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Abstract—This paper is concerned with the complex task of
identifying the type and cause of the events that are captured
by distribution-level phasor measurement units (D-PMUs) in
order to enhance situational awareness in power distribution
systems. Our goal is to address two fundamental challenges
in this field: a) scarcity in measurement locations due to the
high cost of purchasing, installing, and streaming data from
D-PMUs; b) limited prior knowledge about the event signatures
due to the fact that the events are diverse and infrequent, and
have unknown characteristics. To tackle these challenges, we
propose an unsupervised graph-representation learning method,
called GraphPMU, to significantly improve the performance
in event clustering under locationally-scarce data availability
by proposing the following two new directions: 1) using the
topological information about the relative location of the few
available phasor measurement units on the graph of the power
distribution network; 2) utilizing not only the commonly used
fundamental phasor measurements, bus also the less explored
harmonic phasor measurements in the process of analyzing
the signatures of various events. Through a detailed analysis
of several case studies, we show that GraphPMU can highly
outperform the prevalent methods in the literature.

Keywords: D-PMU, H-PMU, locationally scarce measurements,
feeder topology, graph representation learning, event clustering.

I. INTRODUCTION

A. Motivations and Challenges

Modern power distribution systems consist of various el-
ements, including the utility equipment and devices, such
as capacitor banks, transformer tap changers, and protection
devices, as well as customer devices, such as different types
of loads, plugged-in electric vehicles, renewable generation
units, and other distributed energy resources. The typical and
benign operation (i.e., switching on and switching off) as well
as mis-operation of these elements can create different types of
events in the system. Capturing and understanding these events
is crucial to achieve situational awareness about the operation
of the power distribution systems and their components [1].

Accordingly, a growing sub-area in the field of smart grids
has emerged recently that focuses on the analysis of various
events in power distribution systems. Great attention has been
devoted to using data from distribution-level phasor measure-
ment units (D-PMU), a.k.a micro-PMUs [2]. D-PMUs provide
synchronized three-phase measurements of the fundamental
phasors of voltage and current on power distribution systems.
The very high reporting rate of D-PMUs, makes it possible to
capture and analyze a wide range of informative events.

Meanwhile, the field of smart grid sensors has continued to
grow also in the area of measuring harmonic synchrophasors,
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which can be obtained from another new class of smart
grid sensors, namely harmonic phasor measurement units (H-
PMUs) [3]–[6]. In fact, D-PMUs and H-PMUs may soon
converge into one sensor, where one device can provide both
fundamental and harmonic synchrophasors, as needed [1], [5].

The high reporting rate of D-PMUs allow us to capture
additional details about the signatures of various events that
cannot be captured by the typical SCADA meters. Therefore,
adding D-PMUs certainly improves data availability. However,
when we use data from D-PMUs to analyze events, there are
at least two major challenges that we need to address:

1) Scarcity in Measurement Locations: Due to the high
cost of D-PMUs, including purchase, installation, and
data streaming, it is typical that a power distribution
feeder is equipped with only a small number of D-
PMUs. Hence, although the available D-PMUs provide
synchronized phasor measurements at high resolution,
such high resolution data availability is limited to only
a few locations on the power distribution feeder.

2) Limited Prior Knowledge about Event Signatures: Anal-
ysis of events in power distribution systems is difficult,
because such events are diverse and many of them
are infrequent. Furthermore, the cause of many events,
and hence the characteristics of their signatures in the
measurements, are not known in advance [7].

The key to address the second issue is to conduct un-
supervised learning to identify the type and cause of the
events. This can be done through event clustering. The goal
in event clustering is to identify the type of the events with
minimal prior knowledge. It should be clarified that, the term
“unsupervised” learning in this paper is used as the opposite of
“supervised” learning in the machine learning context. In the
latter, we need the expert knowledge to obtain prior labeling
of the events. Of course, if prior labeling of the events is
available, then we can apply supervised or semi-supervised
learning methods, such as in our work in [8]. However, it is
not common in practice that we have access to prior labeling
of the events. Therefore, we need to achieve event clustering
without the availability of the prior labeling of the events.

