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Motivation

FFT ↦ Fundamental Component
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Agenda

• Fundamentals

• Waveform: Real-World Examples

• Waveform Measurement Unit

• Synchro-Waveforms

• Data-Analytics Methodologies 

• Detection

• Location Identification

• Characterization and Classification

• Applications

• Further Reading
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Waveform: Real-World Examples

Synchro-waveform Data Analytics and Applications

• Example 1 (Voltage Sag):

• Looking at voltage waveform is not necessary in this example. 

Phasor (Magnitude) Waveform
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Waveform: Real-World Examples

Synchro-waveform Data Analytics and Applications

• Example 2 (Resonance):

• We cannot see the high-frequency resonance in the phasors. 

Phasor (Magnitude) Waveform
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Waveform: Real-World Examples

Synchro-waveform Data Analytics and Applications

• Example 3 (Fault):

• Waveforms show much more 

details in this example. 

Phasor Waveform



Waveform Measurement Unit

• The device to measure voltage and current waveform:

• WMU: Waveform Measurement Unit1

(Compare it with PMU: Phasor Measurement Unit)

• WMU is a generic term. The actual sensor might be called:

• Power Quality Meter

• Digital Fault Recorder (DFR)

• Point-on-Wave (POW) Sensor

(They all measure waveform)

1 H. Mohsenian-Rad, Smart Grid Sensors: Principles and Applications, Cambridge University Press, April 2022.
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Waveform Measurement Unit

• WMUs can measure both voltage and current waveforms: 

• Measured by the same 

WMUs (over 12 terminals):
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Synchro-Waveforms

• Two Concepts:

Synchro-Phasors = Phasors + Time Synchronization

Synchro-Waveforms = Waveforms + Time Synchronization

• Analysis of Synchro-Waveforms is the focus in this Tutorial. 

G
P

S
 C

lo
c
k

GPS Antennas
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Synchro-Waveforms

• Synchro-Waveforms in Example 3:

WMU 1 WMU 2
Time Synchronized
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Synchro-Waveforms

• Another Example - Synchro-Waveforms:

WMU 1 WMU 2
Time Synchronized

Minor Differences

(Event is Likely Far from both WMU 1 and WMU 2)
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Synchro-Waveforms

• Synchro-Waveforms in the example with Resonance:

WMU 1 WMU 3
Time Synchronized

Another Location

(Also, Different Voltage Level)

(System-Wide Sub-Cycle Resonance, Seen at Multiple Substations)
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Synchro-Waveforms

• Synchro-Waveforms in the example with Resonance:

• WMUs observe the same physical phenomena at different locations.

WMU 1 WMU 3

Synchro-Waveform Situational Awareness

Covering Various Event Signatures (Sub-Cycle, Few-Cycle, etc.)

Time Synchronized
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Synchro-Waveforms

• Field Measurements:

Single-Phase (120 V)

Three-Phase (480 V)Three-Phase (12.47 kV)
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WMUs versus PMUs versus H-PMUs

• Example: Phasor Measurements During an Event:

Fundamental 3rd Harmonic 5th Harmonic
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WMUs versus PMUs versus H-PMUs

• Note: Adding harmonic phasor data is helpful:

• Example: Improvement in Event Clustering 2

2 A. Aligholian and H. Mohsenian-Rad, "GraphPMU: Event Clustering via Graph Representation Learning Using 

Locationally-Scarce Distribution-Level Fundamental and Harmonic PMU Data," in IEEE Trans. on Smart Grid, 2022.

13% Improvement
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• Note: Adding harmonic phasor data is helpful:
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• Question: Why limit ourselves to “phasor” representation?

2 A. Aligholian and H. Mohsenian-Rad, "GraphPMU: Event Clustering via Graph Representation Learning Using 
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Synchro-Waveform Data Analysis

• Situational awareness with synchro-waveform data:

• Data Size Per WMU: 3,981,312,000 Readings Per Day

• One Pair of WMUs: 8 Billion Data Points Per Day

• Event-Driven Data Analytics:

– Event Detection

– Event Location Identification

– Event Characterization / Classification
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Event Detection

• Let’s distinguish two cases: 

Harmonic Distortions Event
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Event Detection

• Let’s distinguish two cases: 

Harmonic Distortions Event

(Steady-State Analysis3          H-PMUs)

