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Abstract—In this paper, we consider the problem of random
access in wireless local area networks (WLANSs) with each dian
generating either elastic or inelastic traffic. Elastic traffic is
usually non-real-time, while inelastic traffic is usually @ming
from real-time applications. We formulate a network utility
maximization (NUM) problem, where the optimization variables
are the persistent probabilities of the stations and the utities are
either concave orsigmoidal functions. Sigmoidal utility functions
can better represent inelastic traffic sources compared toancave
utility functions commonly used in the existing random acces
literature. However, they lead to non-convex NUM problems
which are not easy to solve in general. By applying the dual
decomposition method, we propose a subgradient algorithmot
solve the formulated NUM problem. We also developclosed-
form solutions for the dual subproblems involving sigmoidal
functions that have to be solved in each iteration of the propsed
algorithm. Furthermore, we obtain a sufficient condition on the
link capacities which guarantees achieving the global optnal
solution when our proposed algorithm is being used. If this
condition is not satisfied, then we can still guarantee thathe
optimal value of the objective function is within some lowerand
upper bounds. We perform various simulations to validate ou
analytical models when the available link capacities meetrodo
not meet the sufficient optimality condition.

Index Terms—Wireless random access, medium access contro
network utility maximization, non-convex optimization, sigmoidal
function, elastic and inelastic traffic, real-time applicdions.

|. INTRODUCTION

EEEand Robert Schobekellow, IEEE

Unlike elastic data sources that are modeleadycaveutility
functions, inelastic sources are modeled by non-concahty ut
functions, in particulasigmoidalutility functions, leading to
NUM problems which are usually difficult to solve. NUM
problems with sigmoidal utility functions have previoublgen
considered in various networking design problems such as
Internet congestion control [2], [3], downlink power al&mn

[4], power control [5], and radio resource allocation [6LtB

no prior work has addressed NUM problems with sigmoidal
utility functions inrandom accessystems.

To tackle the non-convexity of of a random access NUM
problem, we use thesubgradient projection methodror
concave utility functions, we extend the work in [1] by not
restricting the utility functions to remain concave after a
logarithmic change of variables, but allowing the possibil
ties of concave, convex, or sigmoidal utility functions.rFo
sigmoidal utility functions, each iteration in our algdit
involves only updating the dual variables with sowkiesed-
form expressions. The Karush-Kuhn-Tucker (KKT) optimality
conditions of the dual problem are also derived. Moreover, w

| provide a sufficient condition on the wireless link capasiti
'which guarantee our algorithm to find the exact global optima
solution of the NUM problem. If this condition isot satisfied,
we can still obtainupper and lower bounds for the optimal
objective value. The bounds approach each other when the
duality gap is zero.

N a wireless network, a medium access control (MAC) The rest of this paper is organized as follows. The system
protocol is used to coordinate access to the shared wirelessdel is described in Section Il. We present our centralized
medium for mobile stations. In general, there are two tygdes algorithm and the optimality conditions for the dual prahle

MAC protocols in a wireless networlscheduling-basednd

in Section Ill. We study the condition on capacity that résul

contention-basedContention-based random access protocdls optimal or sub-optimal solutions in Section IV. Simutati
are scalable and flexible, and are widely used in wireless locesults are given in Section V. The paper is concluded in

area networks (WLANS).

Section VI.

In this paper, we study random access in WLANs within

the network utility maximizatiofNUM) framework. Most of

II. SYSTEM MODEL

the previous work in NUM-based random access (e.g., in [1])

focuses only omon-real-time applicationssuch as file trans-

fer and e-mail, where the data traffic étastic Additionally,

Consider a WLAN with a single access point (AP) and a
set of N mobile stations, denoted by = {1,2,..., N}. All

we considereal-time applicationssuch as video streamingstations are one-hop neighbors to the AP. We only consider th

and voice over IP services, which entailelastic traffic.
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uplink scenario, where each statiba A" can access the shared
medium with apersistent probabilityp;. We consider using a
slotted Aloha MAC protocol, where time is divided into equal
time slots. The stations attempt to access the shared dhanne
at the beginning of each time slot according to their peznist
probabilities. Notice that the choice of persistent prolitéds

can be transformed into equivalent contention window sizes
that can be implemented directly in IEEE 802.11 WLANS [7].