The key to address the first issue is to make use of any
available contextual information, to enhance our ability to
do event clustering when we face locational scarcity in data
availability. In this paper, the primary contextual information
is the graph of the topology of the power distribution network.

B. Summary of Technical Contributions
In this paper, we seek to significantly improve the per-

formance in event clustering under locationally-scarce data
availability by taking the following two new directions:
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1) Using the information about the relative location of
the phasor measurement units on the network topology,
notwithstanding the fact that such locations are scarce.

2) Using not only the fundamental phasor measurements,
that are commonly used in the literature in this field, but
also the harmonic phasor measurements in the process
of analyzing the signatures of various events.

Both of the above directions are ways of incorporating new
contextual information to the task of event clustering. The first
one takes into account the location of sensors. The second one
takes into account the changes in the harmonics that are caused
by each event, as seen at the same existing sensor locations.

In addition to taking the above new approaches, the method-
ologies that are developed in this paper to implement these new
approaches carry new technical contributions, as listed below:

• A new unsupervised two-step spatio-temporal feature
learning method is developed based on Graph Neural
Networks (GNN) and Auto Encoder Decoder (AED) to
capture the locational and temporal information of the
sensors on the distribution network. The time series of
the measurements at each bus are transferred to a lower
dimension latent space. Accordingly, a graph learning
method is implemented to the obtained embedding vec-
tors to extract the topology-related features for event
clustering. To the best of our knowledge, this is the first
time that a physics-aware graph learning method is used
for utilizing D-PMU (or H-PMU) data in event clustering.

• A graph-level representation learning is developed which
uses local-global mutual information maximization to
learn the structural connection of the event data with
its node-level representation. To extract the shared infor-
mation between graph-level and node-level embedding
that is sensitive to the graph topology, a negative graph
sampling based on a random network tree structure is
proposed. This makes the proposed GNN more aware
of the system topology, by encoding aspects of the data
that are shared across different local nodes, and proper
adversarial sampling for mutual information estimation.

• Incorporating the 3rd and the 5th harmonic phasor mea-
surements along with the fundamental phasor measure-
ments into the above aforementioned design. This is done
by training a separate AED module, which is trained for
each individual harmonic order. Then, the new aggregated
vectors are used as additional input to the proposed
graph learning process in order to capture the underlying
locational patterns for each event, by taking into account
both fundamental and harmonic phasor measurements.

On one hand, our approach is applicable to the most
common scenario, in which only the fundamental phasor
measurements are available, as in the conventional case of D-
PMUs. On the other hand, our approach is applicable also to
the case where not only the fundamental phasor measurements
but also the harmonic phasor measurements are available, as
in the emerging case of H-PMUs.

We refer to the proposed new design as GraphPMU. The
results from various case studies show that GraphPMU leads to
significant improvements in the accuracy of event clustering,

despite the locational scarcity in the available phasor mea-
surements. Importantly, even if we do not use the harmonic
phasor measurements, the mere use of topological information
in the proposed graph learning paradigm can highly improve
the performance in event clustering, specifically for the case of
small events. The case studies in this paper include comparison
with the state of the art clustering methods as well as with
a variety of the GraphPMU implementation options, with
different structures to show the importance of system topology,
local-global feature learning, and number of sensors.

C. Literature Review
The literature on data-driven and machine learning event

types analysis in distribution-level phasor measurements can
be generally divided into two categories. First, there are studies
that use supervised or semi-supervised learning, i.e. event
classification, such as those in [8]–[16]. They require prior
labeling of the events in the training data set, which may
not be available in all of the cases in practice, whether for
all or a subset of the events in the training data set. This
line of work also includes the cases where the labeled data
has a low rate or a low quality. In [9] and [14], the authors
proposed implementing and analyzing imperfect labeling for
event classification. In [13], the authors proposed a hybrid
semi-supervised learning model for event identification, where
there is a limited number of labeled events available. In [15]
a transfer learning techniques has been used to increase the
reliability of the event classifier. It should be noted that, among
the above studies, only the ones in [8] and [12] are related to
distribution-level phasor measurements.

