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Abstract—A novel distribution system state estimation (DSSE)
method is proposed for power distribution networks with low-
observablity, where the measurements come from only a few
distribution-level phasor measurement units (D-PMUs). The pro-
posed DSSE method is event-triggered, which means the state
variables are updated based on the information that is extracted
from the events in the power distribution system. In this regard,
the estimations of the state variables during the previous events
are used as priori information to predict the state variables
at the current event. Accordingly, a novel data-driven method
based on elastic net regression analysis is proposed to learn
the event-triggered state transition matrix. The DSSE problem
is formulated as a generalized group Lasso problem, which is
augmented based on the knowledge on the sparsity patterns
of the state variables that are extracted from the analysis of
the events. Here, in the absence of direct power measurements,
we enhance our ability in sparse recovery by developing a
new reinforced physics-based coupling method among the state
variables, in which we add a novel set of linear differential
power flow equations to the DSSE problem formulation in
forms of virtual measurements. Finally, two different approaches
are proposed to solve the formulated sparse event-triggered
DSSE problem. The first approach is exact but computationally
expensive, as it requires conducting a batch alternating direction
method of multipliers (ADMM) analysis. The second approach is
approximate, but it is much faster as it works based on a novel
modified Kalman filter/smoother in the presence of ℓ1-norm.

Index Terms—Event-triggered DSSE, low-observability, spar-
sity, physics-based coupling, virtual measurements, Kalman filter,
elastic net regression, distribution synchrophasors, D-PMU.

I. INTRODUCTION

A. Motivations

Distribution system state estimation (DSSE) is a core mod-
ule in monitoring and operation of power distribution systems.
The purpose of DSSE is to estimate the power system state
variables from the available power system measurements. The
measurements may include slow reporting data from SCADA
sensor devices and smart meters, and fast reporting and high
resolution data from distribution-level phasor measurement
units (D-PMUs) [1]. In the development of a DSSE method,
there are key challenges that need to be addressed:

1) Low-Observability: Unlike the power transmission sys-
tems are that usually well-instrumented, power distribution
systems are usually not fully-observable, i.e., they often lack
sufficient measurements to the extent that we cannot uniquely
estimate the state variables due to facing underdetermined
equations [2]. Due to the expanded size of the feeders and
the limitations of the communication infrastructure, the grid
operator cannot install sensors at every location in the power
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distribution system to achieve full-observability. Therefore, a
practical DSSE method must deal with the inevitable low-
observability circumstances in power distribution system.

2) Dynamic and Time-Varying System: A typical sudden
change in loads or in the output power of renewable generators
can cause a sudden deviation in the state variables in a
power distribution system. Thus, static DSSE methods may
not capture and track these frequent changes; because of their
inherent assumption on steady-state operation of the power
distribution systems [3]. This is particularly the case in DSSE
methods that rely on pseudo-measurements, alongside other
measurements to maintain full-observability [4]. Meanwhile,
it is crucial to establish an accurate state transition model.

3) Computation Burden: While the high reporting rate of
D-PMUs can potentially give the utility a unique opportunity
to enhance situational awareness, processing the heavy streams
of D-PMU data remains a challenge by itself. Interestingly, in
practice, a major portion of the D-PMU data does not carry
much useful information [5]–[8]. Therefore, a DSSE mecha-
nism that focuses on extracting the most informative aspects
of the measurements under the inherent low-observability in
a power distribution system can inevitable also help with
reducing the computational and communication burden.

B. Technical Contributions

In this paper, our goal is to develop a DSSE method which
can address the above aforementioned challenges. The main
contributions of this paper can be summarized as follows:

1) The proposed DSSE method is event-triggered and it uses
the voltage and current phasor measurements from only a
few D-PMUs. Accordingly, the state variables are defined
in differential mode under low-observability conditions,
where all the changes in the state variables, i.e., state
transitions, are due to the occurrences of physical events.

2) The introduced event-triggered DSSE problem is formu-
lated as a generalized group Lasso problem, which is
augmented by sparsity patterns, not only in voltage and
current phasors, but also in power injections. While we
do not include direct power measurements in our model,
we reinforce the DSSE problem formulation by a novel
set of linear differential power flow equations, to be used
as virtual measurements to enhance the physics-based
coupling that exists among the differential state variables.

3) A data-driven method is developed to learn the event-
triggered state transition matrix among the differential
state variables. It works as a discriminative elastic net
regression method, and it can capture the sparsity in such
matrix due to the radial topology and the spatial-temporal
correlations of the state variables.
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TABLE I
SUMMARY OVERVIEW AND COMPARISON WITH THE EXISTING DSSE METHODS

Method Event-Triggered Observability Setting State Transition Matrix Physics-Based Sparsity Features

[9] No Full-Observability† Dynamic Time-Variant Zero Injection Nodes
[10][11] No Full-Observability† Dynamic Identity No

[12] No Full-Observability† Dynamic Identity Temporal Correlation
[13][14][15][16] No Full-Observability† Static N/A No

[17][18] No Low-Observability Static N/A No
[19][20] Yes Full-Observability† Dynamic Identity No

[21] Yes Low-Observability Static N/A Sparsity in Voltage and Current

Proposed Yes Low-Observability Dynamic Time-Variant Sparsity in Differential Power
Flow Equations

†Full-observability is achieved either through sufficient measurements or by using pseudo-measurements.

4) Two different approaches are proposed to solve the for-
mulated sparse event-triggered DSSE problem. The first
approach is exact and works based on the batch alternat-
ing direction method of multipliers (ADMM). The second
method is approximate to further lower computational
complexity. It works in three steps: Kalman filtering,
incorporating sparsity, and backward smoothing.

C. Literature Review

Table I shows an overview summary of the related liter-
ature, in comparison with the proposed method. So far, the
most common approach to address low-observability has been
to increase the observability by using pseudo-measurements,
whether in static DSSE [10], [15], [16], or in dynamic DSSE
[9]–[11]. Pseudo-measurements are typically generated from
historical or proxy data and by using methods such as artificial
neural networks [13] or Gaussian mixture model [14].

A more recent approach to tackle low-observability is to use
sparse recovery tools from signal processing to solve the DSSE
problem without making it fully-observable [17], [18], [21]–
[23]. However, all the existing methods in this line of work
so far seek to solve the DSSE problem in a static setting,
i.e., they do not use any dynamic model, such as a state
transition matrix, in the formulation of the problem. Therefore,
they cannot capture the dynamic nature of the modern power
distribution systems.

Importantly, a method that is dedicated to address the DSSE
problem, not only under low-observability conditions but also
in a dynamic setting, is still missing. In [10], a dynamic
DSSE method is proposed using Iterated Kalman Filter (IKF).
In [11], a past-aware DSSE method is proposed which uses
the estimation results from the previous time slots to correct
the estimation for the current time slot through the use of
Ensemble Kalman filter (EnKF). In [12], a forecasting-aided
DSSE method is proposed by using a robust EnKF to increase
redundancy in measurements. However, the dynamic DSSE
methods in [10]–[12] do not address low-observability and
they do not utilize the inherent sparsity in the DSSE problem.