3 F. Ahmadi and H. Mohsenian-Rad, "A Physics-Aware MIQP Approach to Harmonic State Estimation in Low-Observable 

Power Distribution Systems Using Harmonic Phasor Measurement Units," in IEEE Trans. on Smart Grid, Sept, 2022. 
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Event Detection

• Let’s distinguish two cases: 

Harmonic Distortions Event

(Steady-State Analysis3          H-PMUs)

3 F. Ahmadi and H. Mohsenian-Rad, "A Physics-Aware MIQP Approach to Harmonic State Estimation in Low-Observable 

Power Distribution Systems Using Harmonic Phasor Measurement Units," in IEEE Trans. on Smart Grid, Sept, 2022. 

Our Focus in This Section

Hamed Mohsenian-Rad UC Riverside 16 / 46Synchro-waveform Data Analytics and Applications



Event Detection

• Event-triggered waveform capture:

Event Cycle
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Event Detection

• In practice, it is common to simply compare two consecutive cycles:

Event Cycle

Reference
Cycle
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• In practice, it is common to simply compare two consecutive cycles:

Event Cycle

Reference
Cycle

Hamed Mohsenian-Rad UC Riverside 18 / 46Synchro-waveform Data Analytics and Applications

What Metric?



Event Detection

• Different ways to compare two cycles of waveforms1:

• Comparing THD

• Comparing RMS

• Point-to-Point Comparison

• Comparing Sub-Cycle RMS

• Differential Waveform

• Neutral Current Waveform

• Other Factors and Methods
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Event Detection

Comparing THD 

• Compare two consecutive waveform cycles based on their THD values.

THD = 16%

THD < 1% THD = Total Harmonic Distortion
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ΔTHD ≥ 𝛼THD



Event Detection

Differential Waveform

• It works based on obtaining the following differential waveform:

where 

𝑥(𝑡) is the measured current waveform or voltage waveform; 

𝑇 is the waveform interval; and 

𝑁 is a small integer number, e.g., 1, 2, 3, 4, or 5.

• We can detect an event based on the characteristics of Δ𝑥 𝑡 .

Δ𝑥 𝑡 = 𝑥 𝑡 − 𝑥(𝑡 − 𝑁𝑇).
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Event Detection

Differential Waveform

• Consider the current waveform measurements below:

𝑥 𝑡

𝑥(𝑡 − 𝑇)
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Event Detection

Differential Waveform

• The differential waveform is obtained as:

• We can see that the event has created two distinct blips in the 

differential waveform, which are denoted by 1  and  2 . 

• Note that both of them are associated with the same event. 
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Event Detection

Differential Waveform

• The differential waveform is obtained as:

• We can see that the event has created two distinct blips in the 

differential waveform, which are denoted by 1  and  2 . 

• Note that both of them are associated with the same event.

Thresholds
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Event Detection

Neutral Current Waveform

• Consider the following three-phase current waveform measurements:

Phase of the Event

The other two Phases
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Event Detection

Neutral Current Waveform

• The neutral current is obtained as:

• Note: No second blip, unlike in the differential waveforms. 
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𝑖N 𝑡 = 𝑖A 𝑡 + 𝑖B 𝑡 + 𝑖C 𝑡 .



Event Detection

Neutral Current Waveform

• The neutral current is obtained as:

• Note: No second blip, unlike in the differential waveforms. 
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𝑖N 𝑡 = 𝑖A 𝑡 + 𝑖B 𝑡 + 𝑖C 𝑡 .

Thresholds



Event Detection – Multiple Waveforms

• We may also try to simultaneously check multiple waveforms.

• For example, suppose two WMUs collect the following waveforms:

• Voltage at WMU 1: 𝑣1(𝑡)

• Current at WMU 1: 𝑖1(𝑡)

• Voltage at WMU 2: 𝑣2(𝑡)

• Current at WMU 2: 𝑖2(𝑡)
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Event Detection – Multiple Waveforms

• We may also try to simultaneously check multiple waveforms.
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• Current at WMU 1: 𝑖1(𝑡)

• Voltage at WMU 2: 𝑣2(𝑡)

• Current at WMU 2: 𝑖2(𝑡)

We can look for 
event in each waveform.