The second group are the studies that use unsupervised
learning. They attempt to cluster the events by grouping
their distinctive characteristics, without the need for any prior
labeling. In [17], k-means clustering and Ward’s clustering are
proposed to cluster voltage sag events. In [18], an unsupervised
clustering method is proposed for some specific faults; such
as single-line-to-ground versus line-to-line faults. In [19] the
authors proposed a three stage unsupervised learning method
for event detection, identification, and localization. In [7],
an unsupervised event detection and clustering method is
proposed, which requires solving a mixed integer program.
Importantly, the study in [7] is limited to the analysis of
phasor measurements from only one D-PMU. It is inherently
unrelated to the idea of taking into account the topological
information of D-PMUs in the clustering task.

None of the unsupervised learning methods in [7], [17]–
[19] take into account the information on the topology of the
power distribution network. Furthermore, none of them takes
into account the availability of harmonic phasor measurements
in addition to the fundamental phasor measurements.

To consider the network topology in the process of event
clustering, one plausible way is to do graph-based analysis.
Graph theory and more generally graph-based analysis have
been used in power systems, such as for event detection [20],
event location identification [21], data recovery and prediction
[22], and to study power system dynamics [23].

Recent literature also includes the use of GNNs, to address
some prevalent power system issues, including the analysis of



3

S
u

b
st

at
io

n

B1 B2 B3 B5 B7

B4 B6

D-PMU 1 D-PMU 2

Fig. 1. An example power distribution network with N = 7 buses. Two PMUs
are installed are installed at buses in B1 and B5. We have M = {B1, B7}.

events. In [24], a supervised GNN-based method is proposed
for event classification in power transmission systems. No
knowledge about the topology of the power transmission
network is assumed to be available; therefore, full connectivity
is assumed in the graph-level analysis. The events are labeled
based on the data of voltage and frequency. In [25], authors
have proposed a Graph Convolutional Network (GCN) based
model for event classification and region identification in
a transmission network. In [26], the authors used Graph
Convolutional Network (GCN) for short term voltage stability
assessment. Importantly, neither of the studies in [24]–[26]
consider the issue of locational scarcity among the sensors
within a known network topology. None of them also considers
using harmonic phasor measurements.

Finally, there is a rich literature on the analysis of power
quality events using measurements related to harmonics. The
focus is usually on the analysis of waveform measurements,
such as in [27]–[29]. For example, in [29], the authors pro-
posed an AED to extract the features for clustering the daily
variations in steady-state voltage harmonics. Interestingly,
while we do use H-PMU measurements, our focus is not on the
typical analysis of steady-state harmonics. Instead, we use the
harmonic phasor measurements in addition to the fundamental
phasor measurements to better capture the distinctive transient
signatures in various events in power distribution systems
under locationally-scarce phasor measurements. Furthermore,
the prior studies in this field, including those in [27]–[29], do
not consider using the information about the network topology.

II. TOPOLOGY-BASED REPRESENTATION LEARNING

Consider a power distribution system, such as the one in Fig.
1. Let B denote the set of all buses, such as {B1, . . . , B7} in
Fig. 1 and N = |B| denotes the number of buses. Also let M
denote the set of those buses that are equipped with D-PMUs,
such as {B1, B7} in Fig. 1. For now, suppose the D-PMUs
only provide the measurements for the fundamental phasors.
The case where D-PMUs also act as H-PMUs to measure
harmonic phasors will be discussed later in Section V.