Let pU“°denote the probability that a transmission from station
1 € N is successfyli.e., the transmission does not experience
any collision. We have

) = [ (-py), VieN, (1)
JEN\{i}

wherep = (p;, © € N). For the rest of the paper, we will
use bold symbols to denote vectors with compongrits N
Given thecapacity ¢; for useri, the average data rateor
stationi is z; = ¢; p*“qp), which is a function of both;
andp. We denote the utility function of each statiom A by
Ui(z;), which is anon-decreasindgunction in z;. So we can
control the level of satisfaction of statiarby tuningz;. Each
station may have eithelasticor inelastictraffic. Let V¢ and
N7z denote the sets of stations with elastic and inelastic traffirig. 1. Utility functionsU; versus data rate for utility functions U; (z) =
respectively. We notice that’e: "Nz = ¢ andNe UNT = V. 1—(x+1) L Us(z) = 2+20 Us(z) = [1—(z+1)72], andUs(z) =
For each user € Ng, we can use aoncavefunction to model W Notice thatl/; and Us are concave functions, arld, and Uy are
the utility. A common example is the-fair utility function sigmoidal functions. We address both concave and sigmaiiliay functions

Data Rate x

(see Fig. 1) [8]: in this paper.
Uy(zy) =
. IIl. RANDOM ACCESS WITHSIGMOIDAL AND CONCAVE
{ln (@ + 11), s !f a, =1, UTILITIES
(1=aw) ™t [(wy + 1)) —1]Lif ay € (0,1) U (1,0), Ao NUM for Random Access

In this work, we consider the following NUM problem:

whereq, is a fixed utility parameter.
On the other hand, for each userc Nz, the utility function pamx Z Ui(x:) Z Un(zo) + Z Uu(w)

: . . N N, N
depends on the quality of service (QoS) requirements of the ;e © i vce £ 1 o e 3 vi e N
running voice and video applications. We can use a sigmoidal i =GP = G N Pi)> ’
utility function U,,(x,,) to model these applications such that gmin < 4 < xmamje M} Vi e N
Ul'(z) > 0 for z,, < 2! and U/ (z,) < 0 for z,, >z, 0'< pr < 11— Lo Vi e A
wherexi" is the point of inflection In particular, we can use =Pi=5 ’ (5)
the sigmoidal function (see Fig. 1) defined as [9]: wherez"™ andz!*** are the constraints on the minimum and
e maximum data rates for the transmission of useespectively.
U (20) = T + 25 (3)  Notice that problem (5) is a non-convex optimization profle

because the objective function is non-concave in genemdl, a

_ I ; =
wherez,, > 0, ay > 1, ky > 0, andzi® = % the first constraint is non-convex.

With the logarithmic change of variables; £ Inz; and

U:(z:) 2 U;(e™), the utility functions becomenore convex. B Dual Method

That is, the concave part may remain concave or turn conve>USing the logarithmic change of variables £ Inz;,

[1], while the convex part always remains convex. For the?”" £ Ing™n, zrer & Inxr, Uy(z;) £ Us(e™), and
concave functiorl/, (z,) in (2), we can see thdt,(z,) is a & = Inc;, we can reformulate optimization problem (5) as

sigmoidal function with point of inflectiorz!” = In(—1+) 0, 0. (z 0. (3
for a, > 1, and a convex function fadd < «,, < 1. Moreover, o Z (@) Z o(To) + Z w(Tw)

