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Abstract—Distribution-level phasor measurement units, a.k.a,
micro-PMUs, report a large volume of high resolution phasor
measurements which constitute a variety of event signatures of
different phenomena that occur all across power distribution
feeders. In order to implement an event-based analysis that has
useful applications for the utility operator, one needs to extract
these events from a large volume of micro-PMU data. However,
due to the infrequent, unscheduled, and unknown nature of the
events, it is often a challenge to even figure out what kind of
events are out there to capture and scrutinize. In this paper, we
seek to address this open problem by developing an unsupervised
approach, which requires minimal prior human knowledge. First,
we develop an unsupervised event detection method based on the
concept of Generative Adversarial Networks (GAN). It works by
training deep neural networks that learn the characteristics of
the normal trends in micro-PMU measurements; and accordingly
detect an event when there is any abnormality. We also propose a
two-step unsupervised clustering method, based on a novel linear
mixed integer programming formulation. It helps us categorize
events based on their origin in the first step and their similarity
in the second step. The active nature of the proposed clustering
method makes it capable of identifying new clusters of events on
an ongoing basis. The proposed unsupervised event detection and
clustering methods are applied to real-world micro-PMU data.
Results show that they can outperform the prevalent methods in
the literature. These methods also facilitate our further analysis
to identify important clusters of events that lead to unmasking
several use cases that could be of value to the utility operator.

Keywords: Micro-PMU, distribution synchrophasors, unsuper-
vised data-driven analysis, event detection, event clustering, deep
learning, generative adversarial network, unmasking use cases.

I. INTRODUCTION

A. Background and Motivation

Power distribution systems are becoming more active and
dynamic due to the increasing penetration of distributed energy
sources, electric vehicles, dynamic loads, and etc. This gives
rise to various monitoring and control issues. Many of these
issues can be addressed by the use of distribution-level phasor
measurement units, a.k.a., micro-PMU [1].

One of the emerging applications of micro-PMUs is to
study “events” in power distribution systems. Event-based
studies of micro-PMU measurements have a wide range of
use cases, such as in situational awareness [2], equipment
health diagnostics, such as for inverters [3], capacitor banks
[4], transformers [5], distribution-level oscillation detection
and analysis [6], fault analysis and fault location [7].
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Before one can do any event-based analysis, including for
the above use cases in [2]–[7], one needs to first detect
and identify the events that are of value. However, this is a
challenging task due to at least the following three reasons:
1) most events are infrequent; 2) most events are inherently
unscheduled; and 3) it is often not known ahead of time, what
kind of events we should seek to find and identify; i.e., we
often do not have a prior knowledge about what to look for.

Given the enormous size of measurement data that is
generated by micro-PMUs, such as 124,416,000 readings per
micro-PMU per day [1], the challenges that we listed above
call for developing effective data-driven techniques that are
automated and require minimal prior knowledge. Addressing
this open problem is the focus of this paper.

B. Summary of Technical Contributions

Given the unknown, infrequent and unscheduled nature of
events in micro-PMU measurements, we propose an inter-
connected unsupervised event detection and unsupervised
event clustering method; which followed by a comprehensive
analysis of the engineering implications for the events in
each key clusters that we identify from real-world micro-PMU
measurements. The main contributions in this paper are listed
as follows:

• A novel unsupervised event detection method is devel-
oped based on the concept of Generative Adversarial
Networks (GAN) by training deep neural networks. Given
the infrequent nature of events in micro-PMU data, the
central idea is to train the GAN models to learn the
normal behavior and trends, which according to the prior
experimental results account for 99.6% of the samples in
micro-PMU data. Accordingly, any pattern and signatures
that deviates from the captured normal characteristics of
the micro-PMU data is marked as an event by the trained
discriminator. A set of extracted events by expert knowl-
edge from the real-world data set is used for evaluation.
The results show the effectiveness of the proposed event
detection method compared to multiple state-of-the-art
methods in the literature. The proposed event detection
relies solely on micro-PMU measurements and it does not
need the network model or prior labeling of the events.

• A two-step unsupervised event clustering method is pro-
posed. In a pre-processing step, events are categorized
based on their origin (i.e., the features that are affected
by the event), which is obtained from the proposed
event detection method. In the second step, in each pre-
processed category, a new clustering model is formulated
and solved in form of a mixed-integer linear programming
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(MILP). A rolling based similarity measure, maximum
correlation coefficient (MaxCorr), is used to compare any
two events. The proposed clustering method is active, i.e.,
it is capable of identifying new clusters of events on an
ongoing basis. New clusters are optimally extracted as
needed; in order to account for any unknown upcoming
events. The experimental results confirm the effective-
ness of the proposed clustering model compared to the
prevalent clustering methods. The performance of the
proposed clustering method is evaluated and verified also
in comparison with a reference set of clustered events
that are obtained by the expert knowledge.

• The events in each identified cluster are scrutinized in
order to unmask their engineering implications and use
cases. The origin and the cause of the events are identified
to determine their value to the system operator. By im-
plementing the proposed unsupervised approach one can
identify the frequency of happening and other statistical
characteristics of different event types, extract specific
events by combining the event clusters’ characteristics
and time of occurrence; find rare and unusual events, such
as faults and incipient failures and new major loads. It can
even identify deficiency in micro-PMU data reporting.

C. Literature Review

The event detection component in this paper can be broadly
compared with the other data-driven studies such as in [2],
[3], [8]–[16]. Some methods are based on principles in statis-
tics. For example, in [2], which we consider as one of the
benchmarks for performance comparison in this study, a data-
driven statistical event detection method is proposed that is
based on absolute deviation around median, combined with
dynamic window sizes. On the other hand, machine learning
models, including deep learning models, are getting significant
attention in different research areas due to immense increase
in the amount of measurement data. Power system is not an
exception with massive data collection by measurement units
such as smart meters, micro-PMUs and smart inverters. Thus,
these large data sets make researchers capable for implement-
ing deep learning model to address issues that are mainly data
dependent and complex to solve them with common models.
One of the promising applications of deep learning models
are anomaly detection which has been implemented in vast
scale in smart grid such as, outage detection in the network
by using GAN models [17] and fault detection [18], IoT-based
occupancy sensor unusual behaviour [19] and smart meter
anomaly detection [20].