Another aspect that is relevant to dynamic DSSE methods
is the state transition model. A common assumption in the
existing limited literature on dynamic DSSE is that, the state
transition matrix is an identity matrix; e.g., see [10]–[12].
This quasi-steady state assumption is valid for a time-triggered
dynamic system with smooth changes in the state variables.

However, this simplified model is not valid for an event-
triggered system with sudden and sharp changes. Of course,
given the low-observability of the power distribution feeders,
addressing this shortcoming is particularly challenging.

Although there are few studies that use event-triggered
models in the broader field of power system state estimation,
they have focused on wide area measurements in power trans-
mission systems. In [24], a master-slave non-linear filtering
structure is developed for the state estimation module for
power transmission networks in order to lower the computation
burden of state estimation task. In [25], an event-triggered state
estimator is developed based on particle filter design to relieve
the computation burden due to widespread use of distributed
generators in power systems. In [26], an event-based cubature
Kalman (EBCKF) filter is proposed, which guarantees that
only the observations with new information are transmitted
to the Kalman filter for running state estimation. In [27], an
event-triggered state estimation is developed for monitoring
the electromechanical dynamic states (dynamic modes) of the
generators, where the measurements come from PMUs.

Recently, a DSSE method is proposed in [19], which is
based on event-triggered data transmission. It uses a special
closed-loop event triggering condition to utilize the limited
data communication bandwidth more efficiently during state
estimation. In [20], a forecasting-aided event-triggered DSSE
method is proposed which uses a component-based event-
triggered mechanism, and an unscented Kalman filter (UKF),
to perform DSSE by using different types of measurements.

However, the above limited literature on event-triggered
state estimation in [19], [20], [24]–[27] does not address the
low-observability issue, which is the primary challenge in this
paper. They also do not involve the learning mechanisms for
the state space model which is another key focus in this paper.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider a three-phase power distribution network that is
represented by graph G := (N ,L), where N denotes the set
of three-phase nodes and L denotes the set of three-phase
distribution lines. For notational simplicity, we skip using a
specific index for the phases; however, all the phasors in our
formulations are assumed to be in three-phase. We assume that
the understudy network has a typical radial topology.
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A. State Variables

Traditionally, it is very common in the power systems
literature to model the power system dynamics using time-
triggered state space models, in which the state variables in the
system may change on fixed time intervals. However, in prin-
ciple, one can model a dynamic system also by using event-
triggered state space models, in which the state variables in
the system may change due to the occurrences of events [28].
The advantage of considering the event-triggered paradigm is
that we can run and solve the DSSE problem only when a
major event is detected in the system, rather than doing so
every single time that a measurement is obtained.

Here, an “event” is defined broadly. For example, an event
can be a load switching, or an equipment switching, such as a
capacitor bank switching, a sudden change in the generation
level of a renewable generator. In all these cases, the event
may cause changes in the state variables in the system; which
in turn triggers a new state estimation.

Our study in this paper focuses only on the events that
happen at the buses of the system. That is, our proposed
DSSE does not support those events that may happen on the
branches of the system, i.e., faults or topology changes. Most
line faults are usually analyzed separately [29]; and topology
identification too is often a separate task [30]. Given the fact
that our focus is on networks with low-observability, it is
indeed preferred to keep those tasks separately; leaving the
focus of our sparse and dynamic DSSE algorithm on state
estimation during normal operation.

At each event k, let Vk denote the vector of voltage phasors
at every node in set N . Also, let Ik denote the vector of current
phasors at every line in set L. In this study, we represent all
phasors in the rectangular coordinates. Thus, each phasor has
two associated quantities, i.e., the real part and the imaginary
part. Similarly, let Sk denote the vector that contains the
injected apparent power to all the nodes in N at event k.

Suppose xk denotes the vector that contains Vk, Ik, and
Sk. Unlike most other formulations in the DSSE literature,
we define the state variables in differential mode. We define
∆xk as the vector of differential state variables as follows:

∆xk := xk − xk−1. (1)

Here, ∆xk denotes the vector of the changes in all the system
state variables that are caused due to the occurrence of event k,
in comparison with the status of the system at event k−1. The
vector of state variables in our problem formulation contains
all differential voltage phasors, all differential current phasors,
and all differential apparent power injections:

∆xk :=
[
(∆Vk)

⊤ (∆Ik)
⊤ (∆Sk)

⊤ ]⊤
. (2)

B. Available Measurements and Network Observability

Since the state variables in this paper are defined in differ-
ential mode, we need to know their initial values, such that we
can add them to the estimated differential phasors to obtain the
regular state variables after each event. Hence, we assume that
at k = 0, the initial values of the state variables are known.
Subsequently, during the events k = 1, . . . ,K, we assume that

low-observability condition holds, where the measurements are
limited to the voltage and current synchrophasors at only a few
D-PMUs on the power distribution feeder. We only rely on the
measurements of D-PMUs, which have high reporting rates,
because other types of measurements, such as from legacy
meters or pseudo-measurements, do not capture the sudden
changes that occur in the state variables due to the events [9].

At each event k, let yk denote the vector of voltage
phasor measurements at the nodes in set Nm ⊆ N and the
current phasor measurements at the lines in set Lm ⊆ L.
Similar to (1), we can define the vector of differential phasor
measurements in the rectangular coordinates as:

∆yk := yk − yk−1. (3)

Therefore, measurement vector ∆yk can be defined as:

∆yk :=
[
(∆Vm

k )⊤ (∆Imk )⊤
]⊤

, (4)

where superscript m indicates the measurements.
Remark 1: As we can see in (4), we do not collect

any power measurements in the proposed formulation of the
DSSE problem. Yet we want to reinforce our DSSE problem
formulation with physics-based couplings that exist between
the differential state variables in (2), because of the advantages
of doing so; which we will unmask throughout this paper.
Therefore, despite not having power measurements in (4), we
have intentionally included the differential power phasors in
the vector of state variables in (2), such that their values are
estimated as a part of our proposed DSSE problem.

Based on the available measurements, we introduce mea-
surement matrix Hk to relate the measurements to the state
variables. In its basic form, matrix Hk has three block rows,
denoted by H1

k, H2
k, and H3

k, as we will explain next. We will
also discuss a fourth block, denoted by H4

k, in Section II-E.
In the first set of equations, the differential voltage phasor

measurements are mapped to the differential voltage phasors
in the vector of state variables via an identity mapping:

H1
k :=

[
U 0 0

]
, (5)

where U is the adequate identity block matrix.
In the second set of equations, the available differential

current phasor measurements are mapped to the differential
voltage phasors in the vector of state variables by applying
the Kirchhoff’s current law (KCL), as follows:

∆Imk = Y∆Vk, (6)

where Y is the admittance matrix. Accordingly, we have:

H2
k :=

[
Y 0 0

]
. (7)

The equations in (6) only include a small subset of line
segments, i.e., those in Lm. For the rest of the line segments,
i.e., those in L\Lm, we do not have any direct measurements.
Thus, we instead add the KCL equations associated with the
line segments that are not equipped with D-PMUs as auxiliary
equations to the DSSE problem formulation as follows:

0 = Y∆Vk −∆Ik. (8)

Accordingly, we have:

H3
k :=

[
Y −U 0

]
. (9)
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C. Event-Triggered State-Space Model

In this Section, we formulate the DSSE problem in a
dynamic setting. Similar to the literature, such as in [4], [9],
[11], we assume that the state-space equation is in linear form.
As discussed in [4], a liner state-space model is commonly
used in dynamic DSSE, also known as forecasting-aided state
estimation (FASE). Linear state-space models can achieve ac-
ceptable accuracy, provided that the power distribution system
operates under normal conditions, i.e., abnormal events such
as faults or topology changes, that suddenly cause a major
deviation in the operating points of the power distribution
system, do not happen. For those abnormal conditions, which
are beyond the scope of this work, one may need to use the
more complex non-linear state-space models.