When an event occurs, its impact is simultanously captured
by all the D-PMUs at the buses in set M. Let Xj

i denote
the time series of the phasor measurements that are captured
during event i by the D-PMU at bus j, where j ∈ M.
Similar to [7], such time series is assumed to be a window
of the following measurements at a given D-PMU: the per-
phase magnitude of voltage Vϕ, the per-phase magnitude of
current Iϕ, and the per-phase power factor PFϕ, where ϕ is
the given phase, i.e., ϕ ∈ {A,B,C}. The reason for using

these measurements is to remove the impact of off-nominal
frequencies in the phase angle measurements, see [1, pp. 113].

As for the buses in set B\M, we do not have any phasor
measurement available at these buses. Therefore, we inevitably
assume a constant value, i.e., a flat time series, for Vϕ, Iϕ, and
PFϕ at these buses during the event. We obtain such constants
by running a simple steady-state power flow analysis based on
the nominal load (NL) at each bus. Such analysis is readily
available in practice by using the utility’s models of its feeders
in standard software, such as CYME [30] and Synergy [31].

A. Graph Learning Approach

In this paper, we use GNN to conduct topology-based
representation learning. GNN is the general framework for
defining deep neural networks based on graph data [32].

To benefit from the GNN attributes, we need to translate
the power system topology and the measurements into graph-
structured data. Suppose A is the adjacency matrix for the
graph of the power distribution network, where each node in
the graph is a bus and each link in the graph is a distribution
line. For each event i, we define an event graph, denoted by
Gi, which has the same adjacency matrix A. For each node j
in graph Gi, we define Xj

i as the input matrix. In this regard,
if we have the measurements for M events in the data set,
then the set of graph-structured data can be shown as:

{G1, G2, . . . , GM}. (1)

The main reason for using GNN is to encode the graph-
structured data Gi for each event i to a single graph-level
representation vector with low dimension, which incorporates
both the measurements at event i and the system topology.
Such low-dimension representation helps to achieve a more
accurate, interpretive and distinctive event clustering outcome.

Similar to the neural networks (NNs), GNNs can include
multiple hidden layers with trainable weights. However, GNNs
also take into account the graph topology or the adjacency
matrix. This means that, each nodal vector data at any hidden
layer in a GNN is updated based on not only its own trainable
weights, but also its neighboring nodes’ nodal vector data.

To see the importance of differences and similarities be-
tween NNs and GNNs in the context of the analysis in this
paper, let us define Xi as the input matrix for graph Gi, such
that row j of matrix Xi is the stacked vector of time series in
Xj
i . Also, let us define Hk

i as the hidden matrix data for graph
Gi at hidden layer k. We note that H0

i = Xi. In a common
NN model we obtain the input matrix on the next layer by
conducting forward propagation such as:

Hk+1
i = σ(Hk

i W
k), (2)

where σ is the activation function, e.g., ReLU(x) = max(0, x),
and W k is the trainable weight matrix of layer k.

In the NN framework, the input matrix Xi and the hidden
layer matrix Hk

i contain different samples in their rows, which
are often independent and identically distributed random vari-
ables. However, when it comes to a GNN, these samples (rows
of data) are related to each other. In this paper, these samples
are the nodal data at each bus, which are simultaneously
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captured during the same event, but from the viewpoint of
the sensors at different buses on the power distribution system.
These samples are related to each other through the physics of
the distribution system and the network topology. In the GNN
framework, each nodal hidden layer data is updated based on
its own NN output as well as its neighbours’ NN output by
using the adjacency matrix A. The revision of the equation in
(2) for the case of GNN will be given in Section II-B.

In the next three sub-sections, we will explain how to
implement our proposed graph learning method. In Section
II-B, we will build an unsupervised GNN-based graph encoder
to transform each Gi to a single vector. In Section II-C we will
set the objective of the graph encoder to maximize the mutual
information between its node-level data and its graph-level
data. Finally, in Section II-D we will develop a discriminator
module to calculate the aforementioned mutual information.