Some of which are either supervised or semi-supervised.
That means, they require either full labeling or partial labeling
of the events, e.g., in [8], [10]. On the other hand, few event
detection methods in the literature that are unsupervised; they
are focused on some specific types of events, such as frequency
events [12], significant known events such as three phase
fault or cap bank switching [15] or cyber attacks [21]. In
contrast, the event detection method in this paper covers a
wide range of event types which here, an event is defined rather
broadly and may refer to balanced/unbalanced load switching,

capacitor bank switching, connection or disconnection of
distributed energy resources (DERs), inverter malfunction, a
minor fault, a signature for an incipient fault, etc. [2], [22],
[23]. In [21], the authors used symbolic dynamic filters to
extract features and dynamic Bayesian networks to learn the
system behaviour to detect false data injection. Although the
method is unsupervised, this method requires prior knowledge
about the dynamics of the system; which is typically not
available in practice; such as in the case of the field study
and the real-world data analysis in this paper. Similarly, in
[15] physical aspect of the system needs to be available in
order to detect, classify and localize the abnormalities in the
system. Some other unsupervised anomaly detection methods,
such as the Generalized Graph Laplacian (GGL) method in
[16], are based on determining the graph similarity between
the sample windows of the micro-PMU data. We used the
method in [16] as a benchmark to evaluate the performance
of our event detection approach. Other methods that we used
as benchmarks include the unsupervised statistical model in
[2] and the unsupervised learning method introduced in the
preliminary conference version of this paper in [11].

Generative Adversarial Networks (GANs) are broadly stud-
ied in areas such as image generation [24], high-dimensional
likelihood-free inference [25], medical time-series generation
[26], and so on. These models typically focus on the sample
generation capability of the GAN model, i.e., the desirable
features of the “generator” sub-system in the GAN model.
However, recent studies have shown that the GAN model can
offer other applications also through the desirable features of a
“discriminator” sub-system. For instance, the GAN model has
been used in the recent study in [27] to detect bogus samples,
cyber attacks, or general time-series anomalies [28]. Here, the
ultimate goal of the discriminator is to distinguish normal from
abnormal samples; Thus, in this paper, the proposed model
is focused on carefully adjusting the GAN models for our
specific purpose; which is detecting events by discriminator,
through learning the normal behaviour of the system.

The event clustering component in this paper can be broadly
compared with studies such as in [2], [13], [29], [30]. In
[29], auto encoder-decoder is used for feature extraction;
and the latent space of the auto encoder-decoder is used
for supervised event classification. In [2], supervised support
vector classification is used to classify the events based on
their source location. In [13], different types of voltage sag
events are detected based on a threshold, which is defined by
voltage magnitude slope per cycle, then k-means and Ward-
method clustering are used to identify the characteristics of
the voltage sag events. The main limitation in [2], [29] is that
they both require prior event labeling. As for the method in
[13], it is focused on voltage sag events. In [30], the authors
used an unsupervised clustering method; however, the focus
is on specific faults; such as single-line to ground or line-
to-line faults. In contrast, the event clustering method in this
paper deals with a wide range of events, including benign
yet informative events about the operation status of the power
distribution system, its equipment, and its loads. Importantly,
no prior knowledge is used in the proposed method. Therefore,
various events can be detected, classified, and characterized;
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all in unsupervised fashion. In fact, it is designed to explore
new events even if they do not match any of the existing
clusters through actively searching for new clusters. Thus, the
proposed method is well-suited to unmask meaningful use
cases based on the outcome of the proposed unsupervised
event detection and unsupervised event clustering methods.

This study is fundamentally different from all the previous
studies that we have done based on the micro-PMU measure-
ments in our pilot project cite in Riverside, CA. The work in
[2], is about the analysis of events by using supervised learning
methods. This is in sharp contrast compared to the current
paper that is about unsupervised learning method. Unlike
in [2], where we had to use our field knowledge to do an
extensive and time-consuming task of manual event labeling,
the method in this paper requires minimal prior knowledge
about the power distribution feeder. The work in [4], [6], [31]
is about scrutinizing some specific types of events, such as
capacitor bank switching or certain faults. The assumption
in all these three papers is that the events of interests are
already detected and classified. In this regard, the studies in
[4], [6], [31] can actually benefit from the methodologies that
we propose in this paper;The work in [7], [32] is inherently
model-based; where the focus is on identifying the location of
an event that is already detected and classified. The location
identification methods in these two papers require access to
the physical models of the power distribution feeder. The
work in [33]–[35] is about distribution system state estimation;
therefore the analysis is unrelated to this paper; and the results
are based on computer simulations.Finally, the work in [36],
[37] are about cyber-security attacks against micro-PMUs.

Common event detection schemes, such as moving average
filters, statistical change detection methods and PCA, have
shown low accuracy due to the variety of event signatures
in power distribution feeders. Also, methods such as PCA, are
meant to represent high-dimensional data with much lower
dimensional vectors; which is a suitable approach only if
the data lies near a linear manifold in the high dimensional
space. However, even with kernel PCA, the non-linearity of
the data cannot be modeled appropriately. In general, by
increasing the number of training samples, deep learning
models usually show higher accuracy compared to the other
aforementioned models. Also, GAN models, due to their
specific design with a min-max game between a generator
and a discriminator, are suitable for learning the essentials
of a data distribution. Hence, by a proper problem definition
and appropriate generator design, we can articulate real data
distribution. Consequently, the discriminator can distinguish
between real data and fake data (not part of the normal real
data distribution). In this regard, using GAN model, alongside
with deep learning, is a promising combination for event
detection in micro-PMU measurements, which is the approach
that we take in this study.