From this, and since our focus in this paper is on differential
mode; we can express the state space model as:

∆xk = Ak∆xk−1 + qk, (10)

where Ak is the state transition matrix at event k and qk ∼
N (0,Qk) is the zero-mean process noise with covariance Qk.

Since our focus is on event-triggered state estimation, the
DSSE problem is solved only if a major event occurs in the
network. The occurrences of such major events are detected by
the existing event-detection methods in the literature. In fact,
there is a rich literature not only for event-detection but also
for event location identification which work under the same
low-observability conditions that we consider in this paper.
Examples of such methods are in [8], [31] for event detection
and in [32]–[34] for event location identification. Specifically,
the methods in [8] and [32] require the presence of one D-
PMU at the substation and one D-PMU at the end of each
lateral; which is the same requirement for the availability of
the D-PMUs that we have considered in this paper.

Thus, for the rest of this paper, we assume that the occur-
rences of the events and their exact or at least approximate
locations are known. We assume that only one event can
happen at a time. The challenge is to formulate and solve
the DSSE problem that is triggered by an event.

Remark 2: The study of events in this paper is based on the
findings in [8], [31], [32], [35] about event-detection in real-
world D-PMU data. They have shown that, in practice, it is
almost always the case that only one major event may happen
at a time on a typical distribution feeder. Accordingly, unless
it is stated otherwise, we assume in this paper that only one
event happens at a time. However, for the special case where
one major event and multiple smaller events happen at the
same time, the proposed method can still perform reasonably
well, as we will see in a case study in Section V-F.

D. Sparsity in Voltage and Current Phasors

Consider an event that occurs on the feeder. Consider the
path between the substation and the node where the event
occurs. Let us denote such path by a tree T := (V, E). Let us
denote the rest of the network by T ′ := (V ′, E ′). Note that:

T ∪ T ′ = G and T ∩ T ′ = ∅. (11)

As it is shown in [21], once a major event happens at the
distribution feeder, the vector of differential voltage phasors
and the vector of differential current phasors become sparse.
Only the differential voltage phasors at the nodes in V , and
only the differential current phasors at the line segments in
E would be non-zero. The differential current phasors for all
the line segments outside tree T , i.e., those in E ′ would be
zero. As for the nodes in V ′, group sparsity holds among
the differential voltage phasors, as there would be groups of
nodes whose differential voltage phasors would be either all
(approximately) zero or all non-zero. That is, in each group,
if the differential voltage phasor is zero for one node, then
it would be zero for the rest of nodes that are on the same
group. For more details please refer to [21].

E. Sparsity in Power Injections
Let us assume that all the load and generation components

at each node on the power distribution feeder are collectively
modeled as a constant power component. This is a common
model, e.g., see [36], [37]. An important implication of this
assumption is that, once an event occurs, the differential
power injection is zero at all of the nodes across the power
distribution feeder, except at the node where the event occurs.
Since the event detection method gives us the location of
the event, c.f. [32], we accordingly know at which nodes the
differential power injection phasors are zero. By incorporating
this information with the DSSE problem through the power
flow equations, we can derive an additional set of equations
to enhance the observability of the power distribution system.

Throughout this paper, we call the above additional set of
differential zero-injection equations as virtual measurements,
as we do not have any direct measurement for the power.
While these additional equations do not necessarily make the
underdetermined system of equations in the DSSE problem
full-rank, they reinforce the DSSE problem formulation with
physics-based coupling among the state variables, which helps
us with recovering the state variables at each event.

The above idea can be materialized by incorporating the
power flow equations into our analysis. Since we defined the
state variables in differential mode, we need to modify the
standard power flow equations accordingly. After that, we need
to linearize the resulting differential power flow equations.

Interestingly, the linearization of the power flow equations in
differential mode is justified mathematically beyond the typical
linearization of the standard power flow equations. The details
are given in the Appendix. The resulting linearized differential
power flow equations are obtained in an abstract form as:

0 = Jk∆Vk −∆Sk, (12)

where Jk is the Jacobian matrix as explained in the Appendix.
From (12), we can now obtain the last block row of the

measurement matrix which we denote by H4
k, as follows:

H4
k :=

[
Jk 0 −U

]
. (13)

The sparsity patterns that we have extracted in this paper
with respect to the differential voltage phasors, differential cur-
rent phasors, differential power injection phasors, and differ-
ential power flow equations are all with respect to the physics
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of the power distribution system, i.e., the radial topology of the
feeder, the Ohm’s law, and the Kirchhoff’s laws. That is the
reason why we refer to these sparsity features and associated
relationships as “physics-based” throughout this paper.

Remark 3: We do not use any power measurement or any
power pseudo-measurement, yet we do take advantage of the
power flow equations in differential mode by including the
fourth block row in the measurement matrix. Thus, we catch
the physics-based couplings that exist among the differential
voltage phasors, differential current phasors, and the differen-
tial power injections in an event-triggered DSSE problem.

F. Event-Triggered DSSE Formulation

For notational simplicity, we introduce ∆zk as a new vector
that includes all the measurements in differential mode. Vector
∆zk is an extension of vector ∆yk in (4), where we also add
the additional rows of zeros corresponding to the auxiliary
equations in (8) and the virtual measurements in (12):

∆zk = [ ∆yk 0 ]. (14)

Accordingly, we can obtain the following ultimate relation-
ship between the new vector of differential measurements and
the vector of differential state variables:

∆zk = Hk ∆xk + rk, (15)

where matrix Hk in (15) is constructed by putting together ma-
trices H1

k, H2
k, H3

k, and H4
k. The added term rk ∼ N (0,Rk)

is the measurement noise that is assumed to be zero-mean
Gaussian with covariance matrix Rk. The measurement noises
at different D-PMUs are assumed to be mutually independent.

Together, the relationships in (10) and (15) provide the core
formulation for the event-triggered DSSE problem. Given the
fact that the state estimation problem is dynamic, the state
estimation process is done in the following two stages.

