞ α(t) = 0 and

∑∞
t=1 α(t) = ∞ (e.g., we can choose

α(t) = m/t, where m is a positive constant), it can be
shown thatλi(t) converges to the dual optimal solutionλ∗

i

as t → ∞ [10]. The algorithm to solve problem (6) is shown
in Algorithm 1. We will discuss the optimality of its solution
in the next section.

F. General Optimality Conditions

We have the following general optimality condition for the
dual problem in (9):

Theorem 1:Vectorλ∗ is the solution of problem (9) if and
only if λ∗ � 0 and

1) If λ∗
i = 0, we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1− p∗j (λ
∗))− x̄v

i (λ
∗
i ) ≥ 0.

(25)
2) If λ∗

i > 0 andλ∗
i 6= λc

i , we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1− p∗j (λ
∗))− x̄v

i (λ
∗
i ) = 0.

(26)

Algorithm 1 Centralized Algorithm to Solve Problem (6).

1: Input : ci, xmin
i , xmax

i , ∀i ∈ N
2: Calculatex̄in

i , ∀i ∈ N
3: Set t = 1 and initializeλi(t) > 0, ∀i ∈ N
4: while t < MAXITER
5: Setp∗i (λ(t)) =

λi(t)
∑

j∈N λj(t)
, ∀i ∈ N

6: Set x̄v
i (λi(t)) = argmax

x̄in
i

≤x̄i≤x̄max
i

si(x̄i, λi(t))

7: Set x̄∗
i (λi(t)) = argmax

x̄i∈{x̄min
i ,x̄v

i (λi(t))}

si(x̄i, λi(t))

8: Setλi(t+1) as in (24) withα(t) = m/t, wherem > 0
9: Set t = t+ 1

10: end while
11: Output : p∗ and x̄∗.

3) If λ∗
i > 0 andλ∗

i = λc
i , we have

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1− p∗j (λ
∗))− x̄v

i (λ
∗
i ) ≤ 0,

(27)
and

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1− p∗j (λ
∗))− x̄min

i ≥ 0.

(28)

Proof: First, for primal feasibility, we haveλ∗ � 0. For
cases 1 and 2,g(λ)i is differentiable atλi = λ∗

i , whereg(λ)i
is the ith element ing(λ). The ith entry of the derivative
becomes

∇g(λ∗)i = c̄i+ln p∗i (λ
∗)+

∑

j∈N\{i}

ln(1−p∗j (λ
∗))− x̄v

i (λ
∗
i ).

(29)
Since problem (9) is convex, the result directly follows from
[11, pp. 142]. For case 3,g(λ)i is non-differentiable atλi =
λ∗
i ; therefore, the KKT condition is0 ∈ ∂g(λ∗)i. From (23),

we have

∂g(λ∗)i

= conv
{

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗))− x̄∗

i :

x̄∗
i ∈ x̄∗

i (λ
∗
i )
}

=
[

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1− p∗j (λ
∗))− x̄v

i (λ
∗
i ),

c̄i + ln p∗i (λ
∗) +

∑

j∈N\{i}

ln(1 − p∗j (λ
∗))− x̄min

i

]

,

(30)

which is simply an interval. Considering the lower and upper
bounds in the interval, we can directly derive (27) and (28),
respectively.

Since the dual problem is convex, the KKT conditions (25)-
(28) arenecessaryand sufficient [11, p. 139]. By using the
following theorem, we can determine whether Algorithm 1
can solve the NUM problem.

Theorem 2:If λ∗
i 6= λc

i , ∀i ∈ N , then Algorithm 1 finds
the optimal solution of problem (6).
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Proof: If λ∗
i 6= λc

i , ∀ i ∈ N , from the discussion in
Section III-E, p∗ = p∗(λ∗) and x̄∗ = x̄∗(λ∗) form the
unique minimizer of LagrangianL(p, x̄,λ∗). Thus g(λ) is
differentiable atλ∗ by (23). Finally, from [12, Property 6.5(c)],
the primal problem (6) has a saddle point(p∗, x̄∗,λ∗). By [12,
Theorem 5.3],p∗ andx̄∗ are the global optimum of the primal
problem (6).

IV. OPTIMALITY AND SUB-OPTIMALITY

In this section, we assume thatxmax
i = ci, ∀ i ∈ N such

that the optimal value of the objective function is restricted
by capacityc = (ci, i ∈ N ) only, but not the data rate bound
xmax = (xmax

i , i ∈ N ). Next, we discuss certain conditions
on vector c which affect optimality and sub-optimality of
Algorithm 1.

A. Optimal Solution

We first provide a sufficient condition on the link capacities
for optimality of Algorithm 1:

Theorem 3:With xmax
i = ∞, supposeλc

i and x̄v
i (λ

c
i ) are

obtained by (22) and (14) for anyi ∈ N , respectively. We
define

cci =
ex̄

v
i (λ

c
i )

p∗i (λ
c)
∏

j∈N\{i}(1− p∗j (λ
c))

, ∀ i ∈ N , (31)

where p∗i (λ
c) is as in (21). Here,cc denotes the vector of

critical link capacities. If c ≻ cc, then Algorithm 1 can obtain
the optimal solution in problem (6), and thus that of problem
(5).