Compared to the conference version of this work in [11],
which was solely about event detection, this paper has several
new contributions. First, the model architecture and the fea-
tures are different and result in better performance. Second, to
identify the type of detected events, a two-step unsupervised
clustering model is proposed. Third, together, the proposed

unsupervised event detection and clustering methods enable us
to expose use cases and applications of the key event clusters.

II. UNSUPERVISED DETECTION METHOD

The proposed GAN-based event detection method is de-
veloped by training two deep neural networks. In short, the
first deep neural network, a.k.a., generator, tries to generate
data points that follow the distribution of the real-world data.
The second deep neural network, a.k.a., discriminator, tries to
distinguish between the generated data points and the real-
world data. The architecture and process of the GAN models
is as follow:

A. Features: Checking the magnitude of voltage and current
in micro-PMU measurements is a common option to detect
and identify events, e.g., see [2], [11], [38]. However, due
to the fluctuations in the frequency of the power system, the
phase angles of voltage and current are often not used directly.
Instead, active power and reactive power are usually used as
the two features that involve voltage and current phase angle
measurements, besides the magnitude of voltage and current,
to detect events in micro-PMU measurements. In this paper,
we propose to use power factor as the feature that involves
the voltage and current phase angle measurements. Thus, the
features across the three phases that we use in this paper are

|Vφ|, |Iφ|, cos(θφ), φ = A,B,C. (1)

which denote the voltage magnitude, current magnitude, and
power factor in each phase φ, respectively. For notation
simplicity, in the rest of paper, we refer to the features in
(1) for all the three phases, without specifying subscript φ.
Also, batch normalization have been implemented in order to
prevent internal covariate shift.

B. Generator: It is a deep neural network that comprises
Long Short-Term Memory (LSTM) modules [39] as well as
dense layers similar to [11]. Given a noise vector z from
a distribution function pz(z), such as z ∼ N (µz, σ

2
z ), the

generator aims to produce samples that follow the distribution
of the real-world data. Thus, a neural network G(z, θg) is
trained to minimize the following objective function, where
θg denotes the weights of the generator network [40]:

1

N

N∑
i=1

[
log(1−D(G(zi)))

]
. (2)

Here, N denotes the number of samples in a batch of training
data set. Also, D and G denote the discriminator function and
the generator function, respectively.

C. Discriminator: It aims to distinguish between the gener-
ated samples by the generator and the actual measurements.
It contains LSTM modules and dense layers similar to [11].
Neural network D(x, θd) is trained to report a single value as
output. Here, x and θd are the vectors of measurements and
the weights of the discriminator network, respectively. The
discriminator maximizes the probability of distinguishing the
measurement from the data generated by the generator, as:

1

N

N∑
i=1

[
log(D(xi)) + log(1−D(G(zi)))

]
, (3)
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where xi is the ith real sample. On one hand, the generator
tries to minimize (2). On the other hand, the discriminator tries
to maximize (3). Thus, the generator and the discriminator play
a min-max game over the following function:

V (G,D) = Ex ∼ pdata(x)[log(D(x))] +

Ez ∼ pz(z)[log(1−D(G(z)))].
(4)

D. Training and Convergence: Prior studies have shown that
only about 0.04% of micro-PMU measurements contain events
[11]. Therefore, we train all the nine constructed GAN models,
one model for each feature, so as to learn the characteristics
of the normal trends in micro-PMU measurements. We detect
an event when there is an abnormality. For each GAN model,
the solution of the min-max game over V (G,D) in (4) must
satisfy the following two conditions:

• C1: For any fixed G, the optimal discriminator D∗ is:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
. (5)

• C2: There exists a global solution such that:

min
G

(max
D

(V (G,D)))⇐⇒ pg(x) = pdata(x). (6)

The training of the GAN model and proofs are explained
in details in [40]. However, training of GANs is known to
be unstable and sensitive to the choices of hyper-parameters.
Hence, obtaining compelling results such as achieving global
optimum and creating a sample distribution close enough
to the real data distribution is challenging and requires an
assumption that the discriminator is optimal at each step
[41]. Experimental results in our case with different micro-
PMU data set show that local optima and mode collapse
situation almost never happen due to non-sharp gradients of
the discriminator function around real data points [41].

The choice of the hyper-parameters of the GAN model is
critical in achieving an equilibrium. In particular, based on the
two criteria in (5) and (6) and convergence constant ε > 0 the
equilibrium should satisfy the following conditions [40]:

| max
D

(V (G,D)) −(−log4)| < ε,

|Dg(x)− 1

2
| < ε.

(7)

E. Event Scoring: Once all the nine GAN models are trained,
they provide us with nine distinct event detectors; one per
each feature. Each discriminator gives us a score as its output,
which indicates how close a given window of measurements
is to the global optimum that is obtained from (5) and (6).
If, for any GAN model, the score is not close enough to
the global optimum, then it means that the given window
of measurements does not match the normal behavior that is
learned by the GAN model; therefore, it is deemed to contain
an event. In this process, the D’Agostino’s K-squared test [42],
with a significant level of 0.05, is applied to the discriminator
output from the training set; and the results show strong
evidence of normality. Thus, a normal probability distribution
function (PDF) is fit to the obtained scores for training set,
to have ζ ∼ N (µ, σ2), where µ is almost equal to the global
optimum and σ is small.

Algorithm 1 Unsupervised Event Detection
Input: Training and test data based on the features in (1).
Output: Event detection vector Ew9×1 for the wth data.
// Learning Phase
Foreach feature f in (1):

Train the GANf model
Use discriminator as scoring function D∗

f (·).
Calculate the scores for the training data.
Fit a Normal PDF N (µf , σ

2
f ) to the obtained scores.

End
// Detection Phase
Foreach new micro-PMU test data (w):

Foreach feature f in (1):
Calculate score swf using D∗

f (·).
If swf /∈ (µf − zpδf , µf + zpδf ) Then

ewf = 1 // Event
Else

ewf = 0 // No Event
End
Append ewf to Ew

End
End

F. Algorithm: The proposed event detection method is sum-
marized in Algorithm 1. The algorithm has two phases. First,
a learning phase, in which the GAN models are trained for
each feature; and their associated normal PDF are constructed.
Second, an event detection phase, in which, for each window w
of sample data, the scores are calculated by all the nine GAN
models and accordingly the detection vector is obtained:

Ew
9×1 = [ew1 , · · · , ew9 ] (8)

The detection vector is a 9 × 1 binary vector, where 9 is
the number of features as in (1). Entry ewf is 1 if an event
is detected in wth window and f th feature, otherwise zero.
Vector ET is the set of all detection vectors. It should be
noted that, a common choice for zp in the threshold µ± zpσ
is 3, known as the three-sigma rule [43].

The detection vectors not only show us the existence of
event; they also provide us with the inputs that we need for
our clustering algorithm; which we will explain in Section III.

G. Evaluation metric: We use the Matthews correlation co-
efficient (MCC) [44] as the metric to assess accuracy; for
both detection and clustering. As explained in [45], a com-
mon evaluation criteria, such as F1-score, can sometimes
be misleading and show over-optimistic inflated results, es-
pecially on imbalanced data-sets; such as anomalies which
inherently have low frequency compared to normal samples.
The MCC, instead, is a more reliable statistical metric which
produces a high score only if the obtained prediction results
are adequate in all of the four categories of the confusion
matrix, i.e., true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), proportionally both
to the size of the positive elements and the size of the
negative elements in the data-set. On the other hand, for multi-
class clustering/classification problems, the general format of
MCC is implemented. Therefore, for both event detection and
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clustering, we use MCC as the evaluation metric:

MCC =
NsTr(ψ)−

∑K
k=1

∑K
l=1 ψkψl√

N2
s −

∑K
k=1

∑K
l=1 ψkψT

l

√
N2

s −
∑K

k=1

∑K
l=1 ψ

T
k ψl

,

(9)
where Ns is the number of samples, K is the number of
clusters, ψ is the confusion matrix which is K×K, ψk and ψl
are the kth row and lth column of ψ, respectively. It should be
mentioned that, for event detection, a special case of general
MCC with K = 2 is used in this study. MCC is a number
between −1 and 1; where 1 represents a perfect prediction.
MCC is used for the evaluation sets that are extracted by expert
knowledge for both event detection and clustering.

III. UNSUPERVISED CLUSTERING METHOD

Given the detection vectors in Section II, in this section,
we develop a two-step event clustering method so that we can
later study different types of events in details.

A. Step I: Pre-Processing

An obvious choice for clustering is to group the events based
on their detection vector. For each measurement window w
that contains an event, vector Ew

9×1 has at least one entry
that is one. Accordingly, we can put all the events with the
same detection vector in the same category; based on the nine
features in (1). For example, we put all the events with Ew

9×1

= [111 000 000] in the same category because they similarly
causes abnormalities only in voltage magnitude on all phases.

In theory the detection vector can result in 29 − 1 = 511
possible combinations; when an event is detected. However,
based on the physics of the power system; only some of these
combinations can actually happen in practice. In fact, our
analysis of the real-world micro-PMU data resulted in only
a handful of such combinations across thousands of detected
events; as we will discuss in details in Section IV-C.

Thus, in practice, the above clustering mainly serves as a
pre-processing in the clustering problem. We often need to
further break down a category into several clusters to expose
the use case of the events in that category. This is done through
a comprehensive clustering optimization in Section III-B.

B. Step II: Clustering Optimization

In this section, we explain the similarity measure, the pro-
posed clustering optimization problem formulation, its solution
based on exact linearization, the cluster representatives, and
the optimum cluster numbers in each category.

1) Rolling-Based Similarity Measure: The key to proper
clustering is to accurately measure how similar (or dissimi-
lar) different event signatures are within each pre-processed
category. However, this is a challenging task because similar
events may not have exact same duration. Events need to be
aligned with respect to their shape and their corresponding
measurement windows for appropriate similarity assessment.

To address the above two challenges, we propose to first ex-
pand the measurement window size for each captured event to
make sure that the entire event is included in the measurement
window. Once this is done, for each event i, we define:

Pi =

α
1,1
i · · · α1,τ

i
...

. . .
...

α9,1
i · · · α9,τ

i

 . (10)

There are nine rows in Pi corresponding to the nine features
in (1). The columns correspond to the measurement time
instances, where τ is the maximum expanded window size
of the two events that are compared with each other.

To determine the similarity between two events i and j, we
need to align matrices Pi and Pj , because we do not know
where exactly the event is located within each measurement
window. Therefore, we propose to take matrix Pi as fixed,
and roll matrix Pj in the time axis, one time slot at a time. In
other words, in each rolling step, the last column is removed
from Pj and appended before the first column in Pj ; thus, we
have τ rolling steps for each two event comparison.

For each rolling step k, where k = 1, . . . , τ , let us define
cki,j as the average of the 9 correlation coefficients that can
be calculated between each of the 9 rows in Pi and its
corresponding row in Pj ; where Pj is rolled for k steps. We
define MaxCorr as the rolling-based measure of similarity as:

MaxCorri,j = maximum
k=1,...,τ

cki,j ; (11)

to be used as the similarity measure between events i and j.
2) Optimization Problem Formulation: Consider a given

category of events based on the pre-processing step in Section
III-A. Suppose there are I detected events in this category and
we want to break them down into C clusters. We propose to
solve the following clustering optimization problem:

minimize
u

I∑
i=1

I∑
j=1

C∑
c=1

ui,cuj,c(1−MaxCorri,j) (12a)

subject to ui,c ∈ {0, 1}, (12b)
C∑
c=1

ui,c = 1 ∀i. (12c)

where ui,c is a binary variable. It is one if event i is in cluster
c; otherwise it is zero. Problem (12) minimizes the sum of
the distances between the events, measured as 1-MaxCorri,j ,
across different clusters. The constraint in (12c) assures that
each event is assigned to only one cluster. Problem (12) is a
MINLP.

3) Exact Linearization: To enhance computational perfor-
mance, the MINLP in (12) is replaced with an exact equivalent
Mixed Integer Linear Programming (MILP), as follows:

minimize
u, t

I∑
i=1

I∑
j=1

C∑
c=1

ti,j,c(1−MaxCorri,j) (13a)

subject to ui,c, ti,j,c ∈ {0, 1}, (13b)
C∑
c=1

ui,c = 1 ∀i, (13c)

ui,c + uj,c − ti,j,c ≤ 1 ∀i, j, c, (13d)
−ui,c − uj,c + 2ti,j,c ≤ 0 ∀i, j, c. (13e)
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where the nonlinear product of ui,c and uj,c in the objective
function is replace with linear term ti,j,c. The linear constraints
in (13d) and (13e) are used to make sure that ti,j,c is indeed
equal to such product in order to assure an exact linearization.
Problem (13) can be solved using any MILP solver for a set
of detected events in a given time period as training set.

4) Cluster Representatives: Once the clusters are obtained
by using the training data and solving the MILP problem in
(13), we define a representative for each cluster to speed up the
process of clustering incoming events. Thus, the new events
are compared to a few cluster representatives rather than to all
events through (13). To determine the optimum representative
for each cluster, we solve the following optimization problem:

minimize
v

I∑
i=1

I∑
j=1

C∑
c=1

ui,cvj,c(1−MaxCorri,j) (14a)

subject to vi,c ∈ {0, 1}, (14b)
I∑
i=1

vi,c = 1 ∀c (14c)

Variable vj,c is binary. It is one, if event j is the representative
event for cluster c, and zero otherwise. Constraint (14c) is
used to make sure that there is only one representative for
each cluster. Notice that ui,c is parameter, not a variable, in
this optimization problem; because the clusters are already
formed. Therefore, problem (14) is an MILP by construction.

5) Number of Clusters (Nc): So far, we have assumed that
the number of clusters, i.e., parameter c is fixed. However,
we do obtain the optimal number of clusters in our proposed
method. This is done by solving the optimization problem in
(13) with respect to different number of clusters. Then, the op-
timal number of clusters is determined based on the silhouette
values of the clusters. Subsequently, cluster representatives is
identified for the optimally obtained cluster by using (14).

C. Active Clustering

Since the proposed event clustering method is active, it can
create new clusters. Given the large number of events that are
detected in micro-PMU measurements for our data set, it is
computationally prohibitive to cluster all of 15 days events
at the same time. On the other hand, by training a subset of
the detected events and assign the new events to the trained
cluster, those new types of events would be assigned to a
wrong cluster. To address these issues, we solved the clustering
optimization problem only on the first day in our data set to
set up a base for the event clusters. The newly detected events
would be compared to each base cluster representatives and
they will be assigned to the closest cluster. Unless, if MaxCorrs
of a new event is less than a threshold (ϕ) for every existing
cluster representative, then a new cluster is created. In practice,
such new cluster is added only occasionally, which shows the
common events are almost appear in every day. However, the
newly added clusters are usually those weakly or rare events.
Furthermore, the clusters can be updated using the complete
optimization-based approach periodically once every few days
in order to pick the optimal representative s for each cluster.

Algorithm 2 Unsupervised Event Clustering
Input: Event detection vectors ET from (8)

Event time-series data,
Number of clusters (Nc),
Similarity threshold (ϕ).

Output: Clusters and their representatives,
Silhouette value.

// Learning Phase (Offline)
Create categories based on unique sets in ET .
Assign each event to its category.
Foreach n from 1 to Nc:

Foreach category in ET :
Cluster the events based on (13).
Determine the cluster representative based on (14).

End
End
Calculate Silhouette value for all possible combinations.
Set the number of clusters and their representatives
//Active clustering Phase (Online)
Foreach new event in test data:

If the detection vector of new event is in ET Then
Calculate MaxCorr with all representatives.
If all calculated MaxCorrs are less than ϕ Then

Make a new cluster in the related category.
Set new event as the cluster representative.

Else:
Assign new event to the closet cluster.

End
Else:

Create a new category.
Create a cluster with new event as representative

End
End

IV. EXPERIMENTAL RESULTS

The proposed event detection and clustering methods are
applied to 1.2 billion measurements over 15 days of real-world
micro-PMU data. Fourteen days of data are used for training
the event detection method and one day of data is used to test
it. One day of data is used for cluster optimization; and active
clustering is done for the rest of the data.

A. Parameters Detail

The architecture of the GAN model has two parts. The
generator starts with a dense layer of size 40, three layers
of LSTM with 32, 64 and 128 modules, and a dense layer
of size 256. The discriminator is in reverse order; the only
difference is that the last layer in the discriminator is a dense
layer with size 1. All activation functions are LeakyReLU
except the last layer in the discriminator; which is sigmoid.
In the LeakyReLU functions, the slope of the leak is set to
0.2 in all models. For tuning the hyper-parameters, we used
the coarse-to-fine method. In this method, we first randomly
chose a set of values for each parameter. Then we narrowed
down the choices to a smaller subset based on the obtained
results. This procedure was repeated until we achieved the
desired value for each parameter. It should be mentioned that,
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depending on the hyper-parameter, scaling can be helpful,
such as log scale for learning rate. This can help fasten
the search for suitable values of choice. The learning rate
α is set to 0.0002 for Adam optimizer and β1 is set to 0.5
for better stability in training. A critical parameter when it
comes to capturing the events appropriately is window size,
which first it should be wide enough to capture the essential
signatures of an event and second it should be small enough
to prevent event synchronicity and high computational time.
By analyzing different window sizes for different set of micro-
PMU data, the best result in terms of accuracy and reasonable
computational time, is 40 data points. Also, in order to assure
that events are not overlooked, we consider that each window
has 20 data points overlap with the previous window. All GAN
models are developed with Tensorflow in Python by using
Nvidia GTX 1050 ti GPU and a core i-7 2.2GHz CPU with
32 GB RAM.

B. Event Detection Results

Table I shows the MCC for the proposed event detection
method, in comparison with the benchmark methods in [2],
[11], [16]. A total of 1200 reference events are visually
extracted by expert knowledge within 6 hours (64800 window
samples of 40 time-slots) to evaluate the performance of event
detection. The proposed method outperforms the methods in
[2], [11] and [16]. The combined training time of all 9 GAN
models is 2 hours. Once the initial training is done, it takes
less than 4 milliseconds to determine a new incoming sample
as normal or event; i.e., the detection time is 4 milliseconds.
The detection time for [2] and [11] is 3 and 10 milliseconds,
respectively. Thus, the proposed method maintains the same
level of computational complexity; but it achieves much better
accuracy. It should be added that, to have a fair comparison
with the model in [16], we analyzed different window sizes
for the aforementioned method; and as we increase the sample
numbers, the accuracy is improved, however, the rate of the
improvement in accuracy was decreasing, in other words, ac-
curacy does not change significantly by extending the window
at a certain point; Also, the training time is ascending as well.
Thus, the best performance with the same training time as
GAN models are considered for the method in [16]. Another
point about the method in [16] is that, due to the use of
similarity graph, the method in [16] needs to be re-trained
every time which makes it impractical for detecting events with
new upcoming data in an online mode, however, for offline
mode this method has the lowest False Positive (FP).

An interesting observation when we compare the proposed
event detection model with the model in [11] is that, the
choice of the independent features in (1), in particular the
use of cos(θ) instead of active power and reactive power,
improves the accuracy of event detection. It also improves
the independence in the outputs of the trained GAN models.
This makes the resulting detection vectors to even enhance the
performance of the subsequent clustering method. One of the
main advantages of the proposed model compared to the GGL
method in [16] is the aspect of learning the normal operation
of the system. Although the GGL method has a very low false
positive rate, the number of its true positives is lower than the

TABLE I
EVENT DETECTION INFORMATION FOR CONFUSION MATRIX,

PRECISION, RECALL AND MCC

Metric Statistical [2] GGL [16] Enhanced Method [11] Proposed Method

TP 311 990 1033 1132

FN 889 210 167 68

FP 210 1 56 36

TN 63390 63599 63544 63546

Precision 0.596 0.998 0.948 0.947

Recall 0.259 0.825 0.861 0.943

MCC 0.386 0.906 0.901 0.955

method in [11] as well as the proposed method in this paper.
The reason is that, when several events happen continuously,
i.e., they happen back to back, such as the events in Fig.
12, the GGL method would train its similarity matrix based
on the considered window sample. In this case most of the
samples are events, thus, events are not anomaly anymore for
the GGL method. As a result, there would be higher score
value of similarity among such event-containing back-to-back
window samples. This leads to a lower true positive rate for
the GGL method. On the contrary, the proposed model in this
paper considers each sample individually and it compares each
sample with learned signature of the normal samples by the
GAN models. This improves true positive rate. It should be
noted that, the statistical method in [2] has reasonable accuracy
in detecting most of the three phase events that are balanced;
due to the fact that the method in [2] was not designed
to particularly detect unbalanced events. The method in [2]
performs poorly also to detect events with low magnitude.
Both of these issues are resolved in this paper. Given the
fact that it is common to have unbalanced events in power
distribution systems, this particular advantage of the proposed
method is of importance in real-world applications.

C. Event Clustering Results

The proposed event clustering method is applied to the
captured events in Section IV-B; and its performance is
compared with the following prevalent clustering methods in
the literature: kNN [46], k-Medoids [47], and fuzzy-k-Medoids
[48]. Different similarity measures are also considered: eu-
clidean, DTW [49], soft-DTW [50], and MaxCorr. In order to
compare clustering results, different indices are implemented
in the literature such as Jaccard Index, Adjusted Rand Index,
Fowlkes Mallows Index, Normalized Mutual Information and
Silhouette index; where the last one, i.e., the silhouette index is
generally known to show better results within variety of data
sets [51]. However, if a labeled evaluation set is available,
the analysis and assessment of the clustering model is more
intuitive and informative. Thus, in this paper the comparison
is conducted over 4000 reference events that are visually
clustered with expert knowledge. These events are clustered
after being detected by the proposed event detection method.

Table II shows the MCC for different clustering methods.
Two observations can be made based on the results in this
table. First, the clustering methods are almost always more
accurate when MaxCorr is used as similarity measure. Second,
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TABLE II
MCC IN EVENT CLUSTERING FOR DIFFERENT METHODS AND

DIFFERENT DISTANCE CRITERIA

Distance KNN k-medoids Fuzzy k-medoids Proposed Method

Euclidean 0.451 0.543 0.522 0.447

DTW 0.584 0.863 0.871 0.911

soft-DTW 0.579 0.861 0.871 0.888

MaxCorr 0.645 0.887 0.882 0.938

TABLE III
CLUSTER CATEGORIES FROM PRE-PROCESSING

Detection Features Number Pre-Processing
Vector |V | |I| cos(θ) of Events Category
E1 [111 111 111] 34242 I
E2 [111 000 000] 12270 II
E3 [000 111 111] 809 III
E4 [000 100 100]
E5 [000 110 110] 13956 IV
E6 [000 011 011]
E7 [000 000 111]
E8 [000 000 110] 52 V
E9 [000 000 011]

our proposed clustering method outperforms kNN, k-Medoids,
and fuzzy-k-Medoids for any similarity measure. The compu-
tational time to train the KNN, k-medoids, Fuzzy k-medoids,
and the proposed models (when MaxCorr is considered as
similarity measure) are 5 minutes, 7 minutes, 15 minutes, and
65 minutes, respectively. Note that, training is done offline.
Therefore, the higher accuracy of the proposed model does
not cause higher computational time during the operation.
Importantly, recall that the proposed clustering method is
active. In fact, when it comes to clustering new upcoming
events that require creating new clusters, which is done online
and during operation, all of the above methods have almost the
same computational time; which are less than 4 milliseconds.

D. Analysis of Identified Clusters

A total of nine detection vectors were observed among all
the events which they are denoted by E1 to E9, as shown in
Table III. As part of the pre-processing step in Section III-A,
these detection vectors result in five categories, denoted by
Category I to Category V, as shown on the last column in
Table III. Categories I, II, and III include balanced events;
while Categories IV and V include unbalanced events.

The optimization-based clustering in Section III-B is then
applied to the above five categories. It resulted in identifying a
total of 16 final clusters. In this regard, Category I is divided
into six clusters; Category II is divided into three clusters;
Category III is one cluster by itself; Category IV is divided into
three clusters; and Category V is divided into three clusters.

Next, we use the above clustering results to scrutinize and
expose the use cases for the events within each cluster.

E. Use Case Exposition: Six Clusters in Category I

Six clusters are identified in Category I; denoted by Clusters
#1 to #6. Clusters #1 and #2 can help identify different load
types. Clusters #3 and #4 can reveal malfunctions in the
operation of capacitors. Cluster #5 can help identify a specific
two-step transient events. Cluster #6 can identify oscillations.
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Fig. 1. Examples of load switching events: (a) inrush current in Cluster #1;
(b) long transient with a plateau in Cluster #2.

Fig. 2. Identifying two major load types based on Cluster #1.

1) Identifying Different Load Types: Fig. 1(a) shows an
example for Cluster #1, which is the most frequent event in
this system. It is the inrush current from load switching. The
transient time of these events is less than 10 time slots, i.e.,
83.3 msec, and one pinnacle which illustrates the magnitude
of inrush current. Fig. 2 shows the scatter plot for the change
in the steady-state current, i.e., ∆(Iss), versus the magnitude
of inrush current, i.e., |Iinr| during 6 different days. As it can
be seen, Cluster #1 can it self be divided into two main sub-
clusters which show two major types of loads in this cluster.

Fig. 1(b) shows an example for Cluster #2. It is for the load
types that create much longer transient period to switch and
creates a plateau; which is very different from the inrush cur-
rent in Cluster #1 with a pinnacle. Fig. 3 shows a scatter plot
for the events in Cluster #2. On the y-axis it shows the change
in steady-state current, before and after the event, which is
denoted by ∆(Iss). The x-axis is the length of the transient
period of the event. There is a dense concentration area, where
∆(Iss) fluctuates at around 1.5 A. This observation empowers
the system operator to more readily detect any abnormalities
in this cluster, with regard to ∆(Iss) and transient duration,
such as multiple simultaneous load switching.

2) Capacitor Bank State of Health Monitoring: Figs. 4(a)
and (b) show examples of clusters #3 and #4, which are related
to capacitor bank switching ‘on’ and switching ‘off’ events,
respectively. Capacitor bank switching occurs on a daily basis.

Monitoring the switching actions of capacitors can not only
keep the utility operator informed of switching status of the
capacitor banks; it can also help to evaluate their state of
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Fig. 3. Scatter plot for the events in Cluster #2 over 6 days.
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Fig. 4. Monitoring the operation and health of a capacitor bank based on
Clusters #3 and #4: (a) switch on; (b) switch off.

health. For example, consider the capacitor bank switching
off event in Fig. 4(b). We can see that there is a relatively
long overshoot on Phase A current and a relatively long
undershoot on Phase B current before the capacitor is de-
energized. This is likely due to a malfunction in the switching
control mechanism at the capacitor bank, c.f. [4]. By clustering
all the capacitor switching events, we can conduct statistical
analysis on the characteristics of such transient switching
responses and dispatch the field crew to examine the capacitor
bank switching controller and perform repairs.

3) Two-step Events: Fig. 5 shows an example of the special
load in Cluster #5. This special type of load has two separate
but subsequent steps. By using the proposed unsupervised
event detection and unsupervised event clustering method we
were able to capture it and identify its unique switching pattern
that is repeated every time this event occurs.

4) Oscillations in Current Induced by Step Changes: Fig. 6
shows an example of an oscillation event in Cluster #6. These
events always occur immediately after a particular pattern of
a step up change event in the current magnitude (as we can
see at the beginning of the Fig. 6(b)) that also is followed by
an oscillation event which is magnified in Fig. 6(a). For this
particular class of oscillatory events, we have observed that the
median for the frequency of the oscillations is 5.17 Hz; while
the median for the damping ratio of the oscillations is 2.64%.
This information is valuable to the utility. In particular, such
information that is obtained in an unsupervised fashion by our
proposed algorithms, when combined with a subsequent field
inspection by the utility crew members, can quickly lead to the
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Fig. 5. An example for the two-step event in Cluster #5.
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Fig. 6. An example for the oscillation event in Cluster #6: (a) oscillation in
current; (b) the step change prior the oscillations.

best remedial action; as deemed necessary by the utility. This
type of event causes the highest transient power factor change
at this distribution feeder, when compared with all kinds of
events that we have captured in this study. The amount of the
transient change in power factor is 0.4.

F. Use Case Exposition: Three Clusters in Category II

Three clusters are identified in Category II; denoted by
Cluster #7 to Cluster #9. Clusters #7 and #8 can help identify
voltage events. Cluster #9 can identify voltage oscillations.