First Stage: In this stage, at the beginning of each sequence,
the state variables at the current sequence are predicted based
on their values in the previous sequence and by using the state-
space model in (10). The outcome of event detection is directly
taken into consideration in (10). An important aspect in the
analysis in this first stage is to have an accurate state transition
matrix as part of the event-triggered state space model in (10).
In this paper, we use Elastic Net Regression to learn the state
transition matrix. We will discuss this subject in Section III.

Second Stage: In this stage, the measurement model in
(15) is used to correct the prediction of the state variables.
Typically, a Kalman filter is used, such as the Iterated Kalman
filter [10] or the ensemble Kalman filter [11], to conduct the
aforementioned correction task. In this paper, we use a novel
sparse Kalman filter/smoother, given that our focus is on sparse
recovery in order to address the low-observability in the power
distribution system. We will discuss this subject in Section IV.

III. OFFLINE LEARNING OF TRANSITION MATRIX
VIA ELASTIC NET REGRESSION

As we mentioned in Section II-F, the accuracy in predicting
the current state variables based on the event-triggered state

space model in (10) depends on the accuracy of the state
transition matrix Ak. However, obtaining matrix Ak is a
challenging task. In fact, it is common in the literature to
assume that the state transition matrix in the DSSE problem
is always an identity matrix [10]. While there have been some
recent efforts, such as in [38], to estimate the time-varying
state transition matrix, no prior study has aimed to obtain such
matrix under the low-observability conditions. Also, no prior
method is designed for event-triggered DSSE formulations.

A. Event-Triggered State Transition Matrix

Suppose event k is detected and its location is identified as
bus sk. Suppose the location of the previous event, i.e., event
k − 1, is bus sk−1. Our goal is to obtain:

Ak = B(sk−1, sk) (16)

for the transition of the system in differential mode from the
moment when an event occurs at bus sk−1 to the moment
when a subsequent event occurs at bus sk. In order to explain
the role of matrix B, let us first consider an example. Suppose
K = 15, and the location of the events are identified as buses
5, 8, 15, 1, 7, 10, 4, 8, 15, 6, 4, 8, 2, 9, 12, respectively.
Notice that, at event k = 3, we have sk−1 = 8 and sk = 15.
Similarly, at event k = 9, we have sk−1 = 8 and sk = 15.
However, at event k = 13, we have sk−1 = 8 and sk = 2.
Therefore, from the relationship in (16), we set

A3 = A9 = B(8, 15), and A13 = B(8, 2). (17)

Similarly, we can obtain matrix Ak for any event k based
on matrix B that we learn using historical data. Here, matrix
B(n,m) itself is defined as the event-triggered state-transition
matrix that captures the changes in the state variables in the
power system for any case where the previous event occurs at
bus n and the current event occurs at bus m.

In total, we have (|N |− 1)× (|N |− 1) possible transitions
from one event location to another event location. Therefore,
there are exactly (|N | − 1)× (|N | − 1) matrices B(n,m).

For any two buses n and m in set N\{1}, we can obtain
matrix B(n,m) by examining the set of all historical events
of index κ for which we have sκ−1 = n and sκ = m. We
can learn the event-triggered state transition matrix B(n,m)
by solving the following optimization problem:

B(n,m) = argmin
B

∑
κ∈K

||∆xκ −B∆xκ−1||22 (18)

where
K = {κ | sκ−1 = n, sκ = m} . (19)

The above training is done offline by analyzing the events
in the historical data. Once we obtain B(n,m) for all the
(|N |− 1)× (|N |− 1) possible event-triggered transitions, we
can obtain Ak for any event k by using (16). Note that, the
terms “learning” and “training” that are mentioned above are
associated with the process of calculating the entries of the
event-triggered state transition matrix. We refer to this process
as learning; because it is data-driven; it works by applying the
elastic net regression method to the historical data.
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B. Elastic Net Regression

While the formulation in (18) is conceptually valid, we may
face numerical issues in solving this optimization problem.
Such numerical issues are due to the inherent sparsity in matrix
B, which is due to the same reasons that we mentioned in
Section II-D. In fact, since each node in a radial network
topology is connected to very few nodes, each row of matrix
B is highly sparse. Therefore, we propose to formulate the
optimization problem in (18) as a discriminative elastic net
regression [39]. The new formulation is obtained as:

B(n,m) = argmin
B

∑
κ∈K

||∆xκ −B∆xκ−1||22

+ λ2||B||2F + λ1||B||1,1,
(20)

where || · ||F denotes the Frobenius norm and || · ||1,1 denotes
the l1,1 matrix norm. Parameters λ1 and λ2 are weight factors.

The reason for using the above elastic net regression in
this study is the fact that, each row of matrix B is sparse
due to the radial topology of the distribution feeder, yet the
non-zero entries are correlated because of the spatial-temporal
correlation of the state variables in a power distribution feeder
[17]. Elastic net regression has the advantage to make a trade-
off between these two properties by adjusting the penalty
parameters λ1 and λ2. Similar to any other regression model,
the values of these weight parameters are determined based
on the values of data in practice. The larger λ1 is, the more
sparse and less correlated the entries of matrix B would be.
Also, larger values for λ2 would lead to higher correlation
between the entries of matrix B, which lowers the sparsity.

The solution for the elastic net regression is a matrix, whose
element in row i and column j is obtained as:

b[ij] =
{|bLS[ij]| − λ1/2}+

1 + λ2
sign{bLS[ij]} (21)

where {·}+ = max{·, 0} and bLS[ij] is the element in row i
and column j of the following matrix:∑

κ∈K
∆xk−1(∆xk)

⊤. (22)

Remark 4: In a feeder with a large number of nodes, it
may not be possible to capture all the (|N | − 1)× (|N | − 1)
transitions in the system. One solution is to group multiple
nodes into one zone, such that instead of finding the transition
from the nodal location of one event to the nodal location of
the next event, we seek to find the transition from the zonal
location of one event to the zonal location of the next event.

Remark 5: In addition to the locations of the previous event
and the current event, the state transition matrix Ak may
depend on other factors, such as the type of the previous event
and the type of the current event. Such additional factors can
be taken into consideration by revising (16) as follows:

Ak = B(sk−1, sk, γk−1, γk), (23)

where γk−1 denotes the type of the previous event and γk
denotes the type of current event. Considering these additional
factors may lead to some improvements. However, there are
at least three issues to be considered with respect to any such

revised model. First, the type of the event is likely not known
for most events. This is particularly a concern given the low-
observability of the network which is the main challenge in
this paper. Second, the formulation in (23) requires learning
the state transition matrix in a four dimensional space (instead
of two); because matrix B becomes a four dimensional matrix.
Apart from the computational complexity, one may not have
sufficient measurements to properly learn the matrix under
such large dimensionality. Third, over-fitting can become an
issue given that each element of matrix B would become too
specific for each transition scenario. Therefore, for the rest of
this paper, we consider the original formulation in (16).

IV. EVENT-TRIGGERED DSSE PROBLEM FORMULATION
AS SPARSE SIGNAL RECOVERY AND ITS SOLUTION

After learning the transition matrix, we can now solve the
event-triggered DSSE problem. In this section, we provide the
problem formulation and also two different solution methods.

