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Abstract—Consider a smart grid system in which every user
may or may not choose to participate in Demand Side Manage-
ment (DSM). This will lead to a general co-existence problem
between participant and non-participant users. To gain insights,
first, we show that some existing electricity billing mechanisms
suffer from severe fairness and co-existence defects. Next, we
propose an alternative billing mechanism that can tackle the co-
existence and fairness problems by taking into account not only
the users’ total load, but also the exact shape of their load profiles.
Our analytical results provide mild sufficient conditions on the
choice of system parameters to assure fairness. Furthermore, our
simulation results confirm that the proposed billing mechanism
significantly improves the fairness index of the DSM system.
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I. INTRODUCTION

Demand side management (DSM) commonly refers to pro-

grams implemented by utility companies to control the energy

consumption at the consumer side of the meter [1]. One

approach in DSM is direct load control (DLC). In residential

DLC, based on an agreement between the utility company and

customers, the utility or an aggregator, can remotely control

the operations and energy consumption of certain appliances

in a household [2]. An alternative for DLC is smart pricing,

where users are encouraged to individually and voluntarily
manage their loads, e.g., by reducing their consumption at

peak hours [3]. This can be done using automated Energy

Consumption Scheduling (ECS) units that are embedded in

users’ smart meters, as suggested in [4]. For each user, the

ECS unit finds the best load schedule to minimize the user’s

electricity bill while fulfilling the user’s energy needs.

The literature on DSM with smart pricing is extensive. One

thread of research, e.g., in [5]–[8], focuses on an individual

user’s load to minimize his daily or monthly energy expendi-

ture. In this viewpoint, the potential impact of each user’s load

profile on the price of electricity and consequently on other

users’ electricity expenses is not considered. The common

analytical tool in such studies is optimization [9].

Another thread of research that has emerged only recently,

e.g., in [4], [10]–[13], rather focuses on energy consumption

management in a group of users that share an energy source

or are connected to a shared electric bus of the power grid.

Such studies do consider the impact of users’ load profiles

on other users’ energy expenditure. The common analytical

tool in these studies is Game Theory [14]. Both competitive

and cooperative game theoretic frameworks have been recently

considered and various solution concepts, in particular Nash

Equilibrium (NE), have been investigated.

A common assumption in the existing literature on game

theoretic analysis of DSM is that all users are rational and

they are willing to participate in DSM programs. The usual

argument to support this assumption is that since participation

has financial benefits, users have no reason not to participate.

However, it is clear that full penetration of ECS devices will

not happen overnight and it is likely to see users who will

hesitate to switch to new technologies. Therefore, it is of

practical importance to investigate scenarios where only a

subset of users in each neighborhood participate in DSM.

This will lead to a general co-existence problem between

participant and non-participant users that can particularly

raise some concerns with respect to DSM fairness.

In this paper, we focus on an autonomous DSM system,

similar to the one studied in [4] using game theory. We

show that the design in [4] has major drawbacks when it

comes to co-existence and fairness. Furthermore, we show

that those drawbacks are essentially due to the type of the

billing model adopted that charges each user only based on

his total energy consumption. While the billing model in [4]

is optimal and minimizes the total energy cost in the system,

it falls short taking into account the shape of the users’ exact

load profiles. This makes the system unfair in the sense that,

two users with the same total load pay the same bill even if

they receive energy in different-priced hours. In addition, when

DSM participant users co-exist with non-participant users,

non-participant users may unfairly benefit from the participant

users’ efforts to reduce the cost of electricity in the system

without having any contribution in minimizing the cost. Such

users can eventually become free riders. As an alternative

for the electricity billing model in [4], here in this paper,

we propose a strategy that takes into account not only the

user’s total load, but also the exact shape of his load profile.

The proposed scheme is in fact an improved version of the

billing scheme in [4] to obviate the mentioned drawbacks with

respect to co-existence and fairness. The rest of this paper is

organized as follows. The system model is explained in Section

II. The proposed billing scheme is presented in Section III and

compared by that of [4] in a simple illustrative example. An

analytical case study is provided in Section IV to gain insights



Fig. 1. A power system of N users and one energy source. User 1 does not
participate in DSM. Users 2, . . . , N use ECS units and participate in DSM.

about the performance of the proposed billing scheme. The

simulation results are presented in Section V. Conclusions and

future work are discussed in Section VI.