Proof: Let λ
∗ be the dual optimal solution and as-

sume thatc ≻ cc. From (31), we havēci + ln p∗i (λ
c) +

∑

j∈N\{i} ln(1 − p∗j (λ
c)) − x̄v

i (λ
c
i ) > 0, for any i ∈ N . We

can further show that

0 /∈ ∂g(λc)i

=
[

c̄i + ln p∗i (λ
c) +

∑

j∈N\{i}

ln(1 − p∗j(λ
c))− x̄v

i (λ
c
i ),

c̄i + ln p∗i (λ
c) +

∑

j∈N\{i}

ln(1− p∗j (λ
c))− x̄min

i

]

.

(32)

Thus,λ∗
i 6= λc

i , ∀ i ∈ N . By Theorem 2, Algorithm 1 finds
the optimum of problem (5).

The key idea in the proof is that ifc ≻ cc, λ∗
i < λc

i , ∀ i ∈
N , then the optimality of the solution directly results from
Theorem 2.

B. Sub-optimal Solution: Upper and Lower Bounds

Next, assume thatc � cc. In this case, Algorithm 1 may
only obtain a sub-optimal solution. For cases other thanc ≻
cc and c � cc, Algorithm 1 may obtain an optimal or sub-
optimal solution depending on the exact scenario. Notice that
x̄∗(λ) andp∗(λ) obtained from lines 5 to 7 of Algorithm 1
always satisfy the second and third constraints in problem (6),
respectively. By Theorem 1, the first constraint can be satisfied
in all the three cases in (25), (26), and (28). That is, for the
caseλ∗

i > 0 andλ∗
i = λc

i , we will choosex̄∗
i (λi) = x̄min

i . By

weak duality [11, pp. 225], we can obtain anupper boundfor
the objective value of problems (5) and (6) as
∑

i∈N

Ui(x
∗
i ) =

∑

i∈N

Ūi(x̄
∗
i ) ≤ g(λ∗) = L(p∗(λ∗), x̄∗(λ∗),λ∗).

(33)
The first equality is due to the fact that problems (5) and (6)
have the same objective function. The inequality is due to weak
duality, and the last equality is by definition. In some cases,
we can also obtain alower boundfor problem (5). Ifxi =
cip

∗
i (λ

∗)
∏

j∈N\{i}(1 − p∗j (λ
∗)) satisfies constraintxmin

i ≤
xi ≤ xmax

i , ∀i ∈ N , by the optimality ofx∗, we can obtain
a lower bound as
∑

i∈N

Ūi(x̄
∗
i ) =

∑

i∈N

Ui(x
∗
i )

≥
∑

i∈N

Ui



cip
∗
i (λ

∗)
∏

j∈N\{i}

(1 − p∗j (λ
∗))



 .

(34)

It should be noted that both the upper and lower bounds are
constructed from the samep∗(λ∗) andx̄∗(λ∗) obtained from
Algorithm 1. When the duality gap is zero, the upper and lower
bounds are both equal to the optimal value of the objective
function

∑

i∈N Ui(x
∗
i ).

V. PERFORMANCEEVALUATION

In this section, we consider both cases wherec ≻ cc and
c � cc for Algorithm 1. We choosexmin

i = 0.0001 and
xmax
i = ci, for ∀ i ∈ N . Here, we assume that there are two

types of utility functions used in the network: a concave (Type
1) functionU1(x1) = 1− (x1 + 1)−1, and a sigmoidal (Type
2) functionU2(x2) =

x2

2

x2

2
+20

, as shown in Fig. 1. We can then
obtainλc

1 = 0.0789 andλc
2 = 0.0780 numerically (e.g., using

MATLAB as in Fig. 2). We assume that there areN stations
in the network, where half of them are Type 1, and the other
half are Type 2. We plotcc1 andcc2 versus the total number of
stationsN in Fig. 3. We can see that only a linear increase
in cc1 and cc2 is required for Algorithm 1 to find the optimal
solution whenN increases.

Next, we plot the aggregate utility versus the number of
stations in Fig. 4 to verify the optimality of Algorithm 1 when
c ≻ cc. We can see that the result of the exhaustive search
is identical to that of Algorithm 1, meaning that Algorithm
1 obtains the optimal solution. Then, we consider the case
where c ≺ cc by using the capacitiesc = 0.5cc. Fig. 5
shows the upper and lower bounds obtained from Algorithm
1. Next, we focus on the case whenN = 2, c1 = 21 kbps
and c2 = 44 kbps to study the resource allocation when
c ≺ cc. With the use of diminishing step sizeα(t) = 0.01/t,
the allocations of persistent probabilities converge, as shown
in Fig. 6. Moreover, we have noticed in the simulation that
λ1(t) → λ∗

1 = λc
1 andλ2(t) → λ∗

2 = λc
2 as t → ∞. It can

be verified, by simulation, that the use of a constant step size
leads to oscillatory behaviour in the dual variables and the
allocation of persistent probabilities.
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Fig. 3. The minimal capacitiescc
1

andcc
2

for two types of utility functions
versus the total number of stationsN . Type 1 utility functions are concave,
while Type 2 utility functions are sigmoidal.
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Fig. 4. Aggregate utility versus the total number of stations N whenc ≻ cc

using exhaustive search and Algorithm 1.

VI. CONCLUSIONS

In this work, we proposed a random access algorithm based
on the NUM framework for stations with either concave or
sigmoidal utilities. We applied the dual method to solve our
problem. A sufficient condition on link capacities that guar-
antee the optimality of the solution is proposed. Simulations
have been performed to verify our analytical results.
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