A. Problem Formulation

At each event k, our goal is to estimate the most recent
differential state variables, i.e., ∆xk, as well as to refine and
update the estimation of the previous differential state vari-
ables, i.e., ∆x1, . . . ,∆xk−1. In this regard, suppose we stack
up the vectors of differential state variables ∆x1, . . . ,∆xk

and denote the resulting vector by ∆x1:k. Similarly, sup-
pose we stack up the vectors of differential measurements
∆z1, . . . ,∆zk and denote the resulting vector by ∆z1:k.

From (10) and (15), and given the fact that the vector of the
differential state variables is a sparse vector, we can estimate
∆x1:k by solving the event-triggered DSSE problem which is
formulated as the following generalized group Lasso problem:

minimize
∆x1:k

1

2

k∑
κ=1

||R−1/2
κ (∆zκ −Hκ∆xκ) ||22

+
1

2

k∑
κ=2

||Q−1/2
κ (∆xκ −Aκ∆xκ−1) ||22

+
1

2
||G−1/2

1 (∆x1 −m1) ||22

+ λ

k∑
κ=1

P∑
p=1

wκ,p∥∆xκ,p∥1.

(24)

Here, Qκ and Rκ are the covariance matrices that are used
in (10) and (15), respectively; m1 and G1 are the mean and
covariance of the initial differential state variable, which are
assumed to be known; and λ is the sparsity regularization
parameter. Subscript p is the index for each partition of the
differential state variables with respect to the concept of group
sparsity that we discussed in Section II-D; and wκ,p is the
weight associated with partition p at event κ. More details on
selecting the partitions and their weights can be found in [21].
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For notation simplicity, we can further rewrite the optimiza-
tion problem in (24) in the following more compact form:

minimize
∆x1:k

1

2
||R−1/2 (∆z1:k −H∆x1:k) ||22

+
1

2
||Q−1/2 (Φ∆x1:k −m) ||22

+ λ∥W∆x1:k∥1

(25)

where matrix R is the block-diagonal representation of matri-
ces R1, . . . ,Rk, matrix H is the block-diagonal representation
of matrices H1, . . . ,Hk, matrix Q is the block-diagonal repre-
sentation of matrices G1,Q2, . . . ,Qk, matrix Φ is the block-
diagonal representation of matrices A2, . . . ,Ak, matrix W
is the adequate block-diagonal representation of the weights
in (24), and vector m is obtained by stacking up vector m1

following by k − 1 vectors denoted by 0, which are zero
vectors of the same size as m1. Next, we discuss two different
approaches to solve the optimization problem in (24).

B. Approach 1: Batch ADMM Solution

A common approach to solve a generalized group Lasso
optimization problem is to use the ADMM algorithm [40].

We can obtain the augmented Lagrangian function for the
problem in (25) under constraint W∆x1:k − µ = 0 as:

Lρ(∆x1:k,µ,u) =
1

2
||R−1/2 (∆z1:k −H∆x1:k) ||22

+
1

2
||Q−1/2 (Φ∆x1:k −m) ||22

+ λ∥µ∥1 + ⟨u,W∆x1:k − µ⟩

+
ρ

2
∥W∆x1:k − µ∥22

(26)

where u is the vector of dual variables and ρ > 0 is a regu-
larization parameter. Here, λ > 0 is the sparsity regularization
parameter which is used to adjust the trade-off between the
measurement data fidelity and the penalty in the sparsity. A
large λ would push the partitions of the state variables towards
zero; while a very small λ would relax the sparsity penalty
term on the partitions. Therefore, per the discussion made in
Chapter 3 of reference [40], the value of λ can be selected
based on cross validation. We will assess the sensitivity of our
proposed method to the choice of the sparsity regularization
parameter λ in Section V-G.

For each set of the variables, ADMM alternatively solves
the following minimization problems and obtains the optimal
values for the (τ + 1)-th iteration of alternation as:

∆x
(τ+1)
1:k = argmin

∆x1:k

1

2
||R−1/2 (∆z1:k −H∆x1:k) ||22

+
1

2
||Q−1/2 (Φ∆x1:k −m) ||22

+ ⟨uτ ,W∆x1:k − µτ ⟩

+
ρ

2
∥W∆x1:k − µτ∥22,

(27)

µ(τ+1) = argmin
µ

λ∥µ∥1 + ⟨uτ ,W∆x
(τ+1)
1:k − µ⟩

+
ρ

2
∥W∆x

(τ+1)
1:k − µ∥22,

(28)

u(τ+1) = uτ + ρ
(
W∆x

(τ+1)
1:k − µ(τ+1)

)
. (29)

By taking the derivative of the least square problem in (27),
the optimal solution of ∆x1:k in iteration (τ+1) of the ADMM
algorithm takes the following closed from:

∆x
(τ+1)
1:k = [H⊤R−1H+Φ⊤Q−1Φ+ ρW⊤W]−1

[H⊤R−1∆z1:k +Φ⊤Q−1m+ ρW⊤µk +W⊤uk].
(30)

We can also solve the problem in (28) as:

µ(τ+1) = Sλ/ρ

(
W∆x

(τ+1)
1:k +

uτ

ρ

)
, (31)

where S(.) is the soft-thresholding operator [40].

C. Approach 2: Kalman Filter and Smoother

Although the ADMM algorithm is exact and effective, it can
be computationally expensive; because it requires calculating
products and inverses for large matrices in (30). Hence, in this
section, we propose an alternative approach to solve (25).

Suppose we remove the last line in (25), i.e., the line with
the ℓ1-norm. What would be left in (25) would take the
form of the optimization problem which can be solved by
a conventional Kalman filter/smoother [41]. This is of interest
due to the computational efficiency in Kalman filtering.

Based on the above observation, we propose to first make
changes that we mentioned in the previous paragraph in (25),
and obtain the corresponding solution for ∆xk by using
Kalman filter. Next, to take into account the impact of sparsity,
we project the obtained solution for ∆xk into a sparse domain.
Finally, we use a conventional Kalman smoother to refine the
previous estimation for ∆x1:k−1 that is already obtained at
event k − 1 based on the projection of solution for ∆xk.

These steps will provide us with an approximate solution for
∆x1:k, i.e., the optimal solution for (25). As we will discuss in
Section V, the difference between the approximate solution in
Approach 2 and the exact solution in Approach 1 is negligible.

1) Kalman Filtering: At each event k > 1, we can use the
state space model in (10) to conduct a preliminary one-step
ahead prediction of the state variables as follows:

∆xk|k−1 = Ak∆xk−1. (32)

The covariance matrix for ∆xk|k−1 is obtained as:

Gk|k−1 = AkGk−1A
⊤
k +Qk. (33)

From (15), we can similarly make a one-step ahead prediction
of the differential measurement as follows:

∆zk|k−1 = Hk∆xk|k−1. (34)

We can obtain the measurement residual as ∆zk −∆zk|k−1.
Therefore, we can correct the preliminary one-step ahead
prediction in (32) by applying the Kalman filter as follows:

∆xk|k = ∆xk|k−1 +Kk

(
∆zk −∆zk|k−1

)
, (35)

where Kk is the gain of the Kalman filter [42]:

Kk = Gk|k−1H
⊤
k S

−1
k , (36)

and Sk is the covariance of ∆zk|k−1 as

Sk = HkGk|k−1H
⊤
k +Rk. (37)
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We can obtain the covariance matrix of ∆xk|k as:

Gk|k = Gk|k−1 −KkSkK
⊤
k . (38)

Note that, the process to obtain ∆xk|k does not take into
consideration the inherent sparsity in the solution.

