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Abstract—Market power assessment is a prime concern when
designing a deregulated electricity market. In this paper, we
propose a new functional market power measure, termed trans-
mission constrained network flow (TCNF), that unifies three large
classes of transmission constrained structural market power
indices in the literature: residual supply based, network flow
based, and minimal generation based. Furthermore, it is suitable
for demand-response and renewable integration and hence more
amenable to identifying market power in the future smart grid.
The measure is defined abstractly, and allows incorporation
of power flow equations in multiple ways; we investigate the
current market operations using a DC approximation and further
explore the possibility of including detailed AC power flow models
through semidefinite relaxation, and interior-point algorithms
from Matpower. Finally, we provide extensive simulations on
IEEE benchmark systems and highlight the complex interaction
of engineering constraints with market power assessment.

Index Terms—Market power, electricity markets.

I. INTRODUCTION

Beginning in 1990 with Chile, electricity markets in many
regions have moved from being a vertically integrated regu-
lated monopoly to a deregulated market structure that encour-
ages innovation and competition in technology. The California
energy crisis in 2000-01, however, highlights how strategic in-
teraction can erode the benefits of competition in a deregulated
market. It is estimated that about $5.55 billion was paid in
excess of costs in the deregulated market in California between
1998 and 2001 alone [1]. To avoid such over-payments,
monitoring and mitigating market power is essential. It is
expected to become even more critical as new smart grid
technologies such as intermittent renewable generation, energy
storage, and demand-response programs start presenting more
opportunities to exploit.

The Department of Justice defines market power as the abil-
ity of a firm to profitably alter prices away from competitive
levels [2], [3]. In other words, market power is a form of
market “dominance”, where a player can increase its profitabil-
ity by behaving independently of competitors and consumers.
Market power in generic markets has been extensively studied
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using microeconomics, e.g., in [4]. The theory, however, does
not apply directly to electricity markets due to various reasons,
such as: (a) Unlike in most commodity markets, electricity
cannot be stored cheaply; therefore generators have signif-
icant short-run capacity constraints. (b) Electricity demand
is typically inelastic because of limited price-responsiveness
of consumers. (c) Trade agreement between a supplier and a
consumer is not enough to guarantee feasible power delivery
over a transmission grid since power transfer respects physical
laws as well as market outcomes. Economics or engineering
alone cannot handle such issues adequately. In electricity
markets, such dominance can be global, e.g., by a supplier
with a large enough generation capacity, or local, e.g., by a
supplier in a region which has limited ability to import less
expensive electricity due to transmission constraints [5].

A. Literature on Market Power

Classically, the literature on market power is fractured.
Recently, however, a principled design has begun to emerge,
e.g., see [3] for a survey. The analysis of market power can
be divided into three distinct categories: (a) structural analysis,
(b) competition models, and (c) behavioral analysis.

Structural analysis of market power is based on an ex
ante approach where the emphasis is on identifying firms
that own “must-run” generators and hence have a strategic
advantage in terms of market share, location in the network,
etc. Such market power studies are also useful in the long-run
to evaluate mergers, plan transmission capacity expansions,
etc. Competition models analyze the electricity market either
as a supply function or a Cournot competition with or without
transmission constraints and establish competitive benchmarks
for firm behavior using extensive simulations, e.g., see [6]–
[9]. Real data is then compared ex post to such benchmarks
to identify abuses of market power. In contrast, behavioral
analysis is another ex post approach that detects actual supply
withholding or high price-to-cost markups in the spot market
as opposed to comparing it with perfectly competitive behav-
ior. We make two observations. First, such ex post analysis
indeed correlates with structural indices [10], [11]. Second,
ex post analysis with real data can be highly challenging to
identify intentional abuse of market power [12], [13]. Thus ex
ante structural analysis helps to prevent rather than cure such
abuse. In this paper, we focus on structural analysis.

Early work on structural market power analysis, emerg-
ing from microeconomics, suggested measures that focussed
exclusively on market share based on generator capacities,
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e.g., Herfindahl-Hirschmann index (HHI) [14]. The major
shortcoming of such an analysis in electricity markets is in
defining the relevant market. Due to demand variations and
lack of storage, electricity across different periods of time
are not substitutes. Similarly supplies that are geographically
located on different ends of a congested transmission line are
not substitutes. Thus, market power indices that are agnostic
to demand variations and transmission constraints have limited
applicability to electricity markets.

To incorporate the demand side, Bushnell et al. introduced
the pivotal supplier index (PSI) as a binary indicator exam-
ining whether the capacity of a generator is larger than the
supply surplus, i.e., the difference between the total supply
and the total demand [15]. Later, Sheffrin et al. refined PSI by
measuring market power on a continuous scale, and proposed
the residual supply index (RSI) in [16]. This index is used by
the California ISO to assure price competitiveness [17]. The
electric reliability council of Texas (ERCOT) uses a similar
measure called the element competitiveness index (ECI) [18],
based on HHI [14].

Issues arising due to transmission constraints have also been
addressed in the literature. A traditional approach uses the SS-
NIP (small but significant non-transitory increase in price) test
[19] to identify geographically isolated “load pockets”. Many
authors have studied Cournot-based or supply-function based
markets with congestion, e.g., see [6]–[9], [20], [21]. Structural
indices on a transmission constrained network, however, have
remained fractured. We have attempted to bridge that gap in
this work.