B. Graph Encoder
In this section, we develop a GNN-based graph encoder,

denoted by E , in order to learn a single vector that summarizes
the time series for each graph-structured data Gi. Such vector
will ultimately serve as the graph-level representation for
each event. It is obtained by encoding the underlying shared
properties of the data based on the topology of the system. The
encoding process is based on maximizing mutual information
between the node-level representation at each bus and the
graph-level representation, which involves all of the buses.

We construct the graph encoder by using GCN [33] with
the following updating formulation in its hidden layers1:

Hk+1
i = σ(D− 1

2 ÃD− 1
2Hk

i ω
k). (3)

Here, Ã = A + IN is the adjacency matrix with added self-
connections, D is the degree matrix, where Daa = ΣbÃab,
and ωk is the set of trainable weights in the kth layer of the
GNN. The main difference between the formulation in (3) and
the one in (2) is the use of D− 1

2 ÃD− 1
2 , which aggregates

the nodal data from neighbouring nodes. This element also
symmetrically normalizes the rows of matrix Hk+1

i cf. [33].
For each graph Gi and each hidden layer k, let hki (j) denote

row j of matrix Hk
i . We refer to hki (j) as the node-level (or

local) representation of the event. Accordingly, for each node
let us put together all such node-level representations at all
the layers k = 1, . . . ,K as follows:

hωi (j) = [h1
i (j),h

2
i (j), . . . ,h

K
i (j)]. (4)

Superscript ω in hωi (j) indicates the set of parameters for
graph encoder E . Furthermore, let us define:

hω,gi = S({hωi (1), . . . ,h
ω
i (N)}) (5)

as the graph-level (or global) representation of event i, where
S is a permutation invariant function that summarizes the
node-level representation vectors to a single graph-level rep-
resentation vector, such as via element-wise mean or max
functions [32]. The outputs of graph encoder are obtained as:

{hωi (j),h
ω,g
i } = E(Gi), ∀j = 1, . . . , N, (6)

1Other similar modules, such as those in [34] and [35], can also be used.

which include all the N node-level representations and a single
graph-level representation for each event i. The objective
in the design of the graph encoder is to find the structural
dependencies among the vectors from that are listed in (6).

Before we end this section, we shall point out that the node-
level representation inherently includes the location-dependent
features at each node during each event, which is influenced
by the type of the event and the location of the event. These
factors create different transient signatures in the time-series
of the phasor measurements at the locations of the sensors.
By using these node-level representations in combination with
the graph-level representations, we take into account these
location-dependent features at each node, as well as their
connections to the other nodes through the topology structure
(which we use in the graph encoder). Therefore, we force
the model to learn and embed the informative substructure
data representation into the graph-level representation, in order
to have more separable features for the purpose of event
clustering.

C. Mutual Information

Similar to the unsupervised learning methods in [36] and
[37], the objective for the proposed graph encoder is to
maximize the average mutual information (MI) [38] of the
graph-level representation hω,gi and all of the node-level rep-
resentations hωi (j) for any j = 1, . . . , N for each event i as:

Maximize: I =
1

M

M∑
j=1

1

N

N∑
i=1

MI(hωi (j);hω,gi ). (7)

The above maximization enforces the GNN graph-level rep-
resentation to carry the type of information that is present
in all of the nodes in the network and all the layers [37].
It should be mentioned that, in this paper, we focus on
graph-level representation learning, rather than on substructure
representation learning. The latter strictly focuses on node-
level tasks, such as for the node classification in [33].

Calculating I, in a continuous and high-dimensional set-
tings is difficult. A solution is suggested in [39], in which we
use a mutual information estimator between the input and the
output of the deep neural networks. This method, is based on
training a classifier (a discriminator) that separates samples
from the joint distribution and their product of marginals.