2) Incorporating Sparsity: In the next step, we project the
obtained estimation from Kalman filter, i.e., ∆xk|k, to the
sparse domain with respect to its corresponding weight vector
Wk by solving the following optimization problem:

minimize
∆xk

1

2
||∆xk −∆xk|k||22 + λ∥W⊤

k ∆xk∥1. (39)

Here, we obtain ∆xk such that it is as close as possible to
∆xk|k while it meets the sparsity constraints.

Since problem (39) does not have a closed-form solution,
we cannot obtain the covariance of its solution in closed-form.
Thus, we assume that the covariance of ∆xk is Gk = Gk|k.

3) Backward Smoothing: After obtaining a computationally
efficient sparse solution for ∆xk, we successively apply the
Kalman smoother to all the previous state estimation results
in order to update ∆x1:k−1. First, we replace ∆xk−1 with

∆xk−1 + Fk−1

(
∆xk −∆xk|k−1

)
, (40)

where Fk−1 is the gain of the Kalman smoother [42]:

Fk−1 = Gk−1A
⊤
k G

−1
k|k−1. (41)

Finally, we update Gk−1 by replacing it with

Gk−1 + Fk−1

(
Gk −Gk|k−1

)
F⊤

k−1. (42)

We then continue with applying the above backward smoother
similarly to events k−2, k−3, . . . , 1 to update vector ∆x1:k−1.

Before we end this section, we add a brief note about the
issue of convergence with regards to the above two approaches.
Approach 1 is iterative; because it is a batch ADMM method.
The convergence of Approach 1 is guaranteed as long as the
objective function in the optimization problem is a sum of
several convex functions with linear constraints [40]; which is
the case in this paper. As for Approach 2, it was proposed to
reduce the computation time by avoiding any iteration. That
is, unlike Approach 1, Approach 2 is not iterative. Therefore,
the issue of convergence is not applicable to Approach 2.

D. Real-Life Applications of the Proposed Methods

DSSE is a key module in the monitoring systems in
Automated Distribution Management Systems (ADMS) [7].
Despite the advancements made in the sensor technologies,
such as transition from analog meters to smart meters at the
customer end or the emergence of D-PMUs, in practice, the
power distribution systems still suffer from low-observability
due to the various reasons that were discussed in Section I.
Our DSSE method addresses low-observability as the central
focus; thus advancing the field of power system monitoring by
addressing a challenging issue with direct practical relevance.

Another real-life concept that is of importance in this paper
is the notion of “event”, which is any abrupt change in the
elements of the power system. Events happen very frequently
in practice. In fact, one of the main reasons that monitoring of

power distribution systems is becoming increasingly important
is due to the need to monitor occurrence of such changes
across the power distribution system. This requires going
beyond the traditional assumptions with regards to having
static and non-changing power distribution systems. This fact,
combined with the advancements in sensor technology, which
have enabled the grid operator to capture and study the events,
has been the main reason for the current growing interest in
the study of events at the power distribution networks. In the
same essence, this work has put the focus on the study of
events as the main factor which alters the state variables of
the power distribution system during its operation.

Finally, the analysis in this paper is aligned with the recent
advancements in the field of smart grid sensors and the ex-
pectations for the availability of such sensors in practice. Most
notably, while the use of D-PMUs is increasingly adopted in
practice, it is important to note that such advanced sensors
cannot be deployed in large numbers in a single feeder due
to their high cost. Therefore, while we take advantage of the
availability of D-PMUs in this paper, we assume that only
very few of such sensors are available. This puts our design in
accordance with the trends in practice for the availability of D-
PMUs. Meanwhile, the event-triggered nature of our proposed
approach can also help with properly reducing the computation
burden that the use of D-PMUs poses to the system.

V. CASE STUDIES

Unless stated otherwise, the case studies in this section are
done based on the IEEE 33-Bus power distribution test system
[43], where we keep the default load profiles. MATPOWER in
MATLAB R2018B is used as the simulation environment to
also generate the events. The magnitude of the events are set
to be at most up to 50% of the associated load in the pre-event
condition. Unless stated otherwise, we follow Remark 4, and
we define five zones in the network, as in Fig. 1. Accordingly,
there are 5× 5 = 25 possible choices for matrix B to model
transitions from sk−1 to sk. For each transition, we train an
offline model to learn the corresponding transition matrix.

Only five D-PMUs are assumed to be available, at buses
9, 18, 22, 25, and 33. Each D-PMU reports nodal voltage
and line current phasors, once every 100 milliseconds. If
the event detection method, as in [32], detects an event,
then the proposed event-triggered DSSE is conducted. For
the D-PMUs, the standard deviation in measurement error is
σV = 0.1% for voltage and σI = 1% for current. The noise
covariance matrices are obtained offline during the training
of the event-triggered state transition matrices. We defined
100 scenarios. Each scenario includes a sequence of 1000
randomly generated events that are in form of sudden load
changes at random buses, and with random magnitudes up
to 50% of the original load amount at the bus where the
event occurs. Therefore, in each scenario, the DSSE problem
is solved 1000 times due to the occurrence of 1000 events.

A. Performance Comparison

Performance comparison is done against the DSSE methods
in [10], [21], [44]. The method in [10] is a dynamic DSSE
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Fig. 1. The default definition of the zones for the examples in this paper.
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Fig. 2. The estimated and actual values for the magnitude of voltage phasors
at bus 29 for 100 events: (a) differential mode (b) regular mode.

based on conventional iterated Kalman filtering. It uses non-
linear power flow equations. The method in [21] is a static
sparse DSSE method. The method in [44] is a static DSSE
based on conventional weighted least square analysis. Because
the DSSE methods in [10] and [44] require full-observability,
the initial measurements by legacy meters are used as pseudo-
measurements for the rest of the events for these two methods.

We use mean absolute percentage error (MAPE) to evaluate
the accuracy of estimation for differential state variables.
Also, we use root mean square error (RMSE) to evaluate the
estimation of the state variables over the sequence of events.

The results are summarized in Table II. As we can see, the
estimation accuracy is better for the proposed method than
the other three methods, whether in terms of MAPE for the
differential mode or in terms of RMSE for the regular mode.
It is evident from Table II that our ability to integrate sparse
recovery, dynamic state estimation, and virtual measurements
has improved the DSSE performance across all variables.