B. Contributions of this paper

In this work, we introduce a functional market power
measure for structural analysis that unifies the theory to study
the complex interactions of this measure with the engineering
constraints1. The new measure, termed “transmission con-
strained network flow” unifies three broad classes of structural
measures in the literature: “network flow based” [23], [24],
“residual supply based” [20], [25], and “minimal generation
based” [26], [27]. We introduce each of these classes in detail
in Section II. Calculating the new measure in Section III re-
quires us to solve a nonconvex optimization program resulting
from the nature of the AC power flow equations. Current
electricity markets use a linearized DC approximation [28],
[29]. Employing this approximation, we solve a linear program
(LP) to compute the market power functional and study it in
detail. We further explore the possibility of including a detailed
AC power flow model in this economic measure in Section IV
in two ways: (a) use interior-point based methods implemented
in Matpower [30], (b) use recent advances in semidefinite
programming (SDP) based relaxations [31] to AC power
flow equations [32]–[35]. In Section V, we provide extensive
simulations on IEEE benchmark systems [30] and illustrate
the impact of modeling engineering constraints in identifying
market power. We extend the index to the case where firms
can own generators at multiple locations in Section VI.

1A preliminary version of this work has appeared in [22].

II. MARKET POWER MEASURES

Recently, many indices have been introduced to include
the effect of transmission constraints in structural market
power indices; we categorize them as: “residual supply based”,
“network flow based”, and “minimal generation based”. In
what follows, we introduce each of them in detail.

A. Residual supply based measures

Residual supply based measures propose to quantify the
maximum total load that the transmission-constrained elec-
tricity market can meet if generator of interest, s, is excluded.
Following [20], [25], the transmission-constrained residual
supply index (TCRSI) for generator s is defined as:

TCRSIs = maximize
q,t

t

subject to 1†q = 1†(d̄t),

− b ≤ Hqq −Hd(d̄t) ≤ b,
qs = 0, 0 ≤ qi ≤ q̄i, i 6= s.

(1)

where q is the supply vector, t is the demand scaling parameter,
Hq is the generation shift factor matrix, Hd is load shift factor
matrix, b is the transmission line capacity vector, q̄i is the
capacity of generator i, d̄j is the demand of load j, 1 is a
unit vector, and † denotes transposition. If TCRSIs < 1, then
generator s can potentially exercise market power. Consider
the network in Figure 1. For G1, TCRSI is 3.2/7, the fraction
of demand that can be met with available supply.
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Fig. 1: A small network to illustrate market power indices. All
quantities are measured in per units (p.u.). z denotes impedance

and b denotes line capacity.

B. Network flow based measures

Network flow based measures are exemplified by [23], [24],
which model market power in the presence of transmission
constraints in terms of the maximal network flow (MNF)
achievable without the generator of interest. Conceptually,
these measures are similar to TCRSI, but they do not use
power flow equations to model the underlying power systems.
A key result in [23], [24] is that market power is supermodular,
i.e., there is always an incentive for generators to collude.
This conclusion, however, does not hold if the power flow
respects impedance and follows Kirchoff’s laws. See Section
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VI for an example in IEEE test systems. Intuitively, one
would expect that there is always an incentive to collude
since any individual strategy for generators would likely be
a valid strategy for a collusion of generators. Market power
index measures the demand shortfall due to the absence of
a generator. Consider the network in Figure 1. When G1

withholds generation, G2 can only supply 3.2pu; demand
shortfall is 3.8pu. Similarly, when G2 withholds generation,
demand shortfall is 4.33pu. When both generators withhold,
shortfall is the total demand of 7pu, which is lower than
the sum of the two shortfalls computed before. Thus market
power is not supermodular. Roughly, when power injection
from two different generators lead to opposing power flows on
a capacity-limited transmission line, then these two generators
acting together may not be able to cause more demand shortfall
than shortfalls due to each generator withholding alone. This
intuition holds for the network in Figure 1.

C. Minimal generation based measures

The above two definitions of market power focus on the
fraction of unmet demand when generator at bus s is not in
service. An alternate approach is to calculate the minimum
generation required from generator s to meet the total target
demand. In particular, minimal generation based measures
typically identify “must run generators”, e.g., [26], [27] are
exemplified by the transmission-constrained minimal genera-
tor index (TCMGI):

TCMGIs = minimize
q

qs

subject to 1†q = 1†d̄,

− b ≤ Hqq −Hdd̄ ≤ b,
0 ≤ qi ≤ q̄i.

(2)

Note that in (1), we have qs = 0 and the total load is
scaled by a variable factor t. In (2), however, the output of
generator s is a variable and the total demand is a constant. If
TCMGIs > 0, then generator s can exercise market power.
In general, TCMGIs does not equal the unmet demand in
the network when generator at bus s is not operational. For
example, consider the network in Figure 1. It can be checked
that TCMGI1 = 4.2pu while the shortfall is actually 3.8pu
when the same generator is not in service. TCRSIs and
TCMGIs are indeed related; we explore this below.

III. FUNCTIONAL MEASURE OF MARKET POWER

Prior work on structural market power measures in Section
II suggests that while a wide variety of measures exist, the
literature lacks a unified theory that incorporates economic
and engineering constraints. Here we propose a functional
market power measure rather than a market power index that
represents a step toward such a unifying measure.