Detect

Detect

Detect

Detect
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Event Detection – Multiple Waveforms

• Graphical Metrics4 :

Location 1 / WMU 1

Location 2 / WMU 2

𝑣1 𝑡 , 𝑖1(𝑡)

𝑣2 𝑡 , 𝑖2(𝑡) 𝑣
𝑡
=
𝑣
1
𝑡
−
𝑣
2
(𝑡
)

𝑖 𝑡 = 𝑖1 𝑡 − 𝑖2(𝑡)

Area = න
𝑖(𝜏=𝑡−𝑇)

𝑖(𝜏=𝑡)

𝑣 𝑡 𝑑𝑖(𝑡)

4 M. Izadi and H. Mohsenian-Rad, "Characterizing synchronized Lissajous curves to scrutinize power distribution 

synchro-waveform measurements," in IEEE Trans. on Power Systems, vol. 36, no. 5, pp. 4880-4884, Sept 2021.

Lissajous Graph 𝐴(𝑡)

𝑆 𝑡 = 1 −
𝐴 𝑡 − 𝐴(𝑡 − 𝑇)

max 𝐴 𝑡 , 𝐴(𝑡 − 𝑇)

Similarity Index
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Synchro-Waveform Data Analysis

• Situational awareness with synchro-waveform data:

• Data Size Per WMU: 3,981,312,000 Readings Per Day

• One Pair of WMUs: 8 Billion Data Points Per Day

• Event-Driven Data Analytics:

– Event Detection

– Event Location Identification

– Event Characterization / Classification
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Event Location Identification

• Finding the Cause of Transient Events:

Event

Substation

WMU 1 WMU 2

1 k-1 k m2
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Event Location Identification

• Finding the Cause of Transient Events:

Event

Substation

WMU 1 WMU 2

1 k-1 k m2

Extract  𝑣event(𝑡)



𝑝=1

𝑃

𝐴𝑝,𝑚 𝑒𝜎𝑝𝑡 cos 2𝜋𝑓𝑝𝑡 + 𝜃𝑝

Damping Sinusoidal Modes
(𝑓𝑝, 𝜎𝑝, 𝐴𝑝,𝑚, 𝜃𝑝)

Number 
of Modes

Modal Analysis
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Multi-Signal Modal Analysis:

𝑣1 𝑡 , 𝑖1 𝑡 , 𝑣2 𝑡 , 𝑖2 𝑡

WMU 1         WMU 2
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Event Location Identification

Synchro-waveform Data Analytics and Applications

Time Domain Frequency Domain

Fundamental Event Mode

• Accordingly, we can solve the circuit in “event mode”.

• This means solving the circuit based on 𝜔, 𝜎 (instead of over 𝜔0)

𝜔0 𝜔, 𝜎

Modal
Analysis
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode5:

𝜔, 𝜎, 𝐴1, 𝜃1

WMU 1

𝜔, 𝜎, 𝐴8, 𝜃8

WMU 2

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.

1 2 43 5 6 7 8
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode5:

𝜔, 𝜎, 𝐴1, 𝜃1

WMU 1

1 2 43 5 6 7 8

𝜔, 𝜎, 𝐴8, 𝜃8

WMU 2

?

Event Bus

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode5:

𝜔, 𝜎, 𝐴1, 𝜃1

WMU 1

𝜔, 𝜎, 𝐴8, 𝜃8

WMU 2

Step 1: Forward Sweep (Event Mode)

𝑉1
𝑓
, 𝑉2

𝑓
, … , 𝑉7

𝑓
, 𝑉8

𝑓

(Phasors in Event Mode; not in Fundamental Mode)

1 2 43 5 6 7 8

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode5:

𝜔, 𝜎, 𝐴1, 𝜃1

WMU 1

𝜔, 𝜎, 𝐴8, 𝜃8

WMU 2

(Phasors in Event Mode; not in Fundamental Mode)

1 2 43 5 6 7 8

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.

Step 2: Backward Sweep (Event Mode)

𝑉1
𝑏, 𝑉2

𝑏, … , 𝑉7
𝑏, 𝑉8

𝑏
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Event Location Identification

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode5:

𝜔, 𝜎, 𝐴1, 𝜃1

WMU 1

𝜔, 𝜎, 𝐴8, 𝜃8

WMU 2

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.

1 2 43 5 6 7 8

𝑘∗ = argmin
𝑖

Ψ𝑖 where Ψ𝑖 = 𝑉𝑖
𝑓
− 𝑉𝑖

𝑏 , 𝑖 = 1, … , 8.

Step 3:

Discrepancy
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• We may have more than two WMUs available:

• Several Options:

1) WMU 1 and WMU 2

2) WMU 1 and WMU 3

3) WMU 1 and WMU 4

4) WMU 1 and WMU 5
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• We may have more than two WMUs available:

• Several Options:

1) WMU 1 and WMU 2

2) WMU 1 and WMU 3

3) WMU 1 and WMU 4

4) WMU 1 and WMU 5

𝑘∗ = argmin
𝑖



𝑠=2

5

Ψ𝑖
1,𝑠
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Event Location Identification

33 / 46

• IEEE 33-Bus Test System (PSCAD Simulations)5:

Event Bus, 𝑘 = 9

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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• IEEE 33-Bus Test System (PSCAD Simulations)5:

Event Bus, 𝑘 = 9

WMUs 1 and 2

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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• IEEE 33-Bus Test System (PSCAD Simulations)5:

Event Bus, 𝑘 = 9

WMUs 1 and 3

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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• IEEE 33-Bus Test System (PSCAD Simulations)5:

Event Bus, 𝑘 = 9

All Five WMUs

5 M. Izadi and H. Mohsenian-Rad, “synchronous waveform measurements to locate transient events and incipient 

faults in power distribution networks," in IEEE Trans. on Smart Grid, vol. 12, no. 5, pp. 4295-4307, Sept 2021.
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• Impact of Harmonic Distortion and Measurement Noise:

• Impact of Error in Line Parameters:
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Synchro-Waveform Data Analysis

• Situational awareness with synchro-waveform data:

• Data Size Per WMU: 3,981,312,000 Readings Per Day

• One Pair of WMUs: 8 Billion Data Points Per Day

• Event-Driven Data Analytics:

– Event Detection

– Event Location Identification

– Event Characterization / Classification
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Event Characterization

• Example Feature Extraction in Waveform Measurements1:

• Angle, Magnitude, and Duration

• Number of Affected Phases

• Transient Oscillations

• Transient Impulses

• Fault-Specific Features

• Changes in Steady-State Characteristics

• Time, Season, and Location

• Other Basic Features

• Graphical Features

Hamed Mohsenian-Rad UC Riverside 36 / 46Synchro-waveform Data Analytics and Applications



Event Characterization

• Example Feature Extraction in Waveform Measurements1:

• Angle, Magnitude, and Duration

• Number of Affected Phases

• Transient Oscillations

• Transient Impulses

• Fault-Specific Features

• Changes in Steady-State Characteristics

• Time, Season, and Location

• Other Basic Features

• Graphical Features

Hamed Mohsenian-Rad UC Riverside 36 / 46Synchro-waveform Data Analytics and Applications



Event Characterization

Angle, Magnitude, and Duration

• These basic features can be obtained for most events.

• An example for these three features for the case of a current waveform 

measurement during a self-clearing fault is shown below.

Original waveform Differential waveform
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Event Characterization

Transient Oscillations

• Transient oscillations in waveform measurements are described by the 

magnitude, duration, and dominant frequency of the oscillations. 

1 Cycle = 16.7 msec

1.2 kHz
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Event Characterization

Transient Oscillations

• The frequency of oscillations in waveform measurements can be 

obtained by using modal analysis; including the use of Fourier Analysis.

• The dominant frequency is about 1.2 KHz.
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Event Characterization

Transient Impulses

• An impulsive transient is a sudden change in the waveform of voltage, 

current, or both, that is typically unidirectional in polarity. 

• A common cause of impulsive transients is lightning strike.
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Event Characterization

Graphical Features

• The Lissajous graphs can serve as images with graphical characteristics. 

Location 1 / WMU 1

Location 2 / WMU 2

𝑣1 𝑡 , 𝑖1(𝑡)

𝑣2 𝑡 , 𝑖2(𝑡) 𝑣
𝑡
=
𝑣
1
𝑡
−
𝑣
2
(𝑡
)

𝑖 𝑡 = 𝑖1 𝑡 − 𝑖2(𝑡)

Lissajous Graph
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Event Characterization

Graphical Features

• The Lissajous graphs can serve as images with graphical characteristics. 

Location 1 / WMU 1

Location 2 / WMU 2

𝑣1 𝑡 , 𝑖1(𝑡)

𝑣2 𝑡 , 𝑖2(𝑡) 𝑣
𝑡
=
𝑣
1
𝑡
−
𝑣
2
(𝑡
)

𝑖 𝑡 = 𝑖1 𝑡 − 𝑖2(𝑡)

Lissajous Graph

Pre-Event Shape
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Event Characterization

Graphical Features

• The Lissajous graphs can serve as images with graphical characteristics. 

Location 1 / WMU 1

Location 2 / WMU 2

𝑣1 𝑡 , 𝑖1(𝑡)

𝑣2 𝑡 , 𝑖2(𝑡) 𝑣
𝑡
=
𝑣
1
𝑡
−
𝑣
2
(𝑡
)

𝑖 𝑡 = 𝑖1 𝑡 − 𝑖2(𝑡)

Lissajous Graph

Pre-Event Shape

Transient Shape
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Event Characterization

Graphical Features

• The Lissajous graphs can serve as images with graphical characteristics. 

Location 1 / WMU 1

Location 2 / WMU 2

𝑣1 𝑡 , 𝑖1(𝑡)

𝑣2 𝑡 , 𝑖2(𝑡) 𝑣
𝑡
=
𝑣
1
𝑡
−
𝑣
2
(𝑡
)

𝑖 𝑡 = 𝑖1 𝑡 − 𝑖2(𝑡)

Lissajous Graph

Pre-Event Shape

Transient Shape

Post-Event Shape
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Event Classification

• Characterization/Classification6: 

6 M. Izadi, H. Mohsenian-Rad, " Synchronized Lissajous-based method to detect & classify events in synchro-waveform 

measurements in power distribution networks," in IEEE Trans. on Smart Grid, vol. 13, no. 3, pp. 2170-2184, May 2022.

High 
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• Characterization/Classification6: 
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Event Classification

• Classification with Convolutional Neural Network (CNN)6: 

6 M. Izadi, H. Mohsenian-Rad, " Synchronized Lissajous-based method to detect & classify events in synchro-waveform 

measurements in power distribution networks," in IEEE Trans. on Smart Grid, vol. 13, no. 3, pp. 2170-2184, May 2022.

Confusion Matrix: 

Performance: 
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Synchro-Waveform Data Analysis

• Applications of Situational awareness with synchro-waveform data:

– Event Detection

– Event Location Identification

– Event Characterization / Classification
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Synchro-Waveform Data Analysis

• Applications of Situational awareness with synchro-waveform data:

– Event Detection

– Event Location Identification

– Event Characterization / Classification
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Wildfire Monitoring7

7 H. Mohsenian-Rad, "Synchro-Waveforms in Power Distribution with Application to 

Wildfire Monitoring," Panel Presentation, IEEE PES General Meeting, July 2021.
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Synchro-Waveform Data Analysis

• Applications of Situational awareness with synchro-waveform data:

– Event Detection

– Event Location Identification
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Synchro-Waveform Data Analysis

• Applications of Situational awareness with synchro-waveform data:

– Event Detection

– Event Location Identification
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Analysis of Oscillations

- Oscillation Source Detection
- Sub-synchronous and Super-Synchronous

…

Incipient (Early-Stage) Faults

- Overhead Line
- Underground Cable
- Capacitor Bank
- Transformer
- Inverters
- Power Electronics

…

Protection Systems

- Relay Coordination
- Differential Protection

…And More!



Further Reading

Textbook on Smart Grid Sensors:
• Working Principles
• Sample Data Sets
• Data-Driven Methods 

Synchro-phasors
Synchro-waveforms
Smart meters 
Building sensors
Power and energy
Probing

…

Cambridge University Press
April 2022
348 Pages
120 Examples
150 Exercise Questions
Solutions Manual
Instructional Slides
Data Sets

• Chapter 4: Waveform and Power Quality 

Measurements and Their Applications

• And the references cited on the slides. 
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Thank You!

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow
Department of Electrical Engineering, University of California, Riverside, USA

Associate Director, Winston Chung Global Energy Center
E-mail: hamed@ece.ucr.edu

Homepage: www.ece.ucr.edu/~hamed
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