II. SYSTEM MODEL

Consider a smart power grid with N users and one energy

source, as shown in Fig. 1 [4]. In this system, each user

can choose to be equipped with an ECS unit which can

communicate with other users’ ECS units as well as the energy

source, via a communication infrastructure. In this figure,

user 1 does not have an ECS unit and does not participate

in demand side management. At every hour h, the cost of

electricity Ch(.) is a function of the total load at hour h. As

an example, for thermal generators, we have [15]

Ch(Lh) = ahL
2
h + bhLh + ch,

where Lh is the total load at hour h and cost parameters

ah, bh > 0 and ch ≥ 0 are fixed for every hour h.

The ECS units manage the users’ controllable load for

the next H hours, e.g., H = 24 for a daily scheduling,

in order to reduce the users’ electricity bills. For example,

washer, dryer, dishwasher, and plug-in electric vehicles are

controllable and their operations can be shifted over time. For

the ease of presentation, here we assume that each user has

exactly one load, e.g., one appliance, which is controllable.

The operation of such load can be shifted over time. Let En

denotes the total energy needed to finish the operation of the

load for user n ∈ {1, . . . , N}. The load of user n should be

scheduled within the time interval between αn and βn to be

indicated by the user. For example, the user may set αn =
1:00 PM and βn = 5:00 PM for the operation of a dishwasher

after the lunch table and before diner. Let (�1n, �
2
n, . . . , �

H
n )

denote user n’s load profile, where �hn is user n’s scheduled

energy consumption at hour h. To assure on time operation of

appliances, for each user n, it is required that user n’s ECS

fulfill the following constraints

βn∑
h=αn

�hn = En (1)

and

�hn = 0 for all h /∈ {αn, αn + 1, . . . , βn}. (2)

User n’s ECS unit should seek to find the optimal load profile

that satisfies (1) and (2) and minimizes user n’s individual

electricity bill. Since users choose their load profiles in a

distributed manner and given the fact that each user’s bill

amount is affected not only by his load but also by other users’

loads due to their impact on the energy cost in the system, we

can identify the following DSM game among users.

• Players: Users n = 1, 2, . . . , N .

• Sets of Actions: For every user n, the set of actions is the

set of load profiles (�1n, . . . , �
H
n ) satisfying (1) and (2).

• Payoff Functions: For every user n, the payoff function

is −Bn where Bn is the electricity bill of user n.

Clearly, different billing schemes may yield to different N.E.

in the above game. For example, in [4], users’ electricity bills

are proportional to their total energy consumption. That is, for

every two users n and m, we have

B̃n

B̃m

=
En

Em
, (3)

where B̃n is the bill of user n according to the billing

mechanism in [4]. From this, together with the budget balance

requirement that users’ total bills should match the total energy

cost in the system, each user n’s bill was formulated in [4] as

B̃n =
En∑N

m=1 Em

×
H∑

h=1

Ch

(
N∑

n=1

�hn

)
. (4)

From (4), any two users with equal total load will pay equally

on their bills. This holds even if one user is a participant user

and the other user is non-participant. This may encourage users

not to participate or do not show major flexibility in their

load profile as the exact load profile of a user does not have

any impact on how he will be billed. Next, we propose an

alternative billing scheme that fixes these problems at N.E..

III. FAIR BILLING FOR DEMAND SIDE MANAGEMENT

A. Illustrative Example

Assume that N = 3 users share an energy source. We have

E1 = E2 = 10kw and E3 = 12.5kw. The users want to

schedule their load for the next H = 4 hours. User 1 is not
flexible and insists to operate his load within the first hour

h = 1. That is, α1 = β1 = 1. User 2 is partially flexible and

allows load distribution within the first two hours h = 1, 2.

That is, α2 = 1 and β2 = 2. User 3 is completely flexible
and allows load distribution at any time. That is, α3 = 1 and

β3 = 4. According to the billing scheme in [4], we have

B̃1 = B̃2 =
10

32.5

4∑
h=1

Ch

(
3∑

n=1

�hn

)

and

B̃3 =
12.5

32.5

4∑
h=1

Ch

(
3∑

n=1

�hn

)
.

Clearly, the bills of every user is minimized if and only if

the total cost of energy in the system is minimized. This will

encourage users to make efforts to minimize the total cost of

the system. In fact, this is the main advantage of the billing

system in [4]. Next, assume that the hourly cost functions

are C1(x) = C2(x) = 0.01x2 + 2x and C3(x) = C4(x) =



TABLE I
THE N.E. FOR THE ILLUSTRATIVE EXAMPLE WHEN BILLING IS AS IN [4].

user n
load schedule of user n

bill B̃n
�1n �2n �3n �4n

1 10 0 0 0 17.49

2 0 10 0 0 17.49

3 0 0 6.25 6.25 21.86

0.03x2 + x. The N.E. strategies and the users’ bills can be

obtained as shown in Table I. The total cost of energy in the

system at N.E. becomes $56.84. We can see that although user

2 is more flexible than user 1, users 1 and 2 end up paying

equally on their bills. Next, we will explain how this unfair

aspect can be solved using an alternative billing mechanism.

B. Alternative Billing Mechanism

To solve the problem with respect to fairness in Section

III-A, next we propose an alternative billing scheme that incor-

porates the exact shape of each user’s load profile. According

to this new billing mechanism, for each user n, we have

Bn =

H∑
h=1

Bh
n,

where Bh
n is user n’s bill at hour h. The hourly bills are set

such that for every users n and m, we have

Bh
n

Bh
m

=
�hn
�hm

. (5)

From (5) and given the budget balance requirement that total

hourly bills should match the total hourly cost of electricity,

user n’s hourly bill at hour h is obtained as

Bh
n =

�hn∑N
m=1 �

h
m

N∑
m=1

Bh
m

=
�hn∑N

m=1 �
h
m

Ch

(
N∑

m=1

�hm

)
.

Consequently, user n’s daily electricity bill is calculated as

Bn =

H∑
h=1

�hn∑N
m=1 �

h
m

Ch

(
N∑

m=1

�hm

)
. (6)

Comparing (4) and (6), and also (3) and (5), we can see that the

alternative billing scheme proposed in this section incorporates

the exact hour-by-hour load profile of each user.

Next, consider the example in Section III-A. Employing the

billing scheme in (6), the N.E. strategies and the bill of every

user are changed as shown in Table II. We can see that unlike

the billing mechanism (4) that charged users 1 and 2 equally,

simply because they have equal total energy consumption,

the proposed alternative billing scheme in (6) charges user 2
about 1.8% less than user 1 due to user 2’s more flexibility in

his energy consumption. Furthermore, while user 3 has 25%
higher total daily energy consumption compared to users 1

TABLE II
THE N.E. FOR THE ILLUSTRATIVE EXAMPLE WHEN BILLING IS AS IN (6).

user n
load schedule of user n

bill Bn
�1n �2n �3n �4n

1 10 0 0 0 21.25

2 2.50 7.50 0 0 20.87

3 0 0 6.25 6.25 14.84

and 2, it is charged 40% less due to its complete flexibility

in energy consumption scheduling. These results can motivate

users to be more flexible and to remain a participant user. The

examples in this section suggest that the proposed alternative

billing scheme can potentially fix the fairness and co-existence

problems of the billing mechanism in [4].

IV. ANALYTICAL RESULTS

Consider the DSM system in Section II and assume that

H = 2 hours and the cost function is in the form of

Ch(x) = ahx
2 + bhx, (7)

for each hour h = 1, 2. User 1 is not flexible in his load.

Therefore, it does not participate in DSM. In fact, we have

α1 = β1 = 1. For any other user n = 2, . . . , N , they are

participant users and we have αn = 1 and βn = 2. In this

setup, the load profile of user 1 is (E1, 0) and the load profile

of any other user n is in the form of (�1n, En−�1n), where �1n ∈
[0, En]. Every participant user n, more specifically his ECS

unit, wants to determine �1n such that his bill Bn is minimized.

Without loss of generality, we sort users indexes such that

E2 ≤ E3 ≤ . . . ≤ EN . (8)

Next, we characterize the N.E. of the DSM game.

Theorem 1: Consider the above system model and assume

that the electricity billing scheme is as in (6).

a) If E1 ≥ b2−b1
a1

, then (l1∗2 , l1∗3 , . . . , l1∗N ) is a N.E. for the

DSM game, where for each user n = 2, . . . , q − 1, we have

�1∗n = 0, (9)

and for each user n = q, . . . , N , we have

�1∗n =
1

N − q + 2

[
−E1 +

a2
∑q−1

m=1 Em − b1 + b2
a1 + a2

]

+
a2

a1 + a2
En.

(10)

Here q denotes the smallest n = 2, . . . , N such that

a2
a1+a2

En ≥ 1

N−n+2

[
E1− a2

∑n−1
m=1 Em−b1+b2
a1 + a2

]
. (11)

b) If E1 < b2−b1
a1

, then (l1∗2 , l1∗3 , . . . , l1∗N ) is a N.E. for the

DSM game, where for each user n = 2, . . . , p− 1, we have

�1∗n = En, (12)



and for each user n = p, . . . , N , we have

�1∗n =
1

N − p+ 2

[
−a1

∑p−1
m=1 Em − b1 + b2
a1 + a2

]

+
a2

a1 + a2
En.

(13)

Here p denotes the smallest n = 2, . . . , N such that

a1
a1+a2

En≥ 1

N− n+ 2

[
−a1

∑n−1
m=1 Em − b1 + b2
a1 + a2

]
. (14)

The complete proof of Theorem 1 is omitted due to page limit.

Instead, the sketch of the proof is provided in Appendix A.

Now, assume that there exists a participant/flexible user n ∈
{2, . . . , N} such that En = E1. Given the fact that users 1
and n have the same total load but user n is more flexible

in his energy consumption schedule, the proposed alternative

billing mechanism is fair only if at N.E. we have Bn ≤ B1.

That is, the participant/flexible user n should not be charged

more than the non-participant/non-flexible user 1. The equality

Bn = B1 should occur only if users 1 and n have exactly the

same load profile, i.e., when we have l1∗1 = l1∗n = En = E1.

Theorem 2: The DSM system explained in this section is

fair if we have b2 ≤ b1, where b1 and b2 are defined in (7).

The proof of Theorem 2 is given in Appendix B. From

Theorem 2, the proposed billing scheme guarantees fairness
if proper cost functions are employed by the utility.

Remark 1: Interestingly, if b2 ≤ b1, then achieving fairness

does not depend on the other cost parameters a1 and a2.

Remark 2: Constraint b2 ≤ b1 is a sufficient, not a necessary,

condition for fairness. In fact, if b2 > b1, then depending on

the values of energy consumptions E1, E2, . . . , EN and other

parameters, the system may or may not be fair.

V. SIMULATION RESULTS

While extending the analytical results in Section IV to

more general DSM scenarios is a challenging future task and

beyond the scope of this conference paper, using computer

simulations we can still investigate the performance of the

proposed electricity billing mechanism and compare it with the

one in [4], under various system parameters. First, we define

a fairness index to facilitate quantitative fairness evaluation.

A. Fairness Index

In a fair DSM system, we expect rewarding users with more

flexible load. First, assume that we come up with a measure

In to evaluate flexibility/inflexibility of user n’s load. In that

case, a fairness index associated with the billing mechanism

of interest B1, B2, . . . , Bn can be defined as

F =

N∑
n=1

∣∣∣∣∣ Bn∑N
m=1 Bm

− In∑N
m=1 Im

∣∣∣∣∣ . (15)

From (15), a lower F indicates a more fair billing. Here, the

fairness index is defined as the variational distance between

normalized billing vector and normalized inflexibility vector.

However, other distance measures may also be considered.
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Fig. 2. Comparing the proposed billing and the one in [4] in terms of fairness.

Next, we define the individual flexibility/inflexibility index

In for each user n. In particular, we introduce a model to

assess user n’s load inflexibility as

In =
En

βn − αn + 1

βn∑
h=αn

K(h), (16)

where for each 1 ≤ h ≤ H , we have

K(h) =
∑

m:αm≤h≤βm

Em

βm − αm + 1
.

We note that K(h) indicates the total load in the system

at hour h if each user m evenly distributes his total energy

consumption Em across the feasible interval (αm, βm). There-

fore, hours h with higher K(h) can be interpreted as peak

hours. Therefore, index In can be seen as a way to evaluate

whether or not user n has chosen αn and βn such that it would

concentrate its load at peak hours. Furthermore, from (16), the

inflexibility measure In increases as user n selects inflexible

energy consumption scheduling intervals (αn, βn), i.e., when

the number βn − αn + 1 is small. Combining (15) and (16)

the fairness index F can be calculated.

B. Performance Comparison

In our benchmark smart grid system, there are N = 20
users scheduling their loads for the next H = 24 hours. The

total load En for each user n is randomly selected between 0
and 40. Also, in our simulation model, the values of αn and

βn are randomly generated such that the overall load profile of

the system looks similar to the practical load profile, e.g., we

have two peak hours around 11 AM and 19 PM. The energy

cost functions are considered to be Ch(x) = 0.01x2 + 2x for

h < 12 and Ch(x) = 0.03x2 + x for h ≥ 12.

The simulation results on the average fairness index of

the proposed billing scheme as well as the electricity billing

scheme in [4] are shown in Fig. 2. We can see that, by using
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the billing mechanism that we proposed in (6), the average

fairness index of the DSM system is improved by 40%. As

mentioned before, the billing mechanism in [4] aims to enforce

minimizing the total energy cost of the DSM system. Thus, we

expect that in our alternative billing approach, we face a trade-

off between achieving fairness and minimizing the total energy

cost in the DSM system. Nevertheless, the simulation results

show that the increase of total energy cost in comparison with

the least-cost billing strategy in [4] is minor and around only

1% on average across different scenarios, as shown in Fig. 3.

Next, we assess fairness in DSM co-existence scenario.

The results are shown in Fig. 4. In this figure, for different

percentage of users’ participation, we have plotted the average

fairness index for both billing mechanisms. The results show

that for different participation percentages, our billing can

significantly improve fairness in comparison with the billing

mechanism in [4]. In particular, when the percentage of users’

participation is low, fairness improvement is more significant.

VI. CONCLUSION AND FUTURE WORK

This paper represents a first step towards tackling the co-

existence and fairness problems in autonomous demand side

management. To gain insights, we considered a smart grid

system with an energy source that is shared by a group of

users who may choose to participate in a DSM program.

Each participant user tries to minimize his bill by shifting

his load from peak hours to off-peak hours. Using a game

theoretic analysis, we tackled the fairness and co-existence

problems among participant and non-participant users at Nash

Equilibrium of the formulated DSM game. In this regard, we

proposed a novel billing mechanism that takes into account

not only the user’s total load, but also the shape of his

load profile. Our analytical results provided mild sufficient

conditions on the choice of system parameters to assure

fairness. Furthermore, our simulation results confirmed that
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the proposed billing improves the average fairness index of

the system in return for only a very minor increase in total

energy cost in the system, suggesting a reasonable trade-off

between efficiency and fairness in DSM systems.

The ideas and results in this paper can be extended in

various directions. First, one can extend the analytical results

to cover more general system models. Second, the users’

payoff functions can be adjusted to include both electricity

bills and also users’ comfort. Finally, while the proposed

billing mechanism in this paper is promising, the problems

of co-existence and fairness can be further investigated for

potentially other and more advanced billing methods.

APPENDIX

A. Sketch of the Proof of Theorem 1

In case a, we need to show that for every user n, the best

response is �1∗n ∈ [0, En] if all other users m �= n choose

action �1∗m , where �1∗m and �1∗n are defined by (9) and (10).

Because of the differentiability of Bn, it is sufficient to show

that

1) 0 ≤ �1∗n ≤ En for all 2 ≤ n ≤ N .

2) dBn

d�1n
≥ 0 for n ≤ q − 1 and dBn

d�1n
= 0 for n ≥ q.

Using (6) and (7), we can show that

dBn

d�1n
= (a1 + a2)(�

1
n +LT )− a2(ET +En) + b1 − b2, (17)

where LT and ET are the total load and the total need for

energy that is, LT =
∑N

m=1 �
1
m and ET =

∑N
m=1 Em. From

(9) and (10), the value of LT in our proposed billing strategy

is obtained as

L∗
T =

E1

N − q + 2
+

a2
a1 + a2

N∑
m=q

Em

+
N − q + 1

N − q + 2
× a2

∑q−1
m=1 Em − b1 + b2

a1 + a2
. (18)



Substituting (10) and (18) in (17), for each n ≥ q, we have

dBn

d�1n
=(a1+a2)(�

1∗
n +L∗

T )−a2(ET +En)+b1−b2 = 0. (19)

For each n ≤ q − 1, from (9) and (17), we can write

dBn

d�1n
= (a1 + a2)(L

∗
T )− a2(ET + En) + b1 − b2

=
a1 + a2
N−q+2

[
E1+

−a2
∑q−1

m=1 Em+b1−b2
a1 + a2

]
−a2En. (20)

On the other hand, from the definition of q in (11), we have

a2Eq−1

a1 + a2
<

1

N−q+3

[
E1 − a2

∑q−2
m=1 Em − b1 + b2

a1 + a2

]
. (21)

Subtracting 1
N−q+3× a2

a1+a2
Eq−1 from both sides in (21), yields

a2Eq−1

a1+a2
<

1

N−q+2

[
E1+

−a2
∑q−1

m=1 Em+b1−b2
a1 + a2

]
. (22)

From (20) and (22), for each n ≤ q − 1, we have

dBn

d�1n
> a2Eq−1 − a2En ≥ 0, (23)

where the last inequality comes from (8). From (19) and (23),

it is concluded that �1∗n is the best response of user n.

To complete the proof, we must show that 0 ≤ �1∗n ≤ En.

Clearly, it is true for n ≤ q − 1. Using (22), for each n ≥ q

�1∗n =
1

N−q+2

[
−E1+

a2
∑q−1

m=1 Em−b1+b2
a1 + a2

]
+

a2
a1+a2

En

< − a2
a1 + a2

Eq−1 +
a2

a1 + a2
En < En.

On the other hand, from (8) and (11), for each n ≥ q, we have

a2
a1 + a2

En ≥ 1

N − q + 2

[
E1+

−a2
∑q−1

m=1 Em+ b1− b2
a1 + a2

]
,

which means �1∗n ≥ 0 and the proof is complete.

The proof for case b is similar and is omitted due to space

limitation.

B. Proof of Theorem 2

Assume En = E1 for some participant/flexible user n ≥ 2.

From (6) and (7), the bills of users 1 and n are equal to

B1 = a1E1LT + b1E1

and

Bn= a1�
1
nLT+ b1�

1
n+a2(En− �1n)(ET −LT )+ b2(En− �1n),

respectively, where LT and ET are the total load and energy

consumption of all users. From Theorem 1 and since En =
E1, at N.E. we have

B∗
1 −B∗

n = (E1 − �1∗n ) [(a1 + a2)L
∗
T − a2ET + b1 − b2]

where L∗
T is the value of LT at N.E.. By definition, E1−�1∗n ≥

0. Therefore, fairness in the billing system is achieved if we

have

(a1 + a2)L
∗
T − a2ET + b1 − b2 > 0. (24)

If b2 ≤ b1, then we always have E1 ≥ b2−b1
a1

. In this case L∗
T

is as (18). Therefore, we can rewrite (24) as

E1 >
b2 − b1
a1

+
a2
a1

q−1∑
m=2

Em. (25)

On the other hand, using the definition of q in (11), we have

a2
a1+a2

Eq−1 <
−1

N−q+3

[
−E1 +

a2
∑q−2

m=1 Em − b1 + b2
a1 + a2

]

which results in (25) as shown bellow:

E1 >
b2 − b1

a1
+

a2
a1

[
(N − q + 3)Eq−1 +

q−2∑
m=2

Em

]

=
b2 − b1
a1

+
a2
a1

[
(N − q + 2)Eq−1 +

q−1∑
m=2

Em

]

>
b2 − b1
a1

+
a2
a1

q−1∑
m=2

Em.

Hence, (24) is satisfied and the system is fair.
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