we have 1EN veNe weNT

. 1 st G+hpi+ > In(l—p)—3; >0, Vi €N,

Uol@0) = T cmmmarinr “) e |

i <z <z, Vi €N,

which represents a sigmoidal function in standard form with 0<p <1, Vi e N.
the point of inflectionz’” = —b,,/a,, wherek, = e bw. T (6)
Note thatzl # Inz! in general. In the sequel, we will Here, the Lagrangian function is derived as
assume thaU (z;) is sigmoidal forzmin < z, < zmae,
Vi € N. We will omit the cases wheré_fi(:fi) is either a L(p, & \) = Z (Uz(xz) _ Am)
convex or a concave function for brevity, because the dual Y
problem is straightforward in these cases. It should bedchote
that the solution approach discussed in the following eesti + Z i (cl +1Inp; + Z n(l—p;) )
can be applied to concave, convex, and sigmoidal utility ieN FEN\{i}

functions in general. @)



and the Lagrangian dual function becomes

iEN Ti€X;

+ sup Z Ai <1Hpi + Z 1n(1—pj)>

PEP ieN JEN\{i}

iEN
(8)
whereP = {p: 0 < p; < 1,Vi € N} and &X; = {z; :
Fmin <z, < zme*}, The dual problem is
g(A)
subjectto A = 0.

minimize
A

9)

In order to solve optimization problem (9), we need to solve

two subproblems for eache N
max <Uz(fz) - /\ﬂ_?z) ;
T;EX;

r;lea%(Z/\i <1npi+ > ln(l—pj)>. (11)

ieN JEN\{i}

(10)

and

C. First Dual Subproblem
To solve the first dual subproblem, we defing€z;, \;) =

Ul(i'l) — \;z; and
(12)

T; (Ai) = arg nax 8i(Tiy Ai).-

Notice thats; is also a sigmoidal function im; with point of
inflection zi".

Lemma 1:1f zn < zin < 7% we have

z;(\) = arg max $i(Tiy Ai), (13)
() zie{z", 2y (Ni)} ( )
where

T <z <TPeT
Proof: It is always true that
max s;(Zs, A)

T, €EX;

= max ‘max  8;(Z;, \;), max $i(Tiy, Ni) ¢ -

(15)
Also notice that s;(Z;,A;) is a convex function
in z; for z™ < 'z, < z!". Thus, we have
arg maXzmin <z, <zin Si(Ti, Ai) = {zpm, z™}.  This

concludes the proof.

where[z]¥ = min{max{z,w}, y}.

Proof: Since s, (Zw, \w) is concave forzi? < z, <
zmer by taking the derivative, we have
awe_(awjvw"'bW)

(7! (AU — _
Uw(xw) )\w [1 +e—(aw:f“w+bw)]2

Aw = 0. a7
Let y, = e~ (@wZutbe) 'we obtain),y2 + (2Aw — Gw)Yw +
v = 0. We can consider two cases:

Case b If a, > 4\, since0 < y,, < 1, we can take the

Ay —2X =1/ a2 =4y Ay
root g, = I , SO
gmaz
2 ) = |- ln((aw72)\w7a /a?uf4a)\w)/2)\w) —bu

Ay
Fin
w

(18)
Case II: If ay, < 4\,, we haves! (Z,, ) < 0 and
Sw(Zw, \y) 1S decreasing irx,,. Thus,
z, ()‘w) =

= _ =in
" argmax Sy (Tw, A\w) = Ty

Tin <3 Tmazx
Bip <Z, <E]

(19)

Considering the two cases above, we can fully characterize
z% (A\w) as in (18) and (19). [ ]

D. Second Dual Subproblem
For the second dual subproblem, givenwe have

111716217))(. Ai | Inp; + ‘ Z | In(1—-p;)
iEN JENM\{i}
= max (Al + ST x| In(1—pi)
ieN JENM\{i}

(20)

Since the problem at the right hand side in (20) is convex,
we can apply the first ordemecessaryand sufficient opti-
mization condition to obtain the given optimal solution [1]
as follows

Ai :
PiA) ==——, if ) A#0 (21)
ZjEN Aj J;/
E. Centralized Algorithm for Random Access
We define
)\f:min{)\ZO:si(ﬁ”i",/\): ~ max sz(a?l,/\)}
jzngiigi;nam
(22)

Thus, z; (A) has two solutionsz; (\¢) = z/*"™ and zi" <
zF(A§) < z*e*. As shown in Fig. 225 ();) is discontinuous
at \{. Considerg(A) = sup,cp zex L(p, Z,A), we apply

n o : . :
Notice that problem (14) is convex. In fact, we can obtaif@nskin's Theorem [10] to find the subdifferentizj(}) (i.e.,

a closed-form solution for (14) wheli,, (z.,) is as in (4):
Lemma 2:For U, (%,,) in (4), we have
T, ()‘w) =

w
—~max

—in((aw—220— /a2 ~auxu ) /200 ) —bu ] f @y > 4y,

(27

. otherwise,

(16)

the set of all subgradients g{\))

9g(A) = conVAL(p,Z,A) : p € p*(N), & € T°(A)},
(23)

where cony?} is the convex hull of setX and
OL(p,&,\) OL(p,T,\)

T
VaL(p,Z,A) = el denotes the

gradient of L with respect ta\, and the notatiori-)”" denotes
vector transpose operator. Moreovef(A) andz* () are the
solutions of (21) and (12) aA for all i € A/, respectively.
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Fig. 2. The solution of the first dual subproblenf (\;) versus\; for
We can see that()\;) is

sigmoidal utility function U;(z) =

discontinuous af; = A{ = 0.0780.

We note thatg(A) is differentiable atX, if there is only
one element in both setg*(A) and z*(\). This is always
true unless3: € N such that); = )¢, because in that
case there are two possible solutions f9f\¢) as discussed

0.14

Algorithm 1 Centralized Algorithm to Solve Problem (6).
1 Input: ¢;, x™m gmer i € N

Ea 2

2: Calculatezi™, Vi € N

3: Sett = 1 and initialize \;(t) > 0, Vi e N

4: while t < MAXITER

5. Setpr(A(t)) = % Vie N

6: Setz{(\;(t)) = argmax s;(T;, \i(t))
Fin<g;<gpor

7. Setzi(\(t) =  argmax  s;(Zi, ()
zie{z @) (A1)}

8  Set);(t+1) as in (24) witha(t) = m/t, wherem > 0

9: Sett=t+1

10: end while

11: Output: p* andz*.

3) If Af >0 andAf = \f, we have

&+Inp;(N)+ > In(l-pi(A) —z(\) <0,
JEN(i}
(27)
and

G+npi(A)+ > In(1—pi(A%)) — 2" > 0.

above. Using the subgradient projection method, we update JEN\{i}
(\;, Vi € N') according to the following equation:

Ai(t+1) = l/\i(t) —a(t) (Ci + Inp; (A())

+ Y ln(l—p;()\(t)))—j’{()\l-(t))>] :

JEN\{i}

where [z]T = max{z,0} and ¢ is the index of the iter-
ation. With a diminishing step sizex(t) > 0 such that
lim; oo () = 0 and}_;2, a(t) = oo (e.g., we can choose
a(t) = m/t, wherem is a positive constant), it can be

(24)

shown that);(t) converges to the dual optimal solutioxj

ast — oo [10]. The algorithm to solve problem (6) is shown
in Algorithm 1. We will discuss the optimality of its solutio

in the next section.

F. General Optimality Conditions

(28)
Proof: First, for primal feasibility, we have\" = 0. For
cases 1 and () is differentiable at\; = A\¥, whereg(\);

is the i element ing(\). The i™ entry of the derivative
becomes

Vg(\)i=a+lnpi(A)+ > In(1—pj(N)) = (A]).
JENM\{i}
(29)
Since problem (9) is convex, the result directly followsrfro
[11, pp. 142]. For case 3j(A); is non-differentiable af\; =
Af; therefore, the KKT condition i9 € dg(A*);. From (23),
we have

Ag(X*);

_ conv{éi +FlpfA)+ Y In(l - pi(A)) — @ -
JENN(i}

7 €5 ()}

We have the following general optimality condition for the JEN\{}

dual problem in (9):

Theorem 1:Vector \* is the solution of problem (9) if and

only if A* = 0 and
1) If A} =0, we have

G+Inpi(N)+ > In(l-pi(A7) —z(A)) > 0.

JEN\{i}

2) It Ay > 0and\; # A, we have

&+np;(A)+ > In(l-pi(A)) -z

JEN\{i}

v
K2

(25)

Grnpi(A)+ Y (- py(A%) — @],
JENM\{i}
(30)

which is simply an interval. Considering the lower and upper
bounds in the interval, we can directly derive (27) and (28),
respectively. [ |

Since the dual problem is convex, the KKT conditions (25)-
(28) arenecessaryand sufficient[11, p.139]. By using the
following theorem, we can determine whether Algorithm 1
can solve the NUM problem.

Theorem 2:1f \f # X§, Vi € N, then Algorithm 1 finds
the optimal solution of problem (6).



Proof: If ¥ # ¢, Vi € N, from the discussion in weak duality [11, pp. 225], we can obtain apper boundor
Section IlI-E, p* = p*(A\*) and z* = x*(\") form the the objective value of problems (5) and (6) as
unigue minimizer of Lagrangia(p,®, A*). Thus g(\) is

differentiable a\* by (23). Finally, from [12, Property 6.5(c)], Z Z Ui(zF) < g(A*) = L(p*(A"), Z*(A*), \").

the primal problem (6) has a saddle pdipt, z*, \*). By [12, ieN ieN

Theorem 5.3]p* andZ* are the global optimum of the primal ) o (33)
problem (6). m [he first equality is due to the fact that problems (5) and (6)

have the same objective function. The inequality is due takwve
duality, and the last equality is by definition. In some cases

. . _ we can also obtain sower boundfor problem (5). Ifz; =
In this section, we assume thaf'** = ¢;, Vi € N such ep! M) Tenn gy (1 — p5(X7)) satisfies constraint" <
that the optimal value of the objective function is resettt amew i € N, by the optimality ofz*, we can obtain
by capacitye = (¢;, i € N') only, but not the data rate bounda Iower bound as
xmw = (" ¢ e N). Next, we discuss certain conditions

3

IV. OPTIMALITY AND SUB-OPTIMALITY

on vector ¢ which affect optimality and sub-optimality of Z Ui(z Z Ui(x

Algorithm 1. ieN =

A. Optimal Solution > Z Ui | cipi (AY) H (1 —pj(A"))
We first provide a sufficient condition on the link capacities N JEN\(}

for optimality of Algorithm 1: (34)

Theorem 3:With z"** = oo, suppose\{ and z¥ (\§) are
obtained by (22) and (14) for any e N, respectlvely We
define

It should be noted that both the upper and lower bounds are
constructed from the same (A*) andZ*(A*) obtained from
Algorithm 1. When the duality gap is zero, the upper and lower
VieN, (1) bounds are both equal to the optimal value of the objective

function )", _ \, Us(x7).

) T
¢ = * c * c\\ ?
PFA) I jean iy (1 = pj(A%)

where pi(A°) is as in (21). Herec® denotes the vector of
critical link capacities If ¢ > ¢¢, then Algorithm 1 can obtain V. PERFORMANCE EVALUATION
the optimal solution in problem (6), and thus that of problem
(5). In this section, we consider both cases where c¢¢ and
Proof: Let A* be the dual optimal solution and as< = c° for Algorithm 1. We chooser*" = 0.0001 and
sume thate > c¢¢. From (31), we havey; + Inp(\°) + z"" =¢;, for Vi € N. Here, we assume that there are two
S ey (1 = p5 (X)) — Z7(X§) > 0, for anyi € N. We types of utility functions used in the network:.a co_ncave;:(é’y
can further show that 1) functionU: (1) =1 — (z1 +1)~", and a sigmoidal (Type
0¢ dg(A°); 2) functionUs(z2) = %55, as shown in Fig. 1. We can then
obtain A{ = 0.0789 an& A5 = 0.0780 numerically (e.g., using
= |& +Inp;(X°) + Z In(1 = p3(A%)) = 27 (A7), MATLAB as in Fig. 2). We assume that there akestations

JEN\{i} in the network, where half of them are Type 1, and the other
¢ +Inpr(X°) + Z In(1 —p3(X%)) — o haIf. are Type 2 We plot§ andc§ versus the tot{;\I number of
JENN{i} stationsN in Fig. 3. We can see that only a linear increase

(32) in cf andcs is required for Algorithm 1 to find the optimal

: ) [uti henN i )
Thus, \; # X\§, Vi € M. By Theorem 2, Algorithm 1 finds Soiution Whenay Increases -
i ¢ Next, we plot the aggregate utility versus the number of
the optimum of problem (5).

The key idea in the proof is that i = ¢, A" < ¢, Vi e stations in Fig. 4 to verify the optimality of Algorithm 1 whe

N, then the optimality of the solution d|rectly results fron{" "~ c". We can see that the result of the exhaustive search
Theorem 2. IS |dent|cal to that of Algorithm 1, meaning that Algorithm

1 obtains the optimal solution. Then, we consider the case
] ) where ¢ < ¢© by using the capacitieg = 0.5¢¢. Fig. 5
B. Sub-optimal Solution: Upper and Lower Bounds shows the upper and lower bounds obtained from Algorithm
Next, assume that < c°. In this case, Algorithm 1 may 1. Next, we focus on the case whén = 2, ¢; = 21 kbps
only obtain a sub-optimal solution. For cases other than and ¢, = 44 kbps to study the resource allocation when
c® andc =< ¢¢, Algorithm 1 may obtain an optimal or sub-c < c¢. With the use of diminishing step size(t) = 0.01/¢,
optimal solution depending on the exact scenario. Notie¢ thithe allocations of persistent probabilities converge, fasnve
Z*(\) andp*(A) obtained from lines 5 to 7 of Algorithm 1 in Fig. 6. Moreover, we have noticed in the simulation that
always satisfy the second and third constraints in probBm (A;(t) — Af = A§ and X\2(t) — A3 = A§ ast — oo. It can
respectively. By Theorem 1, the first constraint can befsadis be verified, by simulation, that the use of a constant step siz
in all the three cases in (25), (26), and (28). That is, for tHeads to oscillatory behaviour in the dual variables and the
case\; > 0 and\; = \¢, we will choosez; (\;) = z/*". By allocation of persistent probabilities.
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VI. CONCLUSIONS

obtained by replacing*(A*) and Z*(A*) (i.e., the results from Algorithm
1) into the expressions in (34) and (33), respectively. We see that the
lower bound is very tight in this case. In fact, except for ttese with 14
stations, the lower bound exactly matches the global optsoktion in all

other considered cases.
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Fig. 6. Convergence of the allocation of the persistent @dlties with
insufficient capacitye < ¢¢ using diminishing step size(¢) = 0.01/¢, even
though the allocation may not be globally optimal as disedsa Section IV.

In this work, we proposed a random access algorithm based
on the NUM framework for stations with either concave or
sigmoidal utilities. We applied the dual method to solve ours] M. Xiao, N. B. Shroff, and E. K. P. Chong, “A utility-basegdower-

problem. A sufficient condition on link capacities that guar
antee the optimality of the solution is proposed. Simutaio

have been performed to verify our analytical results.
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