Tutorial: Synchro-waveform Data Analytics and Applications

IEEE PES Subcommittee on Big Data Analytics

November 29, 2022

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow Department of Electrical Engineering, University of California, Riverside Associate Director, Winston Chung Global Energy Center

Sensor: Phasor Measurement Unit (PMU)

FFT → Fundamental Component

GPS Satellites

Agenda

Fundamentals

- Waveform: Real-World Examples
- Waveform Measurement Unit
- Synchro-Waveforms

Data-Analytics Methodologies

- Detection
- Location Identification
- Characterization and Classification
- Applications
- Further Reading

Waveform: Real-World Examples

• Example 1 (Voltage Sag):

Phasor (Magnitude)

Waveform

• Looking at voltage waveform is *not necessary* in this example.

Waveform: Real-World Examples

• Example 2 (Resonance):

Phasor (Magnitude)

Waveform

• We *cannot see* the high-frequency resonance in the phasors.

• Example 3 (Fault):

• Waveforms show much more details in this example.

Waveform Measurement Unit

- The device to measure voltage and current waveform:
 - **WMU**: Waveform Measurement Unit¹

(Compare it with **PMU**: Phasor Measurement Unit)

- WMU is a generic term. The actual sensor might be called:
 - Power Quality Meter
 - Digital Fault Recorder (DFR) (They all

(They all measure waveform)

• Point-on-Wave (POW) Sensor

¹ H. Mohsenian-Rad, *Smart Grid Sensors: Principles and Applications*, Cambridge University Press, April 2022.

Waveform Measurement Unit

• WMUs can measure both *voltage* and *current* waveforms:

 Measured by the same WMUs (over 12 terminals):

• Two Concepts:

Synchro-Phasors = Phasors + Time Synchronization

Synchro-Waveforms = Waveforms + Time Synchronization

• Analysis of Synchro-Waveforms is the focus in this Tutorial.

• Synchro-Waveforms in Example 3:

• Synchro-Waveforms in Example 3:

• Another Example - Synchro-Waveforms:

(Event is Likely Far from both WMU 1 and WMU 2)

• Synchro-Waveforms in the example with Resonance:

(System-Wide Sub-Cycle Resonance, Seen at Multiple Substations)

• Synchro-Waveforms in the example with Resonance:

• WMUs observe the same physical phenomena at different locations.

Synchro-Waveform Situational Awareness

Covering Various Event Signatures (Sub-Cycle, Few-Cycle, etc.)

• Field Measurements:

Single-Phase (120 V)

Three-Phase (12.47 kV)

Three-Phase (480 V)

• **Example**: Phasor Measurements During an **Event**:

• **Example**: Phasor Measurements During an **Event**:

- Note: Adding harmonic phasor data is helpful:
 - Example: Improvement in Event Clustering² ----- 13% Improvement

- Note: Adding *harmonic phasor data* is helpful:
 - Example: Improvement in Event Clustering² ----- 13% Improvement
- **Question**: Why limit ourselves to "phasor" representation?

- Note: Adding harmonic phasor data is helpful:
 - Example: Improvement in Event Clustering² ----- 13% Improvement
- **Question**: Why limit ourselves to "phasor" representation?

- Note: Adding harmonic phasor data is helpful:
 - Example: Improvement in Event Clustering² ----- 13% Improvement
- **Question**: Why limit ourselves to "phasor" representation?

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

• Let's distinguish two cases:

Harmonic Distortions

Event

• Let's distinguish two cases:

Harmonic Distortions

Event

(Steady-State Analysis³ → H-PMUs)

³ F. Ahmadi and H. Mohsenian-Rad, "A Physics-Aware MIQP Approach to Harmonic State Estimation in Low-Observable Power Distribution Systems Using Harmonic Phasor Measurement Units," in *IEEE Trans. on Smart Grid*, Sept, 2022.

• Let's distinguish two cases:

Our Focus in This Section

³ F. Ahmadi and H. Mohsenian-Rad, "A Physics-Aware MIQP Approach to Harmonic State Estimation in Low-Observable Power Distribution Systems Using Harmonic Phasor Measurement Units," in *IEEE Trans. on Smart Grid*, Sept, 2022.

• Event-triggered waveform capture:

• In practice, it is common to simply *compare two consecutive cycles*:

In practice, it is common to simply <u>compare</u> two consecutive cycles:
What Metric?

- Different ways to compare two cycles of waveforms¹:
 - Comparing THD
 - Comparing RMS
 - Point-to-Point Comparison
 - Comparing Sub-Cycle RMS
 - Differential Waveform
 - Neutral Current Waveform
 - Other Factors and Methods

- Different ways to compare two cycles of waveforms¹:
 - Comparing THD +
 - Comparing RMS
 - Point-to-Point Comparison
 - Comparing Sub-Cycle RMS
 - Differential Waveform +----
 - Neutral Current Waveform
 - Other Factors and Methods

Comparing THD

• Compare two consecutive waveform cycles based on their THD values.

Differential Waveform

• It works based on obtaining the following *differential waveform*:

$$\Delta x(t) = x(t) - x(t - NT).$$

where

x(t) is the measured current waveform or voltage waveform; T is the waveform interval; and N is a small integer number, e.g., 1, 2, 3, 4, or 5.

• We can detect an event based on the characteristics of $\Delta x(t)$.
Differential Waveform

• Consider the current waveform measurements below:

Differential Waveform

• The differential waveform is obtained as:

- We can see that the event has created two distinct blips in the differential waveform, which are denoted by (1) and (2).
- Note that *both* of them are associated with the *same* event.

Differential Waveform

• The differential waveform is obtained as:

- We can see that the event has created two distinct blips in the differential waveform, which are denoted by (1) and (2).
- Note that *both* of them are associated with the *same* event.

Neutral Current Waveform

• Consider the following three-phase current waveform measurements:

Event Detection

Neutral Current Waveform

• The neutral current is obtained as:

$$i_{\rm N}(t) = i_{\rm A}(t) + i_{\rm B}(t) + i_{\rm C}(t).$$

• Note: No second blip, unlike in the differential waveforms.

Event Detection

Neutral Current Waveform

• The neutral current is obtained as:

$$i_{\rm N}(t) = i_{\rm A}(t) + i_{\rm B}(t) + i_{\rm C}(t).$$

• Note: No second blip, unlike in the differential waveforms.

• We may also try to *simultaneously* check multiple waveforms.

- For example, suppose two WMUs collect the following waveforms:
 - Voltage at WMU 1: $v_1(t)$
 - Current at WMU 1: $i_1(t)$
 - Voltage at WMU 2: $v_2(t)$
 - Current at WMU 2: $i_2(t)$

• We may also try to *simultaneously* check multiple waveforms.

- For example, suppose two WMUs collect the following waveforms:
 - Voltage at WMU 1: $v_1(t) \longrightarrow$ Detect
 - Current at WMU 1: $i_1(t)$ \longrightarrow Detect
 - Voltage at WMU 2: $v_2(t) \longrightarrow$ Detect

We can look for event in *each* waveform.

• Current at WMU 2: $i_2(t)$ — Detect

• We may also try to *simultaneously* check multiple waveforms.

- For example, suppose two WMUs collect the following waveforms:
 - Voltage at WMU 1: v₁(t)
 Current at WMU 1: i₁(t)
 Voltage at WMU 2: v₂(t)
 Current at WMU 2: i₂(t)

• Graphical Metrics⁴:

⁴ M. Izadi and H. Mohsenian-Rad, "Characterizing synchronized Lissajous curves to scrutinize power distribution synchro-waveform measurements," in *IEEE Trans. on Power Systems*, vol. 36, no. 5, pp. 4880-4884, Sept 2021.

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

• Multi-Signal Modal Analysis:

WMU	Signal	Frequency (Hz)	Damping Rate (Hz)	Magnitude (p.u.)	Phase Angle (deg.)
1	Voltage Current	60.00 / 747.72	0.00 / -624.30	0.98 / 0.20 0.04 / 0.06	0.00 / 0.00 -25.19 / 82.43
2	Voltage Current			0.96 / 0.92 0.004 / 0.004	-0.49 / -1.07 -25.96 / -3.23

* The two most dominant modes are separated with a slash.

- Accordingly, we can solve the circuit in "event mode".
 - This means solving the circuit based on ω, σ (instead of over ω_0)

• Circuit model under the event mode⁵:

⁵ M. Izadi and H. Mohsenian-Rad, "synchronous waveform measurements to locate transient events and incipient faults in power distribution networks," in *IEEE Trans. on Smart Grid*, vol. 12, no. 5, pp. 4295-4307, Sept 2021.

Hamed Mohsenian-Rad

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode⁵:

⁵ M. Izadi and H. Mohsenian-Rad, "synchronous waveform measurements to locate transient events and incipient faults in power distribution networks," in *IEEE Trans. on Smart Grid*, vol. 12, no. 5, pp. 4295-4307, Sept 2021.

Hamed Mohsenian-Rad

Synchro-waveform Data Analytics and Applications

• Circuit model under the event mode⁵:

...f...f

 $V_1^f, V_2^f, \dots, V_7^f, V_8^f$

(Phasors in Event Mode; not in Fundamental Mode)

• Circuit model under the event mode⁵:

 $V_1^b,V_2^b,\ldots,V_7^b,V_8^b$

(Phasors in Event Mode; not in Fundamental Mode)

• Circuit model under the event mode⁵:

- Several Options:
 - 1) WMU 1 and WMU 2
 - 2) WMU 1 and WMU 3
 - 3) WMU 1 and WMU 4
 - 4) WMU 1 and WMU 5

- Several Options:
 - 1) WMU 1 and WMU 2
 - 2) WMU 1 and WMU 3
 - 3) WMU 1 and WMU 4
 - 4) WMU 1 and WMU 5

- Several Options:
 - 1) WMU 1 and WMU 2
 - 2) WMU 1 and WMU 3
 - 3) WMU 1 and WMU 4
 - 4) WMU 1 and WMU 5

- Several Options:
 - 1) WMU 1 and WMU 2
 - 2) WMU 1 and WMU 3
 - 3) WMU 1 and WMU 4
 - 4) WMU 1 and WMU 5

- Several Options:
 - 1) WMU 1 and WMU 2
 - 2) WMU 1 and WMU 3
 - 3) WMU 1 and WMU 4
 - 4) WMU 1 and WMU 5

• We may have more than two WMUs available:

Several Options:

1) WMU 1 and WMU 2 2) WMU 1 and WMU 3 3) WMU 1 and WMU 4 4) WMU 1 and WMU 5 $k^* = \underset{i}{\operatorname{argmin}} \sum_{s=2}^{5} \Psi_i^{1,s}$

• IEEE 33-Bus Test System (PSCAD Simulations)⁵:

• IEEE 33-Bus Test System (PSCAD Simulations)⁵:

• IEEE 33-Bus Test System (PSCAD Simulations)⁵:

• IEEE 33-Bus Test System (PSCAD Simulations)⁵:

• Impact of *Harmonic Distortion* and *Measurement Noise*:

THD (%)	SNR (dB)	Correct Bus	Neighboring Bus	Other Bus
	80	100.0 %	0.0 %	0.0 %
1	50	100.0 %	0.0 %	0.0 %
	20	86.8 %	5.8 %	7.4 %
	80	100.0 %	$0.0 \ \%$	0.0 %
2	50	99.9 %	0.1 %	$0.0 \ \%$
	20	84.4 %	7.5 %	8.1 %
	80	100.0 %	$0.0 \ \%$	0.0~%
3	50	99.8 %	0.2 %	0.0 %
	20	85.5 %	6.2 %	8.3 %

Impact of <u>Error in Line Parameters</u>:

Error (%)	Correct Bus	Neighboring Bus	Other Bus
25	100.0 %	0.0 %	0.0 %
50	98.9 %	1.1 %	$0.0 \ \%$
75	93.0 %	7.0 %	$0.0 \ \%$
100	85.8%	14.2 %	$0.0 \ \%$

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Synchro-Waveform Data Analysis

- Situational awareness with synchro-waveform data:
 - Data Size Per WMU: <u>3,981,312,000 Readings Per Day</u>
 - One Pair of WMUs: 8 Billion Data Points Per Day

- Event-Driven Data Analytics:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification
Event Characterization

- Example Feature Extraction in Waveform Measurements¹:
 - Angle, Magnitude, and Duration
 - Number of Affected Phases
 - Transient Oscillations
 - Transient Impulses
 - Fault-Specific Features
 - Changes in Steady-State Characteristics
 - Time, Season, and Location
 - Other Basic Features
 - Graphical Features

Event Characterization

- Example Feature Extraction in Waveform Measurements¹:
 - Angle, Magnitude, and Duration
 - Number of Affected Phases
 - Transient Oscillations
 - Transient Impulses
 - Fault-Specific Features
 - Changes in Steady-State Characteristics
 - Time, Season, and Location
 - Other Basic Features
 - Graphical Features

Angle, Magnitude, and Duration

- These basic features can be obtained for most events.
- An example for these three features for the case of a current waveform measurement during a self-clearing fault is shown below.

Transient Oscillations

• Transient oscillations in waveform measurements are described by the *magnitude*, *duration*, and *dominant frequency* of the oscillations.

Transient Oscillations

• The frequency of oscillations in waveform measurements can be obtained by using *modal analysis*; including the use of Fourier Analysis.

• The *dominant frequency* is about 1.2 KHz.

Transient Impulses

• An *impulsive transient* is a sudden change in the waveform of voltage, current, or both, that is typically unidirectional in polarity.

• A common cause of impulsive transients is lightning strike.

Event Classification

• Classification with Convolutional Neural Network (CNN)⁶:

	Class	Precision	Sensitivity	Specificity	F_1 Score
	Ι	100.0%	92.3%	100.0%	96.0%
Performance:	II	100.0%	100.0%	100.0%	100.0%
	III	94.4%	100.0%	96.8%	97.1%

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (*Early-Stage*) Faults

- Overhead Line
- Underground Cable
- Capacitor Bank
- Transformer
- Inverters
- Power Electronics
 - :

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (Early-Stage) Faults

- Overhead Line
- Underground Cable
- Capacitor Bank
- Transformer
- Inverters
- Power Electronics
 - :

⁷ H. Mohsenian-Rad, "Synchro-Waveforms in Power Distribution with Application to Wildfire Monitoring," Panel Presentation, *IEEE PES General Meeting*, July 2021.

Wildfire Monitoring⁷

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (*Early-Stage*) Faults

- Overhead Line
- Underground Cable
- Capacitor Bank
- Transformer
- Inverters
- Power Electronics
 - :

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (<i>Early-Stage</i>) Faults	Analysis of Oscillations
 Overhead Line Underground Cable Capacitor Bank Transformer Inverters Power Electronics 	- Oscillation Source Detection - Sub-synchronous and Super-Synchronous :

:

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (<i>Early-Stage</i>) Faults	Analysis of Oscillations
- Overhead Line - Underground Cable - Capacitor Bank - Transformer - Inverters	- Oscillation Source Detection - Sub-synchronous and Super-Synchronous :
- Power Electronics	Protection Systems
:	- Relay Coordination - Differential Protection :

- Applications of Situational awareness with synchro-waveform data:
 - Event Detection
 - Event Location Identification
 - Event Characterization / Classification

Incipient (<i>Early-Stage</i>) Faults	Analysis of Oscillations
- Overhead Line - Underground Cable - Capacitor Bank - Transformer - Inverters	- Oscillation Source Detection - Sub-synchronous and Super-Synchronous :
- Power Electronics	Protection Systems
: And More!	- Relay Coordination - Differential Protection :

Further Reading

 Chapter 4: Waveform and Power Quality Measurements and Their Applications

Textbook on Smart Grid Sensors:

- Working Principles
- Sample Data Sets
- Data-Driven Methods
 - Synchro-phasors Synchro-waveforms Smart meters Building sensors Power and energy Probing

Cambridge University Press April 2022 348 Pages 120 Examples 150 Exercise Questions Solutions Manual Instructional Slides Data Sets

• And the references cited on the slides.

Thank You!

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow Department of Electrical Engineering, University of California, Riverside, USA Associate Director, Winston Chung Global Energy Center E-mail: <u>hamed@ece.ucr.edu</u> Homepage: <u>www.ece.ucr.edu/~hamed</u>