D. Discriminator: Positive and Negative Graphs.

The first step in estimating the mutual information is to
define the joint and marginal distributions. The joint distribu-
tion, i.e., positive samples in this paper, are defined as node-
level/graph-level representation pairs (hωi (j),h

ω,g
i ), for each

actual event Gi. Also, we refer to Gi as positive graphs.
We also need to construct negative samples in order to

define the product of marginals. Note that, the choice of
the negative samples has impact on the type of structural
information that is desirable to be captured as a byproduct of
estimating MI [37]. First, we construct the negative graphs.
They have the same input node data as in the positive graphs,
i.e., Xj

i for event i and node j. But they have a different graph
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Fig. 2. The actual (i.e., positive) topology of the power distribution network
in Fig. 1 is shown in black. Two arbitrary alternative (i.e., negative) topologies
with the same number of nodes/buses and edges/lines are shown in red.

topology, which are random trees with the same number of
nodes and links. Next, we consider any pair of a graph-level
representation from an actual event graph (a positive graph)
with any node-level representation of a negative graph, that
are obtained from graph encoder, as a negative sample.

The concept of positive graphs and negative graphs is illus-
trated in an example in Fig. 2. The positive topology represents
the actual topology of the power distribution system that we
saw in Fig. 1. The other two arbitrary negative topologies are
used to shape two samples of negative graphs. These positive
and negative samples are used to train the discriminator-based
method that is proposed in [39]. This approach enforces the
encoder to learn the structural dependency of the data, which
leads to an overall MI maximization in an average sense.

In this study, discriminator Ψ is a neural network with a
set of parameters ψ. We set the discriminator to output 1 for
a positive sample and a 0 for negative sample. Accordingly,
based on the Jensen-Shannon MI estimator that is proposed in
[36], and the method in [39], we simultaneously estimate and
maximize the objective function I in (7) as shown below:

Îω,ψ =
1

2MN

M∑
i=1

( N∑
j=1

EP[−σ(−Ψ(hωi (j),h
ω,g
i )]

−
N∑
j=1

EP×P′ [σ(Ψ(hωi′ (j),h
ω,g
i )]

)
,

(8)

where Îω,ψ is the Jensen-Shannon MI estimator; and σ(x) =
log(1 + ex) is the softplus function. In this study, for each
physical (i.e., positive) event i, we make a corresponding ran-
dom negative event i

′
. Accordingly, the probability distribution

of the positive events, which is denoted by P, is identical to
the probability distribution of the negative events, which is
denoted by P′

. Also, EP and EP×P′ are the expected value
for the discriminator output related to the positive samples
(or the joint distribution) and the negative samples (or the
product of marginals), respectively. Due to the summation, for
both negative and positive samples, we include the coefficient
1/2 in (8). Notations hωi (j),h

ω
i′ (j) and hω,gi indicate the

Algorithm 1 Topology-Based Representation Learning

1: Input: Event time series Xj
i and network topology A.

2: Output: Graph-level representation vectors clusters.
3: // Positive and Negative Graphs
4: For each training event i Do
5: Construct the positive graphs and assign Xj

i to all nodes.
6: Construct the negative graphs and assign Xj

i to all nodes.
7: End
8: // Training Graph Encoder and Discriminator
9: For each epoch of training data Do

10: Obtain {hωgb(j), hω,ggb } = E(gb) for all positive graphs.
11: Obtain {hωg′b(j)}= E(g′b) for all negative graphs.
12: Pair each hωgb(j) with its relative hω,ggb as positive

sample; and label the discriminator’s output as 1.
13: Pair each hωg′b(j) with its relative hω,ggb as negative

sample; and label the discriminator’s output as 0.
14: Calculate the loss function in (8).
15: Update the ω and ψ by conducting back propagation

and using Adam optimizer [40].
16: End
17: // Graph-level Representation
18: For each graph Gi Do
19: Obtain {hω,gi } = E(Gi).
20: End
21: // Clustering
22: Cluster the event vectors {hω,gi } using GMM.

outputs of the graph encoder E , and represent the node-level
representation of the positive event i in node j, the node-
level representation of the negative event i

′
in node j, and the

graph-level representation of the positive event i, respectively.

E. