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Abstract— In wireless local area networks (WLANs), quality
of service (QoS) can be provided by mapping applications
with different requirements (e.g., delay and throughput) into
one of the available access categories (ACs), as is done in the
IEEE 802.11e standard. With the increasing programmability
of network adapters, a malicious user can strategically declare a
higher AC for its application to gain an unfair share of resources.
This can drastically degrade the network performance and avoid
adequate service distinction among different ACs. In this paper,
we use the technique of mechanism design in game theory to
tackle this problem in WLANs with random access. We propose
to use the Vickrey-Clarke-Groves (VCG) mechanism in order to
motivate each station to inform the access point (AP) truthfully,
about the required AC of its application. The AP will then inform
each station about its persistent probability and the priceit needs
to pay for the offered service. The result of the allocation of
the persistent probabilities can be used for admission control.
Simulation results show that the use of mechanism design can
lead to a higher aggregate utility and prevents malicious users
from gaining an unfair share of the network bandwidth.

I. I NTRODUCTION

In wireless local area networks (WLANs), the medium
access control (MAC) protocols are important in arbitrating
the access of the shared wireless medium. There are two main
types of MAC protocols in WLANs: scheduling-based (e.g.,
point coordination function (PCF)) and contention-based (e.g.,
distributed coordination function (DCF)). In this paper, we
focus on the study of contention-based MACs as they are
more scalable and inherently more flexible. In contention-
based MACs, usersrandomlyaccess the shared communica-
tion channel with certainpersistent probabilities.

To provide quality of service (QoS) for different applica-
tions, the IEEE 802.11e standard [1] classifies applications into
four different access categories (ACs). Packets in each AC are
placed in a separate queue in the MAC layer. Differentiation
in priorities among the four ACs is achieved through the
use of different channel access parameters (e.g., contention
window), which directly determine the persistent probability
for accessing the shared channel by packets in each AC [2].
The IEEE 802.11e protocol was originally designed for a fully
cooperativenetwork setting, where all stations follow exactly
the operations of the protocol. However, by modifying the
driver of the network adapter, a user can manipulate the MAC
parameters in order to gain an unfair advantage.

Game theory has been shown to be a useful tool in analyzing
the selfish behaviors of users in various networking problems.

In [3], Cagaljet al. formulated carrier sensing multiple access
with collision avoidance (CSMA/CA) using game theory.
Both normal-form and repeated-form CSMA/CA games were
formulated and the existence of Nash equilibria was shown for
each game. In [4], Konorski proposed a game-theoretic strat-
egy called CRISP (Cooperation via Randomized Inclination to
Selfish Play) to counteract the selfish behavior of users. In [5],
Cui et al. proposed a comprehensive framework to study non-
cooperative random access games. The Nash equilibria were
characterized for various settings and distributed algorithms
were proposed. However, the issue ofservice differentiation
among different applications was not addressed in [5].

Papers in [3]–[5] address non-cooperative random access
from the players’ viewpoint, where the key idea is to either
propose strategies to counteract malicious users or to analyze
how non-cooperative users can degrade network performance.
On the other hand, we can take aproactiveapproach from the
system designer’s point of view and propose propermech-
anisms to prevent players from misbehaving. For example,
in [6], Nuggehalliet al. proposed an incentive mechanism to
avoid selfishness. They showed that under certain conditions,
the users are encouraged to always be truthful on declaring
their ACs. This leads to significantly higher throughput as
shown in [6]. Our truthful mechanism design in this paper
is closely related to the results in [6]. However, we consider
a different class of utility functions and mainly focus on
maximizing the aggregate utility across all users aiming to
maximize network social welfare. Our proposed mechanism
design is also different from that in [6] as it is indeed a special
case of the Vickrey-Clarke-Groves (VCG) mechanism [7], [8].
To the best of our knowledge, this work is the first paper to
study VCG mechanism design for random access networks by
taking into account different ACs for different applications. In
summary, the contributions of our work are as follows:

• We consider the problem of assigning persistent prob-
abilities to rational stations in a WLAN to maximize
network social welfare, i.e., the aggregate utility across
all users. We introduce a class of utility functions that
can mathematically model the service requirements for a
wide range of network applications.

• We show that in a non-cooperative random access game
with selfish users, a Nash equilibrium may not exist and
the network has poor performance.