1) Voltage Events: Fig. 7(a) shows an example of Cluster
#7, which is a transformer tap changing event. The events in
this cluster inform the utility about voltage regulation status
and the operation of tap-changers. Fig. 7(b) shows an example
event in Cluster #8, which is a voltage event with a plateau.
The transient shape of the voltage in Cluster #8 is similar to
voltage changes in Cluster #2, see Fig. 1(b); however, these
two events are different because there is no change in current
phasors (|I| and cos(θ)) in the events in Cluster#8. The events
in Clusters #7 and #8 are often initiated at transmission level.

2) Voltage Oscillation Events: Fig. 8 shows an example
for an event in Cluster #9, which is a high frequency low
magnitude event in |V |. Since there is no major change in
current, this event can be due to two possible phenomena: 1)
voltage oscillation from the upstream system; 2) temporary
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Fig. 7. Examples of voltage events: (a) transformer tap-changer in Cluster
#7; (b) voltage plateau in Cluster #8.
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Fig. 8. An example for voltage oscillation event in Cluster #9.

malfunction in micro-PMU data reporting. The later can be
considered as a possibility if it persists and if other micro-
PMUs do not report a similar behavior. In that case, this can
be used as an indicator to request micro-PMU diagnostics.
Importantly, this cluster is a new cluster that is added by the
active clustering method; which resulted from the significant
difference between the samples in this cluster and the samples
that were used during the offline training process.

G. Use Case Exposition: One Cluster in Category III

One cluster is identified in Category III; denoted by Cluster
#10. Fig. 9 shows an example for this cluster. The events in
this cluster affect only the current magnitude and power factor,
rather than the voltage magnitude. It should be noted that, the
pre-processing step in the proposed two-step clustering method
helps to distinguish the events in Cluster #10 from the events
in Clusters #2 and #5, despite their relatively high MMC.

H. Use Case Exposition: Three Clusters in Category IV

Three clusters are identified in Category IV; denoted by
Clusters #11 to #13. The events in these clusters are unbal-
anced. Fig. 10 shows an example of the event in Cluster #11.
This event is not detected by the event detection method in
[11]; because that method fails to notice small changes in just
one feature, i.e. in |IB |. However, in our method, by using one
GAN model for each feature, even small events are detected.
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Fig. 9. An example for current oscillation event in Cluster #10.
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Fig. 10. An example for the unbalanced events in Cluster #11. The event
affects the current magnitude of phases B and C.

I. Use Case Exposition: Three Clusters in Category V

Three clusters are identified in Category V; denoted by
Clusters #14 to #16. They are all related to power factor
events. An example for an event in Cluster #14 is shown
in Fig. 11. It shows oscillations in power factor. There are
also some minor oscillations, in the magnitudes of current and
voltage during the same period. Other types of power factor
events are also captured by the clusters in this category; not
shown here. It should be mentioned that the clusters in this
category were added by the active clustering; i.e., they were
not among the initial clusters that we had obtained during the
offline training process. The creation of these new clusters was
triggered mainly because of their different detection vectors.

J. Special Sequence of Events

One of the applications of the proposed unsupervised meth-
ods is to analyze the shape, occurrence time and sequence
of the detected and clustered events. Our analysis shows
that certain events come in sequence. This is an important
observation to enhance the predictability of the system, its
dynamics, and its events. An example is shown in Fig. 12. It
is a super event which consists of a sequence of several smaller
events that belong to Clusters #6 and #10. This super event is
first triggered by an event that belongs to Cluster #6, which
we previously saw in Fig. 6. Then, after about 60 seconds,
a series of over 100 events occur that all belong to Cluster
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Fig. 11. An example for power factor event in Cluster #14.
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Fig. 12. An example for the special sequence of the events in the current
magnitude that are repeated occasionally. It was captured based on the
collaboration of Clusters #6 and #10.

#10. This sequence continues with a growing amplitude until
it goes away. The exact same sequence of events occurred on
the same day and around the same time each week.

K. Versatility of the Proposed Model

In order to show the versatility of the proposed event
detection model, the developed model is applied to two other
micro-PMU data set; which were not used to developed the
existing model. First, a new data set that was from the
neighboring feeder is used for training but during a different
time of the year. In this case, all we needed to do was to
slightly fine tune the original model, i.e., we only needed to
re-train the last layer in the existing GAN models, based on
the new training batches, which lead to faster model training
by using pre-trained model. Thus, the training process in
terms of computational time to achieve the equilibrium is
around 14 minuets. It should be noted that, just like in the
procedure mentioned in Section IV-B, a total of 1200 events
were extracted manually within 6 hours. The MCC of the fine
tuned model for this new data set is 0.9018.

Second, we used a micro-PMU data set from a completely
different type of feeder. This time we used real-world micro-
PMU data from solar distribution feeder in a solar farm; based
on the data in [52]. The nature of the power distribution feeder
in this second case is drastically different from the nature of

the original power distribution feeder that serves loads; which
has been the focus throughout this paper. For the case of this
second data set, we were able to keep the proposed architecture
of our model; but we had to re-train the model with the new
data set. It should be mentioned that the structure and the
hyper-parameters (except for epoch and batch size numbers)
remained the same as in our original model. Nevertheless, the
result was promising. The results and other details about the
analysis of the events at this solar farm are available in [52].

V. CONCLUSIONS

A set of new unsupervised methods are proposed to detect
and cluster different types of events in micro-PMU mea-
surements. The test results based on real-world micro-PMU
data confirm that the proposed event detection method, which
works based on training a novel GAN model, outperforms the
existing methods , in particular when it comes to detecting the
events that may impact only a subset of the features or only a
subset of the phases. Test results also show the effectiveness
of the proposed two-step clustering method, compared to the
other prevalent methods, due to the proposed choice of the
similarity measure and also the proposed architecture that
improves clustering accuracy. Moreover, the active nature of
the proposed clustering method makes it capable of identifying
new clusters of events on an ongoing basis. Once the events
are detected and clustered, the results are used in various
use case analysis. Statistical analysis as well as human expert
knowledge are used to scrutinize the events in each cluster; to
unmask different applications for the utility operator.
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