An example for the outcome of the proposed method is
shown in Fig. 2, where the results are at bus 29, for one random
scenario, and across 100 consecutive events. The magnitude
of the true and the estimated voltage phasors in differential
mode are shown in Fig. 2(a). Notice the sparsity in the results,
i.e., the fact that the differential voltage is non-zero at only a
small subset of the events. Furthermore, the proposed method
can identify the sparsity almost perfectly; and overall estimate
the differential voltage phasors with a high accuracy. The
magnitude of the true and the estimated voltage phasors in
regular mode are shown in Fig. 2(b). We can see that the
proposed method can reasonably follow the state variables.

B. Performance Comparison: IEEE 123-bus system

To show the scalability of the proposed method, we also
test it on the IEEE 123-bus test system [45], which has single
phase, two phase, and unbalanced three phase loads with Wye

TABLE II
COMPARING DIFFERENT DSSE METHODS IN ESTIMATING
SYNCHROPHASORS AND DIFFERENTIAL SYNCHROPHSORS

Method Dynamic Sparsity MAPE ∆x RMSE † x

Proposed Method ✓ ✓ 3.82% 7.25
[10] ✓ × 21.72% 32.67
[21] × ✓ 4.84% 8.58
[44] × × 19.93% 27.78

† The RMSE values come with a 10−3 coefficient.
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Fig. 3. The one line diagram of the IEEE 123-bus test system with 20 D-
PMUs (at 16% of the buses). The network is three-phase and unbalanced.

connection. We assume there are 20 D-PMUs available. One
at substation (node 149) and the rest at nodes 6, 11, 16, 18,
32, 39, 47, 56, 59, 66, 71, 75, 85, 86, 96, 101, 114, 250, and
450; as shown in Fig. 3. The results are shown in Table III. As
we can see, the performance of the proposed method on this
large unbalanced network is very good, and it outperforms the
other methods in the literature. Importantly, the physics-based
sparsity features that we have extracted in this paper are valid
for both balanced networks and unbalanced networks.

C. Comparing Approach 1 and Approach 2

Next, we compare the performance of the two methods that
we proposed in Section IV-B (Approach 1) and Section IV-
C (Approach 2). Table IV shows the results based on three
different metrics. As we can see, both methods converge in
100% of the simulated random scenarios. Approach 1 performs
better in terms of the state estimation accuracy, but Approach
2 performs much better in terms of the computation time. The
computation time in Table IV corresponds to the total time for
estimating the differential state variables for 1000 events.

D. Effect of Learning the Transition Matrix

In this section, we investigate the importance of learning
the event-triggered state transition matrix. We compare two
cases in Table V. First, an identity state transition matrix, as
in [11]. In this case, we always assume that Ak = I. Second,
we learn the state transition matrix, as in this paper. In this
case, we set Ak as in (16). As we can see, learning the state
transition matrix significantly improves the state estimation
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TABLE III
PERFORMANCE COMPARISON FOR IEEE 123-BUS TEST SYSTEM

Method MAPE ∆x RMSE† x

Proposed Method 7.87% 10.12
[10] 27.36% 36.05
[21] 9.14% 11.64
[44] 25.39% 32.89

† The RMSE values come with a 10−3 coefficient.

TABLE IV
COMPARING THE CONVERGENCE RATE, COMPUTATION TIME, AND

ACCURACY OF THE DIFFERENT DSSE METHODS

Method Convergence Rate Computation Time MAPE
Approach 1 100% 5.03 Seconds 3.80%
Approach 2 N/A 0.75 Seconds 4.12%

[10] 83.57% 24.56 Seconds 21.72%

performance, which is understood from the improvement in
MAPE of ∆xk. Here, we also check the ability of the state
transition matrix Ak in accurately predicting the differential
state variables at the next event as in (10). From (32), such
prediction is denoted by xk|k−1. As we can see, the MAPE of
xk|k−1 can drastically improve, meaning that the accuracy of
the state space model in (10) can drastically improve by using
the proposed method to learn the state transition matrix Ak.

We also studied how the results may change if we change
the number of zones in learning the state transition matrix in
Fig. 4. We check the ability of the state transition matrix Ak in
accurately predicting the differential state variables at the next
event in (10); thus we again use the MAPE of xk|k−1 as the
metric. We can see that as we increase the number of zones,
we can enhance the accuracy of prediction, and ultimately
the accuracy of estimation. However, it would come with an
increased computation time to learn the state transition matrix.
Also, increasing the number of zones might lead to overfitting
and higher sensitivity to the outcome of the event location
identification algorithm, both of which should be avoided.

E. Effect of Virtual Power Measurements

A major feature of the proposed method is the use of
virtual differential power measurements in matrix H4

k. In
order to directly evaluate the importance of this innovative
feature, next, we compare the state estimation with and without
using virtual power measurements. The results are shown in
Table VI. Here, we also show the results for estimating the line
power flow and nodal injection power. As we can see, the use
of virtual power can highly improve the accuracy in estimating
both of these power quantities that are not measured directly.
It also helps improve the overall accuracy of the DSSE results,
as seen here in terms of RMSE V and RMSE I.

F. Multiple Simultaneous Events

As a follow up to Remark 2, in this section, we examine the
rare case wherein multiple additional (less major) events occur
simultaneously with the main major event. The main event is
a sudden change in the net power of one node and between
10% to 50% of its pre-event value; while the minor events are
less than 10% changes in the net power at some other nodes.

TABLE V
THE IMPORTANCE OF LEARNING THE STATE TRANSITION MATRIX

USING DISCRIMINATIVE ELASTIC NET REGRESSION

Method MAPE of ∆xk MAPE of ∆xk|k−1

Using Identity Matrix 5.36% 18.36%
Learning the Matrix 3.98% 6.77%
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Fig. 4. The impact of increasing the number of zones on the power distribution
system on the performance of the proposed event-triggered state transition
matrix in predicting the differential state variables at the next event.

The results are shown in Fig. 5. As the number of additional
minor events increases, the performance of the proposed
method gradually degrades. However, the performance degra-
dation is much higher for the other methods in the literature
in comparison with the proposed method. Note that, there
is a trade-off between adding more sensors to the network
to make network fully-observable versus relying on a much
lower number of sensors to obtain less exact but still accurate
estimation of the state variables in a more practical setting.

G. Sensitivity Analysis: Sparsity Regularization Parameter

In this section, we conduct a sensitivity analysis for the
performance evaluation of the proposed method with respect
to the choice of the sparsity regularization parameter λ in
equation (24). The results are shown in Fig. 6 for different
values of λ. As we can see, if λ is not too high, i.e., λ ≤ 10−2,
and it is not too low, i.e., λ ≥ 10−6, then the results are
reasonable. In this study, we have set λ = 10−4.

H. Sensitivity Analysis: Magnitude of the Event Event

The magnitude of the event may slightly affect the accuracy
of the proposed event-triggered DSSE method. This is shown
in Fig. 7. Here, we plot the average RMSE versus the size
of the change in the load that causes the event. The change
in the load is presented in percentage. Notice the very small
scale of the numbers on the y-axis. The changes in the size
of the event causes the RMSE to vary only by about 0.005;
which is very small. Therefore, we can conclude that the size
of the event is not a major factor in affecting the accuracy
of the DSSE algorithm. The event-triggered DSSE algorithm
works well for different sizes of events.