• We formulate the VCG mechanism and its corresponding
pricing scheme for random access networks to enforce
truthfulness and cooperation among rational users.

• We consider the computational issues in VCG and show
that for random access networks, implementing VCG
requires solving a complicatednon-convexoptimization
problem. To tackle the non-convexity, we propose an enu-
meration algorithm such that each iteration only solves
a convexoptimization problem. Our algorithm is easy to
implement and is guaranteed to reach the optimal solution
for any choice of the system parameters.

• Simulation results show that our scheme can ensure
achieving maximum aggregate network utility via mech-
anism design. Moreover, service differentiation and QoS
in terms of throughput can be supported.

The rest of the paper is organized as follows. The system
model is described in Section II. The non-cooperative random
access game when the AP offers different ACs is studied in
Section II-C. Our proposed mechanism, which is based on
VCG, is formulated in Section III. The computational issues
of VCG are discussed in Section III-B. Simulation results are
given in Section IV, and the paper is concluded in Section V.

II. SYSTEM MODEL

Consider a WLAN with a single AP andN stations. The set
of stations is denoted byN = {1, 2, . . . , N}. In this paper, we
use terms “stations” and “users” interchangeably. All stations
are one-hop neighbors to the AP. We only consider the uplink
scenario1 where each stationi ∈ N can access the shared
medium with a persistent probabilitypi. Let psucc

i denote the
probability of successful transmission by stationi. We have

psucc
i = γi(p) = pi

∏

j∈N\{i}(1 − pj), ∀ i ∈ N , (1)

whereγi determines the probability of successful transmission
of stationi whenp = (pi, i ∈ N ) is given. Given the nominal
data rateϕ (e.g., 11 Mbps), theaveragedata rate for user
i is equal toϕpsucc

i . Stations are assumed to run different
types of applications, each of which may have distinct QoS
requirements. For the ease of exposition, we limit our studyto
the case where each station may only run one application at
a time. The proposed framework can be extended to the case
when each station runs multiple applications simultaneously.

A. Utility Function

Let ui(p
succ
i ) denote the level of satisfaction stationi

achieves when it experiences success probabilitypsucc
i , which

itself depends on all persistent probabilitiesp = (pi, i ∈ N ).
We refer to ui as theutility function corresponding to the
application running on stationi. Clearly, utility functions
depend on the QoS requirements of the running applications.
For example, many voice and video applications require amin-
imum level of available bandwidth. If the available bandwidth
drops below the required bandwidth, then the connections

1We notice that malicious users may only affect the performance of uplink
transmissions. In fact, when it comes to the downlink transmissions, the AP
can simply performschedulingwith adequate QoS provisioning.
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should be dropped, leading to zero utilities. In this paper,
the utility function ui for user i ∈ N depends onpsucc

i ,
as well asαi > 0, pcritical

i ∈ (0, 1), and Ki > 1, where
pcritical

i refers to the minimum requiredpsucc
i for the application

to run properly in stationi. It is used to mathematically
model various applications (such as voice and video streaming)
which cannot operate if the minimum required data rate is not
provided.Ki andαi determine the amplitude and curvature of
the utility functions, respectively. For utility parameter αi 6= 1,
we have

ui(p
succ
i , αi, p

critical
i , Ki) =

{

Ki(1−αi)
−1
[

psucc
i

(1−αi)−pcritical
i

(1−αi)
]

, if psucc
i ≥ pcritical

i ,

0, if psucc
i < pcritical

i ,

(2)

and forαi = 1, we have

ui

(

psucc
i , 1, pcritical

i , Ki

)

=

{

Ki log
(

psucc
i

pcritical
i

)

, if psucc
i ≥pcritical

i ,

0, if psucc
i <pcritical

i .
(3)

When Ki = 1 and pcritical
i = 0 in (2) (or pcritical

i = 1 in (3)),
the above utility functions reduce to the well-knownα-fair
utility functions [9]. Sample utility functions based on different
choices of parameters are shown in Fig. 1. Notice that each
utility represents a distinct AC.