To motivate the measure, consider the following informal
definition:

TCNFs(ρ) = maximize total demand met
subject to supply from generator s ≤ ρ,

other network constraints.

The functional TCNFs maps every scalar ρ ∈ [0, q̄i] into
the maximum demand that can be satisfied when the (real)
power output of generator s is no more than ρ. TCNFs(ρ) can
also be interpreted as a measure of the minimum amount of
load that has to be shed (or dispatched, through demand-side
management2), provided that the supply of generator s is up to
ρ. At different levels of ρ, it measures the relative importance
of each generator to meet additional demand, abiding by the
network constraints.

The definition can also be interpreted as follows. Consider
the optimal power flow (OPF) problem where the objective is
to only satisfy demand and the production level of generator
s is upper bounded by the parameter ρ. Then, the optimal
objective value of this OPF type problem is a function of that
variable ρ and hence defines a “functional” measure of market
power for generator s.

In the rest of this section, we provide a detailed power
flow model and its linearized approximation to arrive at a
unifying market power measure that is applicable to the current
electricity markets and can be used for the evolving smart
grid. Next, we formally define TCNFs(ρ) with the engineering
constraints.

A. Definition

We begin with some notation. Let i =
√
−1 and for any

complex matrix or number z, let zH be the complex conjugate
transpose of z. Consider a network on n nodes (buses) labeled
1, 2, . . . , n. Let pGk and qGk be the real and reactive power
generations at node k. Also let pDk and qDk be the real and
reactive power demands that are met at node k. We denote
skj := pkj + iqkj as the apparent power flowing from bus k
to bus j, where pkj and qkj are the real and reactive power
flows, respectively. Thus, power balance equation at each node
k becomes

(pGk − pDk ) + i(qGk − qDk ) =
∑
j:j∼k

skj , (3)

where j ∼ k denotes that buses k and j are connected in the
power network. The power generations are assumed to satisfy

0 ≤ pGk ≤ pGk , −βk pGk ≤ qGk ≤ βk pGk , (4)

where βk > 0 is a known constant that depends on the
technology, i.e., each generator is assumed to vary its reactive
power output within a certain power factor of the real power
generation. The total load to be supported at bus k has a target
real demand pDk and a target power factor αk. The target power
factor depends on the type of load at bus k. Thus, the supported
demand pDk + iqDk satisfies

0 ≤ pDk ≤ pDk , qDk = tan(cos−1 αk) pDk . (5)

Power factors typically range from 0.95 to 0.98 lagging. The
apparent power flowing from bus k to bus j is skj and is

2When there is a deficit in electricity supply, the system operator may
call upon consumers to adjust their demand so as to match the supply − an
approach which is usually referred to as demand response.
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bounded by the thermal and stability limits of the transmission
lines as

|skj | ≤ fkj , (6)

where fkj is the known capacity of the line between buses k
and j. Let the voltage at bus k be Vk, and the admittance of
the line between buses k and j be ykj . The current flowing
from bus k to bus j is ykj(Vk − Vj) and we have

skj = Vk [ykj(Vk − Vj)]H . (7)

To maintain power quality and the system stability, the voltage
magnitude |Vk| at bus k is required to be bounded as follows:

W k ≤ |Vk|2 ≤W k, (8)

where W k and W k are known constants.
Using the notations introduced above, we are now ready to

formally introduce a measure the market power of a generator
at node s as follows:

TCNFs(ρ) = maximize
∑
k

pDk

subject to pGs ≤ ρ,
(3), (4), (5), (6), (7), (8),

over pGk , q
G
k , p

D
k , q

D
k , k = 1, . . . , n,

skj , k ∼ j.

(9)

We refer to this measure as the transmission-constrained net-
work flow. The constraints in (3)-(8) model the impact of the
network topology, the underlying circuits, and the transmission
line capacities. These constraints make our analysis different
from a traditional economic approach to market power. Note
that, TCNFs(ρ) is a functional measure, i.e., it evaluates
market power for every given value of parameter ρ.

In Section III-C, we describe how the measure in (9) unifies
the three general classes of structural market power measures
discussed in Section II. The formulation of the TCNF measure
in (9) is general. Depending on how the non-convexity in the
power flow equations is tackled, different variations of the
TCNF measure can be derived. We focus on the most practical
version, which is based on the linear DC approximation,
since current electricity markets widely employ this to model
the underlying power system. In the rest of this section, we
describe this approximation and analyze the resulting TCNF
measure in detail. To highlight the generality of the TCNF
framework, we also discuss other variations of the measure in
Section IV.

B. The DC approximation

Currently, most electricity markets use a linearized DC
approximation of the power flow equations. Therefore, the
immediate application of our proposed functional market
power measure is realized when it is customized based on
DC approximation, using the following common assumptions
[28], [29]:
• Voltage magnitude |Vk| at each node k is assumed to

be at its nominal value, where Vk = |Vk| exp(iθk). Thus
|Vk| = 1pu.

• Transmission lines are assumed to be loss-less, i.e., ykj =
ibkj is purely imaginary for all pairs k ∼ j.

• For any pair of buses k ∼ j, the voltage phase angle
differences θk−θj are assumed to be small, i.e., sin(θk−
θj) ≈ θk − θj and cos(θk − θj) ≈ 1.