VI. CONCLUSIONS AND FUTURE WORK

To tackle low-observability in power distribution systems,
a novel event-triggered DSSE method is proposed, where the
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TABLE VI
EFFECT OF USING VIRTUAL POWER MEASUREMENTS

Method RMSE S†

(Node)
RMSE S†

(Line) RMSE V† RMSE I†

With Virtual
Power Measurements 6.12 6.46 7.39 6.44

Without Virtual
Power Measurements 8.25 7.86 7.88 7.12

† The RMSE values come with a 10−3 coefficient.
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Fig. 5. Performance evaluation of DSSE when multiple events occur simul-
taneously; one major event with a few additional relatively minor events.

measurements come from a handful of D-PMUs. The pro-
posed method simultaneously addresses three main challenges
that exists in the DSSE problem. First, the event-triggered
nature of our design can help to avoid imposing unnecessary
burden on the operation center. Second, to properly capture
the dynamic nature of the modern distribution systems under
the low-observability conditions, the problem is formulated
over the differential state variables as a generalized group
Lasso optimization, which leverages the sparsity features that
exist in the system under the event-triggered paradigm. To
further improve our ability in conducting a sparse recovery,
the DSSE problem formulation is reinforced by a novel set
of linear differential power flow equations, and in forms of
virtual measurements. Third, to improve the accuracy of the
state-space model, the event-triggered state transition matrix
is learned in an off-line fashion through discriminative elastic
net regression. Extensive performance evaluations confirmed
the effectiveness of the proposed methodologies. Representing
the state variables in differential mode is advantageous in this
analysis. In particular, it provides us with the opportunity to
extract physics-based sparsity patterns in the DSSE problem.
This accordingly allows us to formulate and solve the DSSE
problem under the low-observability conditions. Moreover,
the use of differential phasors results in the linearization of
the power flow equations and including them in the DSSE
problem, without the need for power measurements.

The study in this paper can be extended in various direc-
tions. First, one may consider a non-linear state space model
for the event-triggered DSSE problem, which could be more
accurate than the linear model, which is commonly used in
the literature and also in this paper. Second, the way that
the event-triggered state transition matrix is estimated can be
improved. While our approach to estimate such matrix instead
of using the identity matrix is a major step forward compared
to the literature, we only considered the location of the event
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Fig. 6. Sensitivity with respect to the sparsity regularization parameter.
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Fig. 7. The impact of the magnitude of the event on the DSSE performance.

as the key factor in the estimation of the state transition matrix.
However, other factors such as the type or other characteristics
of the event may also be considered. Of course, one would
have to address the various challenges and concerns that
we previously raised in Remark 5 on this issue. Third, the
proposed event-triggered DSSE can be improved such that it
could support other types of events which may happen on the
branches of the system such as faults or topology changes.

APPENDIX: LINEARIZED DIFFERENTIAL
POWER FLOW EQUATIONS

In this Appendix, we explain the linearized differential
power flow equations in (12). Let us start with writing the
active power injection at bus i in differential mode at the
occurrence of event k in an event-triggered formulation:

Pk,i = Pk−1,i +∆Pk,i. (43)

Here, we express Pk,i at event k in terms of its difference
∆Pk,i compared to Pk−1,i at event k − 1. We can similarly
express the reactive power injection as follows:

Qk,i = Qk−1,i +∆Qk,i. (44)

From (43) and (44), we can obtain:

Sk,i = (Pk−1,i +∆Pk,i) + j(Qk−1,i +∆Qk,i), (45)

where Si denotes the complex injected power at bus i. Let
vk,i denote the voltage phasor at bus i at the occurrence of
event k. In differential mode, we have:

vk,i = vk−1,i +∆vk,i. (46)
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From the definition of complex power, we have:

Sk,i = vk,i
∑
j∈N

(Rij − jXij)v
∗
k,j , (47)

where {}∗ denotes the complex conjugate operator. Notations
Rij and Xij denote the resistance and the admittance of the
line segment between node i and node j, respectively. By
replacing (46) in (47), we have:

Sk,i =
[
R{vk−1,i +∆vk,i}+ jI{vk−1,i +∆vk,i}

]
×[∑

j∈N (Rij − jXij)
(
R{vk−1,j +∆vk,j}

− jI{vk−1,j +∆vk,j}
)] (48)

where R{.} denotes the real part and I{.} denotes the
imaginary part. From (45) and (48), and after reordering the
terms, we can obtain:

∆Pk,i ≈
∑
j∈N

[
R{∆vk,i} (RijR{vk−1,j} −XijI{vk−1,j})

+I{∆vk,i} (RijI{vk−1,j}+XijR{vk−1,j})
+R{∆vk,j} (RijR{vk−1,i}+XijI{vk−1,i})

+I{∆vk,j} (RijI{vk−1,i} −XijR{vk−1,i})
]
,

(49)
∆Qk,i ≈ −

∑
j∈N

[
R(∆vk,i) (RijI{vk−1,j}+XijR{vk−1,j})

+I{∆vk,i} (−RijR{vk−1,j}+XijI{vk−1,j})
+R{∆vk,j} (−RijI{vk−1,i}+XijR{vk−1,i})

+I{∆vk,j} (RijR{vk−1,i}+XijI{vk−1,i})
]
.

(50)
In (49) and (50), the differential power injections and differ-
ential voltage phasors for the current event k are unknowns,
while the values of voltage phasors for the previous event,
i.e., k− 1 are known. Accordingly, we can rewrite them in an
abstract form as shown in (12).

The approximations in (49) and (50) are due to the fact that
we discarded the terms that are the products of two differential
voltage phasors. This approximation is reasonable; since such
products are very small, in case of typical loading events that
we have considered in this paper. Note that under severe events
such as short-circuit faults which may cause extreme changes
in the nodal voltage phasors, such assumption may not be true
anymore, which is of course out of scope of this paper.

To investigate how discarding the products of differential
voltage phasors may impact the differential power injections,
we plot the linearization error in Fig. 8 for the IEEE 33-bus
test system that we considered in Section V. We calculate the
linearization error at each bus as the difference between the
power injection that is calculated by using the original nonlin-
ear power flow equations in (47) and the power injection that is
calculated by using the proposed linear power flow equations
in (49) and (50). The analysis is done under the scenario
where the “event” is very major, in which the largest load
in the system, which is at bus 24, is suddenly disconnected.
We considered two cases: the case where the network loading
is the same as the default/standard loading in the IEEE 33-bus
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Fig. 8. Linearization error in power flow equations in differential mode for the
test system with the default/standard loading of the IEEE 33-bus test system
as well as the case with twice the default/standard loading.

test system; and the case where the network loading is twice
the default/standard loading. As we can see, the linearization
error in the differential power flow equations is very small; less
than 0.8% under the default/standard loading and less than 2%
under the double the default/standard loading.
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