B. Network Utility Maximization

Given complete knowledge of all parameters and centralized
control of the network, an efficient choice of all persistent
probabilities, i.e.,p=(pi,∀ i∈N ), is characterized as an opti-
mal solution of thenetwork utility maximizationproblem:

max
p∈P

∑

i∈N ui(γi(p), θi), (4)

where
θi =

[

αi, p
critical
i , Ki

]

, ∀ i ∈ N , (5)

and
P = {p : 0 ≤ pi ≤ 1, ∀ i ∈ N} (6)



represents the set of feasible persistent probabilities. The
objective function in (4) is also callednetwork social welfare.
We notice that since the utilities arenot available to the AP
as they are local to the stations, the AP may solve problem
(4) only after each stationi ∈ N declares its type θi.
Clearly, if all stations are truthful, then the obtained vector
of optimal persistent probabilities leads to optimal network
performance. However, if a useri ∈ N is malicious, then it
may declare itstype to be θ̂i 6= θi. In that case, the obtained
persistent probabilities cannot be optimal. In fact, the network
performance can be quite poor, as we will see in Section IV.

C. Non-cooperative Random Access Game with Different ACs

Using non-cooperative game theory, we first formulate the
describedN -user random access system as a finiteN -person
non-cooperative normal-form game (N , Θ, u), whereN is
the set of stations (i.e., players),Θ = θ1 × θ2 × · · · × θN

is the set of action profiles, andu = (u1, u2, . . . , uN ) is the
vector of utility functions for all stations. The action of each
stationi∈N is to strategicallyselect its declared typêθi (not
necessarily the same as its true typeθi) to maximize its utility.
In other words, given̂θ−i as the vector of declared types for
all stationsother thanstation i, station i selectsθ̂i to solve
the following local problem:

max
θ̂i

ui(γi(p(θ̂i, θ̂−i)), θi), (7)

where

p(θ̂i, θ̂−i) = arg max
p∈P

∑

i∈N ui(γi(p), θ̂i). (8)

Notice that each stationi ∈ N is already aware that the AP
will select the vector of persistent probabilities by solving
problem (8). The complete analysis of game (N , Θ, u) is
not easy in general. However, we can show the following key
result:

Theorem 1:Game (N , Θ, u) hasno Nash equilibrium.

The proof of Theorem 1 is given in Appendix A. From
Theorem 1, the non-cooperative game (N , Θ, u), with no
mechanism design, leads to an unstable network. It is also
important to notice that in this game, stations always have
incentive tocheatand declare their types to be different from
their true types. This can be seen by a simple example as in
Fig. 1 with four ACs. In this example, any station which is
running an application of type corresponding to AC 1 has an
incentive to declare its type as AC 3. We further study this
example in detail in Section IV.

III. T RUTHFUL MECHANISM DESIGN FORWLAN S

From the results in Section II-C, it is required to use a
scheme to force the stations betruthful. In this section, we con-
sider mechanism designfor this purpose. Mechanism design
is a sub-field in microeconomics and game theory that studies
the implementation of an optimal system allocation with self-
interested players, who aim to maximize their own payoffs.
Mechanisms are responsible for the allocation of resources
and incur payment to the players, so as to provide them
with the incentivesto declare their private information (i.e.,

their type) truthfully. Groves mechanism and its subfamily
named Vickrey-Clarke-Groves (VCG) mechanism are among
the most efficient mechanisms that not only tackle dishonesty,
but also guarantee achieving maximum social welfare. The
latter implies achieving the optimum of the network utility
maximization problem in (4).

A. VCG Mechanism Design for Random Access WLANs

For the VCG mechanism [8], given the declared types of
all players θ̂ = (θ̂1, . . . , θ̂N), the AP selects the vector of
persistent probabilities according to the optimal solution of
problem (8), and also thepaymentti(θ̂) for each stationi∈N
given by

ti(θ̂) =
∑

j∈N\{i}

uj(γj(p̃(θ̂)), θ̂j) −
∑

j∈N\{i}

uj(γj(p(θ̂)), θ̂j),

(9)
where

p̃(θ̂) = arg max
p∈P, pi=0

∑

j∈N\{i} uj(γj(p), θ̂j). (10)

Given the vector of payment rulest = (t1, . . . , tN ), each
station needs to payti to the AP for relaying its transmitted
packets. Intuitively, VCG selects the payment values such that
it is the bestchoice for the users to be honest and declare the
correct types. Notice that since each user needs to pay for the
packets it transmits to the AP, the payoff function for each
useri ∈ N is indeed its ownsurplus

si(θ̂, θi) = ui(γi(p(θ̂)), θi) − ti(θ̂), ∀ i ∈ N , (11)

i.e., its utility minus its payment. Notice that since VCG forces
all users to be honest, we indeed haveθ̂i = θi for all users
i ∈ N . Thus, solving problem (8) based on the declared
types suffices to achieve optimal network performance, i.e.,
maximum aggregate network utility.

We are now ready to propose ourVCG-based mechanism for
QoS provisioning in WLANs with random access. It includes
the following four key steps:

1) Type declaration: Before each stationi ∈ N starts
transmission, it informs the AP about the typeθ̂i.

2) VCG mechanism: Given the declared typeŝθ, the AP
calculates the persistent probability as in (8). It also
calculates the paymentst as in (9).

3) Resource allocation and payment: The obtained vectors
of persistent probabilities and payments arebroadcast
by the AP to all stations. Stations may only transmit
based on the persistent probabilities assigned by the AP.

4) Outcome enforcement: If a station i ∈ N is detected2

to transmit with a persistent probability higher than the
persistent probability it is assigned, it will be punished
(e.g., forbid to use the system for a certain amount of
time to offset the advantage it gains from cheating).

The block diagram of the our proposed protocol using VCG
mechanism design is shown in Fig. 2.

2It is easy for the AP to check whether the stations are indeed transmitting
according to the assigned persistent probabilities by listening to the shared
communication medium as explained in [10].
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Fig. 2. Truthful mechanism design for WLANs with random access.

B. VCG Computations

In order to perform the VCG mechanism, we need to
computep(θ̂) in (8) and p̃(θ̂) in (10), which are not easy
to solve in general due tonon-convexityof the product forms
in (1). We also notice that both problems (8) and (10) are
non-differentiable. In this section, we propose an algorithm
to compute the optimal solutions of problems (8) and (10)
efficiently when the utility functions are as in (2) and (3).

First, consider the optimization problem in (8). We can write
this optimization problem in the following form:

max
p

∑

i∈N ui(γi(p), θ̂i)

s.t. 0 ≤ pi ≤ 1, ∀ i ∈ N .
(12)

Let p∗ =p(θ̂). Also let psucc
i

∗ = p∗i
∏

j∈N\{i}(1− p∗j ) denote
the corresponding optimal success probability for stationi. We
can show the following lemma which provides us with a way
to compute the allocation of persistent probabilities.

Lemma 1:At any optimal solution of problem (12), for all
i∈N , we have eitherpsucc∗

i > pcritical
i (θ̂i) or psucc∗

i = 0.

The proof of Lemma 1 is given in Appendix B. From
Lemma 1, VCG allocates the vector of persistent probabilities
p such that for each stationi ∈ N , we have eitherpsucc

i >

pcritical
i (θ̂i) or psucc

i = 0. We notice that the utility function
ui(γi(p), θ̂i) is concave for anypsucc

i ∈ (pcritical
i (θ̂i), 1]. Thus,

we can reformulate problem (12) to be as follows:

max
p∈P,M⊆N

∑

i∈M ui(γi(p), θ̂i)

s.t. psucc
i > pcritical

i , ∀ i ∈ M,

pi = 0, ∀ i ∈ N\M.

(13)

In problem (13), we simply divide the set of stationsN into
two subsets: subsetM and subsetN\M. For each station
i∈M, we include the constraintpsucc

i > pcritical
i . On the other

hand, for eachi∈N\M, we include the constraintpi =0. In
fact, setM acts as anauxiliary variable to modeladmission
control. Here,M denotes the set of those stations which are
admitted to the system. Constraintpsucc

i > pcritical
i implies that

all admitted stationsi ∈ M should achieve their required
minimum bandwidth. On the other hand, those stations which
are not admitted to the system are simply assigned zero success
probability and zero data rate. From Lemma 1, optimization
problems (12) and (13) are indeedequivalent.

Next, assume that we fix setM and have the persistent
probabilities as the only optimization variables in problem

Algorithm 1 Algorithm to solve (8) or (12) for the modified
α-fair utility functions defined in (2) and (3).

1: (Initialization) s = −∞, p∗ = 0, andM∗ = φ.
2: for all subsetM of N do
3: M = |M|.

4: if M−1

√

∏M

i=1 pcritical
i ≤ 1 −

∑M

i=1 pcritical
i then

5: Solve (16) forp.
6: if

∑

i∈M ui(γi(p), θ̂i) > s, then
7: s =

∑

i∈M ui(γi(p), θ̂i), p∗ = p, andM∗ = M.
8: end for

(13). In other words, given setM with size M = |M|, we
solve the following optimization problem:

max
x,p∈P

∑

i∈M ui(xi, θ̂i)

s.t. psucc
i ≥ xi ≥ 0, ∀ i ∈ M,

psucc
i > pcritical

i , ∀ i ∈ M,

pi = 0, ∀ i ∈ N\M.

(14)

Notice that there are2N possible choices for setM, i.e., all
possible subsets of setN . In some cases, (e.g., when too many
users are admitted to the network while the requiredcritical
probabilities are high), problem (14) may becomeinfeasible.

Lemma 2:Given setM and the declared vectorpcritical =
(pcritical

i , ∀ i ∈ M), problem (14) is feasibleonly if :

M−1

√

∏M

i=1 pcritical
i ≤ 1 −

∑M

i=1 pcritical
i . (15)

The proof of Lemma 2 is in Appendix C. Notice that
the condition in (15) is anecessary conditionfor feasibility.
Next, by taking the logarithm of both sides of the first
constraint in problem (14) and a log change of variables
u′

i(x
′
i, θ̂i) = ui(e

x′

i , θ̂i) and x′
i = log xi, we reformulate it

into the following equivalent optimization problem for any
utility parameterαi ≥ 1:

max
x′,p∈P

∑

i∈M u′
i(x

′
i, θ̂i)

s.t. log pi +
∑

j∈N\{i} log(1−pj) − x′
i ≥ 0, ∀ i ∈ M,

log pi +
∑

j∈N\{i} log(1−pj) > log pcritical
i ,∀i∈M,

pi = 0, ∀ i ∈ N\M.
(16)

It is easy to verify that problem (16) isconvex. From this,
together with the results from Lemmas 1 and 2, we are now
ready to propose our algorithm to find the exact global optimal
solution of problem (8). The algorithm is given in Algorithm
1. A similar algorithm can be given to solve problem (10).

IV. PERFORMANCEEVALUATION

In this section, we assess the performance of our proposed
VCG-based mechanism design using MATLAB. We first con-
sider a simple WLAN with one AP and four stations. The AP
supports four ACs. For eachi = 1, . . . , 4, theith station runs an
application which belongs to theith AC. The utility functions
for the four applications are as in Fig. 1. With the use of the
VCG mechanism, we plot the utilities, payments, and surpluses
of the four players in Fig. 3. We consider two cases. In Case I,
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Fig. 3. Results in a sample network with four stations and four ACs:
(a) Utilities, (b) Payments, and (c) Surpluses of all four stations, using the
proposed VCG-based mechanism in Algorithm 1.

station 1 honestly declares that it supports applications in AC
1 while all other stations are also honest. In Case II, station
1 maliciouslydeclares that it supports applications in AC 4
while other stations are still honest. The results are shown
in Fig. 3, where Cases I and II are represented by the two
bars (with grey and blue colors) at the index of each station.
When all the stations are honest, only AC 2 to AC 4 are given
admission to the system. If station 1 lies about its AC and
declares it as AC 3, station 1 but not station 2 is admitted into
the system. The obtained utility of station 1 increases, while
the utilities of the other stations decrease. However, due to the
VCG mechanism, station 1 is punished with a higher payment
when it lies, as shown in Fig. 3(b). Considering both utility
and payment, thesurplus of player 1 indeed decreases if it
lies, as shown in Fig. 3(c). Clearly, this forces user 1 to be
truthful about its type.

Next, we evaluate the performance of our proposed scheme
in a larger network with 10 stations. We assume that there are
two ACs available: AC 1 and AC 2. For AC 1, the utilities are
characterized byKi =1, αi =1, andpcritical

i =0.01. For AC 2
the utilities are characterized byKi =2, αi =1, andpcritical

i =
0.012. Assuming that five stations run AC 1 applications and
five stations run AC 2 applications, the throughput of the two
ACs with different numbers of malicious stations with AC 1
(i.e., lower AC) are shown in Fig. 4(a). Here we assume the
nominal data rateϕ to be 11Mbps. We can see that, without
the use of mechanism design, malicious stations running AC
1 applications will indeed declare themselves as running AC
2 in order to obtain a higher utility. Thus, the AP is unable to
provide differentiated QoS as it was initially intended to do.
On the other hand, when our proposed VCG-based mechanism
is being used, differentiated QoS support is indeed guaranteed
and AC 2 applications are offered better throughput.

We also compare the aggregate network utility (i.e., the
objective function in (4) with different numbers of malicious
stations.) We useKi = 1 for AC 1, Ki = 30 for AC 2, and
the other parameters are the same as above. Results, when
the number of malicious stations (which are running AC 1
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Fig. 4. Impact of using VCG-based mechanism design in a network with
one AP, ten stations, and two ACs: (a) Aggregate throughput of AC 1 and
AC 2; (b) Aggregate utility, with and without mechanism design (MD). We
assume that the five stations which are running AC 2 applications are indeed
honest, and then we vary the number of malicious players among those five
stations which are running AC 1 applications.

applications) varies from 0 to 5, are shown in Fig. 4(b). Recall
that dishonest stations declare themselves as running AC 2
applications, rather than AC 1 applications. As we can see, this
causes deviation from optimal aggregate network utility. The
performance reduction becomes more severe as the number of
malicious stations increase, e.g., resulting in more than 36%
efficiency loss in the presence of five malicious stations. Thus,
using a VCG-based mechanism as in Algorithm 1 is indeed
resulting in a significantly better network performance.

V. CONCLUSION

In this paper, we have studied the problem that a station can
maliciously declare the AC of application that it is supporting
in order to gain a higher utility. This can result in a dras-
tic degradation of network performance and avoid adequate
service distinction among different ACs. We have applied the
VCG mechanism in our random access protocol to motivate
the stations to declare truthfully their ACs of the applications.
The AP then performs admission control, and informs the
stations about their persistent probabilities and the required
payments. We have also studied the computational issue of
the VCG mechanism. The utility functions of the stations are
in the form of modifiedα-fair utility functions, which can
represent the utilities of most applications in general, but are
non-convex and non-differentiable. An algorithm is proposed
to compute the persistent probability and the set of admitted
stations for these utility functions. With the use of mechanism
design, our results show that a higher aggregate utility canbe
achieved and the QoS in terms of throughput can be supported.

APPENDIX

A. Proof of Theorem 1

We prove by contradiction. We first notice that the payoff
function for each useri ∈ N is as in (7), wherep(θ̂i, θ̂−i)

is indeed as in (8). If there exists any Nash equilibriumθ̂
∗

=



(θ̂∗1 , . . . , θ̂∗N ), then for each stationi ∈ N , we should have:

ui(γi(p(θ̂∗i , θ̂∗

−i
)), θi) ≥ ui(γi(p(θ̂i, θ̂

∗

−i
)), θi), ∀ θ̂i ∈ Θi.

(17)
In that case, we can define another vectorθ̂

⋆
such that̂θ⋆

i = θ̂∗i
for all i ∈ N\{1} and we have:̂θ⋆

1 = (α̂⋆
1, p̂

critical⋆
1 , K̂⋆

1 ) =
(α̂∗

1, p̂
critical∗
1 , βK̂∗

1 ) whereβ ≫ 1. It is easy to verify that for
the utility functions in (2) and (3), ifβ → ∞, then the optimal
solution of problem (8) becomes(1, 0, . . . , 0). This indicates
that psucc

1 → 1 and psucc
i → 0 for all i ∈ N\{1}. Since the

utility for each user is an increasing function of the probability
of successful transmission of each user, we have:

u1(γ1(p(θ̂∗1 , θ̂∗

−1
)), θ1) < u1(γ1(p(θ̂⋆

1 , θ̂∗

−1
)), θ1). (18)

Therefore, (17) doesnot hold. This contradicts the assumption
that θ̂

∗
is a Nash equilibrium. Since we considered any arbi-

trary Nash equilibrium, this implies that the non-cooperative
random access game does not have a Nash equilibrium. In
other words, givenany choice of types for the stations, each
stationi ∈ N has an incentive to unilaterallydeviateto another
type with higherKi value to be paid off better.

B. Proof of Lemma 1

We first fix i ∈ N . Then, we compare the sum of utilities
of the players with the two vectors of persistent probabilities
p′ andp′′, wherep′j = p′′j , ∀ j ∈ N\{i}, p′i = 0, andp′′i > 0

such that0 ≤ psucc”
i ≤ pcritical

i (θ̂i).
First, we consider the case that∃ j ∈ N\{i} such that

p′j = p′′j = 1. Then, we havepsucc’
l = psucc”

l = 0, ∀ l ∈ N\{j},
which implies thatul(γl(p

′), θ̂l) = ul(γl(p
′′), θ̂l) = 0, ∀ l ∈

N\{j}. Fromp′ andp′′, we havepsucc’
j ≥ psucc”

j . Becauseuj

is an increasing function ofpsucc
j , we haveuj(γj(p

′), θ̂j) ≥

uj(γj(p
′′), θ̂j). As a whole, we have

∑

j∈N uj(γj(p
′), θ̂j) ≥

∑

j∈N uj(γj(p
′′), θ̂j).

Then, we consider the casep′j = p′′j 6= 1, ∀ j ∈ N\{i}.
In this way, we havep′′i > 0 such that0 < psucc”

i ≤
pcritical

i (θ̂i). From the definition of the utility functions in
(2) and (3), we haveui(γi(p

′), θ̂i) = ui(γi(p
′′), θ̂i) = 0.

From p′ and p′′, we havepsucc’
j ≥ psucc”

j , ∀ j ∈ N\{i}.
Becauseuj is an increasing function ofpsucc

j , we have
uj(γj(p

′), θ̂j) ≥ uj(γj(p
′′), θ̂j), ∀ j ∈ N\{i}. As a whole,

we have
∑

j∈N uj(γj(p
′), θ̂j) ≥

∑

j∈N uj(γj(p
′′), θ̂j).

From the above two cases, we see that the vectorp′′

should never be allocated, because the system is performing
the allocation of persistent probability according to (8).In this
way, we can never have0 < psucc

i < pcritical
i (θ̂i) at optimality

of optimization problem (12).
C. Proof of Lemma 2

Problem (13) is feasible if and only if we have

pi

(

∏

j∈M\{i}(1 − pj)
)

≥ pcritical
i , ∀ i ∈ M. (19)

By manipulating (19), for each useri ∈ M, we have

1 − pi ≤

∏

j∈M(1 − pj)

pcritical
i +

∏

j∈M(1 − pj)
. (20)

Multiplying both sides of the inequality above for all users,
we can finally come up with the following key condition:

∏

i∈M

(1 − pi) ≤
∏

i∈M

(

∏

j∈M(1 − pj)

pcritical
i +

∏

j∈M(1 − pj)

)

(21)

We define:A(p) =
∏

j∈M(1− pj). Clearly,0 ≤ A(p) ≤ 1 is
the probability of experiencing anidle time slot. That is, the
probability thatno user transmits any packet. ReplacingA(p)
in (21), problem (13) is feasible if thereexistsany valueA

between zero and one such that we have:
∏

i∈M(pcritical
i + A) ≤ AM−1. (22)

For the rest of the proof, we show that condition (15) is a
necessarycondition for existence of anyA such that (22)
holds. We first notice that from (22), we need to have

M−1

√

∏

i∈M pcritical
i ≤ A. (23)

Condition (22) can be written as the following extended form:

AM +
(

∑M

i=1 pcritical
i − 1

)

AM−1 + Γ(A) ≤ 0, (24)

whereΓ(A) is a polynomial inA with degreeM −2 and only
non-negative multipliers. Clearly,Γ(A) ≥ 0. Thus, from (24)
we also need to have

A ≤ 1 −
∑M

i=1 pcritical
i . (25)

Putting thelower-boundin (23) and theupper-boundin (25)
together, optimization problem (13) is feasibleonly if there
exists any0 ≤ A ≤ 1 such that the following holds:

M−1

√

∏

i∈M pcritical
i ≤ A ≤ 1 −

∑M

i=1 pcritical
i . (26)

Clearly, the above condition holds as long as the upper bound
is greater than or equal to the lower bound. This directly results
in condition (15).
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