Using this approximation, for any pair k ∼ j, we have

skj = pkj = bkj(θk − θj).
It can be checked that there is no reactive power flow in this
model; thus, ignoring the reactive power demand constraint in
(5), this definition of TCNFs coincides with the one studied
in [22] and can be solved as an LP. Henceforth, we refer to
this computation as the DC case, denoted by TCNFDC

s (ρ).

C. Properties of TCNFDC
s

Earlier, we introduced the functional measure TCNFs(ρ)
and its DC approximated version TCNFDC

s (ρ) to assess mar-
ket power. Now, we explore its salient features. TCNFDC

s (ρ)
generalizes network flow based and residual supply based
measures. When ρ = 0, it indicates the maximal network flow
satisfying the DC power flow constraints when generator s
withholds generation.

To relate TCNFs to the minimum generation based mea-
sure, consider the transmission-constrained minimal genera-
tion TCMGs(D) for generator s to be defined as follows:

TCMGs(D) = minimize pGs ,

subject to
∑
k

pDk = D,

(3), (4), (5), (6), (7), (8),

over pGk , q
G
k , p

D
k , q

D
k , k = 1, . . . , n,

skj , k ∼ j.
This generalizes the minimum generation based measures
in [23], [24] to a functional form. It is easy to extend
the definition of TCMGs(·) to its DC approximated version
TCMGDC

s (·). In the next result, we explore the relationship of
the functions TCNFDC

s (·) and TCMGDC
s (·); proof is included

in the appendix.

Theorem 1. For each generator s, TCNFDC
s (·) is a con-

tinuous, concave, piecewise linear and non-decreasing func-
tion; TCMGDC

s (·) is a continuous, convex, piecewise lin-
ear and non-decreasing function. Moreover, TCNFDC

s (·) and
TCMGDC

s (·) are inverses of each other, i.e., for any 0 ≤ D ≤
TCNFDC

s (∞),

TCNFDC
s

[
TCMGDC

s (D)
]

= D.

The inverse relationship between TCNFDC
s (·) and

TCMGDC
s (·) holds for all 0 ≤ D ≤ TCNFDC

s (∞). Here,
TCNFDC

s (∞) is the total demand in the network that can
be met when the power generated by generator s is not
constrained (it, however, satisfies the generation capacity
constraint 0 ≤ pGs ≤ pGs in (4)). Beyond that, the network
cannot satisfy the target demand and hence TCMGDC

s (D)
only exists for 0 ≤ D ≤ TCNFDC

s (∞).
Next, we illustrate the result of Theorem 1 through an ex-

ample. Consider the network shown in Figure 1. TCNFDC
s (·)
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Fig. 2: TCNFDC
s (·) of generators in the 3-bus network shown in

Figure 1. Quantities are measured in per units (p.u.).

is plotted for generators at buses 1 and 2 in Figure 2. Functions
TCNFDC

1 (·) and TCNFDC
2 (·) are continuous, convex, piece-

wise linear and non-decreasing. As noted earlier, TCNFDC
s (0)

equals the TCRSI for generator s. Also, TCMGI for generator
s is given by min{ρ ≥ 0 | TCNFs(ρ) = TCNFs(∞)}. TCRSI
and TCMGI for each generator are indicated in the figure.

Lower the value of TCNFDC
s (·), higher the market power

of generator s. Thus, we plot mins TCNFDC
s by considering

the lower envelope of TCNFDC
1 (·) and TCNFDC

2 (·) to indicate
the market power of the dominant generator for each ρ ≥ 0.
In this example, the generator with maximum market power
changes with ρ. This suggests that market power assessment is
complex and cannot be sufficiently captured through a single
index.

D. Calculating TCNFDC
s

Computing the DC approximated market power functional
requires solving a linear program that is fast and scalable
with the size of the network. From Theorem 1, we know that
TCNFDC

s (·) is continuous and piecewise linear. Then we can
characterize the slopes of the linear segments of TCNFDC

s (·)
using Lagrangian duality [31]; furthermore, we can use these
slopes to provide an efficient way to compute the function.
Specifically, for generator s, let µ be the Lagrange multiplier
for the constraint pGs ≤ ρ. For any function f(z) in variable z,
define (df(z)/dz)+ as its right-hand derivative . We can relate
the slopes of the linear segments of the functions TCNFDC

s (ρ)
as follows: (

d

dρ
TCNFDC

s (ρ)

)+

= µ∗, (10)

where µ∗ is the Lagrange multiplier at the optimum. Recall
that TCNFs(ρ) is piecewise linear and is non-differentiable
at the end-points of each line segment, but the right-hand
derivative in (10) is well-defined. Using (10), a recursive
algorithm can be developed to compute TCNFDC

s (ρ) for ρ
in any interval [a, b]; see [22] for details.

IV. AC POWER FLOW AND MARKET POWER

While DC approximation approach results in a variation of
the TCNF measure that best fits the current practice in existing

electricity markets, in this section, we explore the possibility
of including a detailed AC power flow model in market power
assessment.

To motivate this generalization, notice that structural indices
identify pivotal suppliers, i.e., generators that are crucial to
meet demand subject to engineering constraints. These con-
straints, however, are not limited to transmission capacities of
the network only and includes limits on voltage magnitudes
and reactive powers. Thus, though our focus is on TCNFDC

s ,
it is interesting to explore the impact of the underlying en-
gineering model on the economics of electricity markets. The
analysis in this section also serves to highlight that our market
power functional easily generalizes with different models of
power flow equations.

As noted in Section III, the calculation of TCNFs involves
the solution of a nonconvex optimization problem in (9). The
role of nonconvexity of power-flow equations have played
a significant role in the literature on power networks [36].
Traditionally, the engineering problems and market computa-
tions have differed in the approaches taken to deal with this
nonconvexity. While market outcomes have relied on the DC
approximation [15], [16], [18], [22], [23], [25], engineering
problems such as real-time economic dispatch have applied
heuristics or iterative techniques to reach an implementable
operating point [30], [37]. The conic relaxation approach,
however, is a recent development and is finding applications
in both the engineering and market considerations, e.g., see
[32], [33], [35] for its use in optimal power flow and see [38],
[39] for its use in electricity markets. In what follows, we
present these two computational approaches to assess market
power with AC power flow equations: (1) using heuristic
iterative nonconvex optimization techniques in Section IV-A,
(2) relaxing the non-convex quadratic equality constraint to a
convex semidefinite constraint and use conic program solvers
in Section IV-B. Our goal in this section is to explicitly
characterize the effect of engineering models of the power
system to electricity market considerations.

A. Non-linear optimization technique

Many iterative techniques have been used to solve opti-
mization problems in power systems, specifically the optimal
power flow problem; see [36], [37] for surveys. Some notable
examples are quadratic programming, variations of gradient
methods, Newton-based techniques, sequential quadratic pro-
gramming, and interior-point based methods.

In this work, we use the primal-dual interior-point solver
in Matpower [30]. When this converges, we refer to it as
TCNFNL

s and call this computation as the NL case. Though
it is hard to comment on the optimality of the point obtained
through this heuristic, the use of Matpower solver provides
insights as we explore the simulations on the IEEE bench-
mark systems. Interior-point methods were popularized by
Karmarkar for LPs [40] and Nesterov et al. for SDPs [41].
For LPs and SDPs, it is known that interior point methods
converge to a global optimal solution in polynomial time. For
nonlinear nonconvex problems, they rather provide a heuristic
approach to obtain a local optimal solution. Matpower has
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been known to perform well for economic dispatch problems
over various IEEE test systems. As we would show in Section
V, the NL case often shows similarity to the DC and the AC
cases and provides a yard stick to measure the performance
of our proposed DC approximation and the AC relaxation
approaches. However, we reiterate that computing TCNF in
(9) is NP-hard and thus it is hard to comment on the optimality
of the solution obtained using Matpower.

B. The SDP relaxation approach

Recently, a conic relaxation has been proposed to deal
with the nonconvexity of power-flow equation in (7), e.g.,
see [32]–[35]. In particular, consider the n × n positive
semidefinite matrix W = V V H that has rank one (denoted
as W � 0, rank W = 1). For each pair of buses k ∼ j, we
express skj as a linear matrix relation in W as follows. Define
an n× n matrix Mkj , where

[Mkj ]kk = yHkj , [Mkj ]jk = −yHkj ,
and rest of the entries of Mkj are zero. In terms of Mkj , the
equality in (7) can be written as

skj = tr(MkjW ).

Accordingly, the optimization problem to calculate TCNF
becomes a rank-constrained SDP [31] in terms of matrix W .
It still remains nonconvex due to the rank constraint. Next, we
relax the rank constraint to obtain TCNFAC

s (ρ) and refer to
this computation as the AC case.

When the relaxation is exact, it indeed provides a global
optimal solution as opposed to the heuristic NL case. The
sufficient conditions for exact relaxation, however, are specific
to particular network topologies and constraint patterns [33],
[34]. When line-flow constraints are active, the relaxation is
often inexact, as in [42] and the optimization yields a non
rank-1 optimal W∗. To better understand the accuracy of the
relaxation, we explore the quantity η := λ2(W∗)/λ1(W∗) ,
where λ1(W∗), λ2(W∗) are the first and second eigenvalues
of the positive semidefinite matrix W∗, respectively. A lower
value for this ratio indicates a smaller optimality gap and hence
more accurate results. We report the statistics of the quantity
η on IEEE benchmark systems in Section V. We remark that
SDP relaxation is known to scale poorly with the size of the
network. However, recent results in [35], [43] suggest that the
sparsity of the power network can be suitably exploited to
obtain fast and scalable conic relaxations.

C. Properties of TCNFNL
s and TCNFAC

s

In Section III-C, we explored the property of the market
power functional TCNFDC

s (ρ). Here, we present a result sim-
ilar to that of Theorem 1. For the minimum generation based
measure, consider the versions of TCMGs computed using
non-linear heuristic techniques of Section IV-A as TCMGNL

s

and through the SDP relaxation of Section IV-B as TCMGAC
s .

First, we relate TCNFAC
s and TCMGAC

s as follows.

Theorem 2. For each generator s, TCNFAC
s (·) is a contin-

uous, concave, and non-decreasing function; TCMGAC
s (·) is

a continuous, convex, and non-decreasing function. Moreover,
TCNFAC

s (·) and TCMGAC
s (·) are inverses of each other, i.e.,

for any 0 ≤ D ≤ TCNFAC
s (∞),

TCNFAC
s

[
TCMGAC

s (D)
]

= D.

The proof is similar to that of Theorem 1 and is omitted for
brevity. From Theorems 1 and 2, it follows that the function
TCNFDC

s (·) satisfies all properties of TCNFAC
s (·); in addition,

it is also piecewise linear, because the optimization problem
to compute TCNFDC

s is a linear-parametric LP. This property
does not generalize to linear-parametric SDPs; see [31] for
a counterexample. The concavity and monotonicity follow
from standard arguments on the feasible sets of the respective
optimization programs.

Second, unlike the DC and AC approximations, TCNFNL
s (·)

may not be concave since the local minimum over the
nonconvex feasible set of the corresponding optimization
problem may not be concave. The function TCNFNL

s (·)
may not be monotonically increasing in the interval
[0,TCMGNL

s (TCNFNL
s (∞))] in this case, and thus may not

be invertible either.

V. CASE STUDIES

In this section, we use our proposed unifying measure to
assess market power of generators in various IEEE test systems
[30]. In particular, we show how the market power functional
TCNFDC

s can be affected by different factors such as the varia-
tion of target demand due to distributed renewable generation,
changes in dispatchable load in presence of demand-response
programs, etc. To investigate the significance of engineering
constraints on market outcomes, we further compare the results
with TCNFNL

s and TCNFAC
s and in particular, characterize the

role of non convexity of power flow equations and uncertainty
of load power factors in assessing market power.

In our simulations, we consider the IEEE 6-bus and 39-
bus test systems. In each case, we look at a variety of
scalings of the target demands in the test systems to understand
the impact of demand fluctuation and distributed renewable
generation. Specifically, target demands are scaled uniformly
by a scalar t ≥ 0, i.e., each target demand pDk in the database is
multiplied by a factor t to obtain the new target demand for our
simulations. We assume that for all generators, the minimum
level of generation is zero, i.e., pGk ≥ 0. Most systems have a
reactive generation capability defined by qG

k
≤ qGk ≤ qGk . We

modify this box constraint on qGk to −βkpGk ≤ qGk ≤ βkp
G
k

as in (4), where βk is chosen accordingly for each case study.
To compute TCNFDC

s (·) and TCNFAC
s (·), we use the convex

programming package CVX [44] in MATLAB with SDPT3 as
the SDP solver [45]. Finally, TCNFNL

s is computed using the
primal-dual interior-point method in Matpower [30].

A. IEEE 6-bus Test System

The IEEE 6-bus test system has three generators at nodes
1, 2 and 3. For all generators, we assume that βk = 0.6 and
for all loads we assume that the power-factors are αk = 0.98
lagging. In Figure 3, we plot TCNFDC

s (ρ), TCNFNL
s (ρ), and

TCNFAC
s (ρ) for demand scalings of t = 1.2 and t = 1.9.
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Fig. 3: TCNF calculation based on different approaches for various generators in the IEEE 6-bus system.
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Fig. 4: TCNFAC(ρ) for generators 2 and 3 plotted for load power factors from 0.95 to 0.99 lagging in the IEEE 6-bus system.

For the DC case at t = 1.9, consider the total demand level
(y-axis) of 3.2pu, which is lower than the total target demand
level. At this demand level, TCNFDC

1 has a larger slope than
TCNFDC

3 . Therefore, to satisfy an extra unit of demand at
3.2pu, generator 1 has to supply less additional power and
hence more valuable to the system operator. This means that
generator 1 has more market power in an incremental market.

Notice, however, that there is a remarkable difference be-
tween the AC and the DC cases, while the results from the
NL case are similar to that of the AC model. Therefore, in
this case study, the SDP relaxation finds a feasible and close
to optimal solution of the non-convex optimization problem
in (9). In Theorems 1 and 2, the TCNF functions for the
DC and AC cases in Figure 3 are increasing and concave
for all generators. This property does not generalize for the
NL case. Note that, for generator 3, the optimization problem
for calculating TCNFAC

s remains infeasible for ρ ≤ 0.35pu.
This indicates that generator 3 is needed to supply at least
0.35pu in order to maintain system stability. It is interesting
to note that if the SDP relaxation is infeasible, so is the non-
linear optimization problem in (9) and hence the interior-point
method does not converge to a feasible point for ρ ≤ 0.35pu.
We can also see that TCNFNL

s and TCNFAC
s are quite similar

except for generators 1 and 2 at ρ = 0, where TCNFNL
s is

greater than TCNFAC
s . For such a non-convex optimization

problem, determining feasibility is NP-hard and hence it is
hard to comment whether the problem in (9) is infeasible at
ρ = 0. The SDP relaxation TCNFAC

s , however, is feasible.
Moreover, it is continuous at ρ = 0 as expected from Theorem
2.

Another key observation is about the importance of each
generator at various demand levels, in presence of dispatchable
load. In this regard, we see that at the same demand level,
TCNFDC

s in Figure 3(a) and TCNFAC
s in Figure 3(c) give

conflicting conclusions, while TCNFNL
s in Figure 3(b) agrees

with TCNFAC
s , indicating that the relaxation approach of AC

power flow model is efficient in quantifying market power in
the IEEE 6-bus system.

Finally, we conduct a numerical analysis to assess the
sensitivity of our proposed market power measure to uncer-
tainty in nodal reactive power values. Consider TCNFAC

s (ρ) in
Figures 4(a) for generator 2 and in Figure 4(b) for generator 3,
respectively. The plots have been generated with t = 1.2 and
t = 1.9 and the load power factors have been varied from 0.95
to 0.99 lagging uniformly for all buses in each case. We can
make two important observations. First, changing the power
factor does have impact on market power analysis because the
curves for TCNFAC

2 (ρ) and TCNFAC
3 (ρ) are different. Second,

there is no crossing among the TCNF curves in this figure,
which means, minor changes in the power factor, e.g., due to
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uncertainty in measuring nodal reactive power, do not change
our conclusions with respect to identifying the generators with
highest potential to gain market power. Therefore, while using
an AC power flow model may help in better assessing market
power due to its inherently more accurate representation of
the underlying physical power system, it is not necessarily
prone to higher errors due to uncertainty in both active and
reactive power measurements. Of course, whether one would
prefer to use TCNFDC

s (ρ) or TCNFAC
s (ρ) may depend on

several factors, such as availability of computational power
and existing market practices, which are beyond the scope of
this paper.

B. IEEE 39-bus Test System

We now assess our proposed approach for market power
analysis in a larger IEEE test system with 39 buses. At each
bus s, the value of parameter ρ in function TCNFs(ρ) can be
interpreted as the amount of curtailable load that is available
for dispatch at bus s, in case of losing the generator at bus
s. The higher the amount of dispatchable load at a bus, the
better the grid operator can handle the loss of a generator at
that bus, preventing such generator from gaining market power.
However, the effectiveness of the same amount of dispatchable
load in mitigating market power may not be the same at
different buses. In other words, dispatchable load can be more
(or less) valuable at certain locations. For example, consider
the simulation results in Figure 5. Here, we are considering the
TCNFs for generators at buses 31, 35 and 38. For the purpose
of our analysis, we plot the lower envelope of TCNFs only,
namely mins∈{31,35,38} TCNFs(·) for demand levels ranging
from t = 1.0 to t = 1.15. For the case where t = 1.15,
increasing the dispatchable load capacity is most beneficial
when it is done at bus 38 because the generator at bus 38 has
the highest potential to gain market power in this case. As
another example, for the case where t = 1.05, if there is 1pu
of dispatchable load capacity already in place in all generator
buses, then increasing the dispatchable load capacity is most
beneficial at bus 31, but if there is 3pu of dispatchable load
capacity already in place in all generator buses, then increasing
the dispatchable load capacity at bus 35 is most beneficial.

We can also make the following observations based on
the results in Figure 5: (a) In the DC approximation case,
depending on the value of ρ, different generators may gain
the maximum market power. However, in the AC case, it is
only generator 38 that always maintains the maximum market
power for all values of ρ. (b) The DC and the NL cases are
more similar to each other than the corresponding AC case.
(c) For demand scaling of t = 1.15, the DC and NL cases
indicate that the total demand that can be met is lower than
the total target demand. In the AC case, however, the total
target demand of about 71.1pu can be satisfied.

C. Summary of findings

We end our case studies by summarizing some of the
highlights of our market power functional, as applied to IEEE
benchmark systems. First, our proposed measure is suitable to
incorporate the impact of demand-response in market power

Test Case # of Scenarios Mean η Max η
6-bus 834 0.0015 0.0044
9-bus 900 0.0034 0.0093

39-bus 900 0.0099 0.0171

TABLE I: Statistics of η for IEEE benchmark systems.

analysis. One option is to analyze demand response by looking
at the results at a certain demand level, as we explained in
Section V-A. Another option is to analyze demand response in
form of quantifying the value of dispatchable loads at different
buses, as we explained in Section V-B. Note that, since we
study structural market power, our analysis does not involve
pricing. Accordingly, it does not address price-elasticity in
load demand. However, our case study in Section V-B provides
an example on how we can utilize dispatchable loads as an
elastic demand resource to mitigate market power.

Second, the results in our case studies can also be used
to understand the role of renewable generation. For example,
similar to the analysis in Section V-B, we can assess renewable
generators by examining their impact on parameter ρ. Note
that, at a bus where a traditional generator is co-located with
a renewable generator, the value of ρ is calculated as the total
power injection by both generators combined. Therefore, we
can analyze how the variations in the output of renewable
generator may aggravate or mitigate market power of a co-
located traditional generator.

Finally, our proposed market power functional easily gener-
alizes to allow consideration of different power flow models.
Though our focus is on the DC model, our case studies also
highlight that the AC power flow equations provide valuable
insights into identifying reliability must-run generators that are
otherwise not obvious from a DC model. Though uncertainties
in reactive power loads can affect the TCNF curves of the
generators, the variations tend to be much smaller as compared
to the DC case. This suggests that faithfully representing the
engineering model significantly affects market considerations.

We end this section with a remark on the accuracy of
the SDP relaxations in the computation of TCNFAC

s for
IEEE benchmark systems. Recall that the quantity η :=
λ2(W∗)/λ1(W∗) is a measure of accuracy of the relaxation,
where λ1(W∗), λ2(W∗) are the first and second eigenvalues
of the optimal positive semidefinite matrix W∗, respectively.
A lower value corresponds to a smaller optimality gap. We
tabulate η for our simulation runs on IEEE benchmark systems
in Table I. We see that η is typically very small, but may
not be negligible. The optimality gaps may not be accurate
to find optimal operating points in economic dispatch, but
as far as structural market power analysis is concerned, the
results provide valuable insights to the market monitor on
the complex interaction of power flow equations with market
power assessment.

VI. FIRM BEHAVIOR

Our focus so far has been on identifying market power of a
single generator. However, our analysis can easily be extended
to the case where a single firm owns multiple generators at
different locations. Let S denote the set of locations (buses)
where the firm has a generator. The TCNF index of the
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Fig. 5: The lower envelope of TCNF, i.e., mins TCNFs for selected generators in the IEEE 39-bus system.

firm can be defined using the optimization problem (9) with
a modified constraint that the total supply of the firm’s
generators does not exceed ρ, i.e.,

∑
s∈S p

G
s ≤ ρ. Similarly,

the TCMG index of a firm can be defined as the minimum total
supply needed from the generators of this firm in order to meet
a certain demand level D. This index can be calculated by
modifying the objective function to

∑
s∈S p

G
s in the definition

of TCMGs.
Note that, if an “adversarial” firm acts strategically to

degrade the performance of the grid, then the behavior of each
individual generator (of the firm) might be potentially different
if it acted as a separate entity. A game theoretic analysis will
be needed to measure the “worst-case” market power of an
adversarial firm, which is an area left for future work.

We end this discussion with a note on supermodularity
of market power. When market power is supermodular, it
suggests that there is an incentive for generators to collude
and form large firms. In fact, previous work in [23], [24] has
suggested that there is always such an incentive. However,
[23], [24] did not use power-flow equations in their study, and
so we revisit this question here. Interestingly, it is indeed the
case that, most of the time, market power is supermodular.
This is not always the case though, e.g., for the IEEE 39-bus
system, supermodularity does not hold for TCNFDC

s (0) for
generators at nodes s = 31 and s = 32 when the line-flow
limits are uniformly scaled down to 70% of their given values.
Other examples can also be found. While it is often the case
that firms have incentive to collude, this is not universally true.

VII. CONCLUDING REMARKS

In this paper, we propose a functional market power measure
for structural analysis, called the transmission constrained net-
work flow. This measure unifies three directions within market
power research – residual supply based measures, network
flow based measures, and minimal generation based measures.
The measure is useful to study market power with demand
response and renewable generation and hence suitable to the
needs of the evolving smart grid. Furthermore, it generalizes
to the case where firms own multiple generators across the
network and can be extended to study possible mergers among
generators. Motivated by current market practices, we focus

our analysis on the market power functional with a linearized
DC approximation of the power flow equations. However,
to highlight the generalized market power framework, we
also explore the possibility of incorporating the detailed AC
power flow equations in our measure. Extensive simulations
on IEEE benchmark systems suggest that conclusions can vary
significantly depending on the power flow model considered.
This points towards the growing need of faithfully representing
the physics of the underlying power system in the design and
analysis of electricity markets; engineering and economics in
isolation is not enough to capture the complex interaction.

APPENDIX
PROOF OF THEOREM 1

In computing TCNFDC
s , the optimization is an LP lineally

parameterized by ρ. Then it is well-known that the optimal
objective function (in this case TCNFDC

s (ρ)) is continuous and
piecewise linear in the parameter ρ; e.g., see [46, Lemma 2].
Thus, TCNFDC

s (ρ) is a continuous and piecewise linear
function of ρ ≥ 0. For 0 ≤ ρ1 < ρ2, the feasible set
for the optimization problem to compute TCNFDC

s (ρ1) is a
subset of that of TCNFDC

s (ρ2) and thus TCNFDC
s (ρ) is non-

decreasing in ρ ≥ 0. Let the optimal points for problems
TCNFDC

s (ρ1) and TCNFDC
s (ρ2) be x1 and x2, respectively.

For any 0 ≤ γ ≤ 1, the point γx1 + (1 − γ)x2 is a feasible
point for the problem TCNFDC

s (γρ1 + (1 − γ)ρ2). Then it
follows that TCNFDC

s (ρ) is concave.
Next, we show that TCNFDC

s (·) and TCMGDC
s (·) are

inverses of each other. For any ρ ≥ 0, consider the optimal
point for the optimization problem to compute TCNFDC

s (ρ).
This optimum is feasible for the optimization problem
TCMGDC

s [TCNFDC
s (ρ)] and we have

TCMGDC
s [TCNFDC

s (ρ)] ≤ ρ. (11)

Similarly, it can be checked that for any 0 ≤ D ≤
TCNFDC

s (∞),

TCNFDC
s [TCMGDC

s (D)] ≥ D. (12)

For ρ ∈ [0,TCMGDC
s [TCNFDC

s (∞)], replacing D =
TCNFDC

s (ρ) in (12), we obtain

TCNFDC
s

[
TCMGDC

s (TCNFDC
s (ρ))

]
≥ TCNFDC

s (ρ). (13)
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Now, for ρ ∈ [0,TCMGDC
s [TCNFDC

s (∞)], we have
TCNFDC

s (ρ) is concave and non-decreasing. Then it is easy
to check that TCNFDC

s (ρ) is monotonically increasing in this
interval and hence from (13), it follows that

TCMGDC
s [TCNFDC

s (ρ)] ≥ ρ.
Combining the above relation with (11), we have

TCMGDC
s [TCNFDC

s (ρ)] = ρ. (14)

The rest follows from the fact that for 0 ≤ ρ ≤
TCMGDC

s [TCNFDC
s (∞)], the map TCNFDC

s (ρ) is monoton-
ically increasing and hence one-one in this interval.
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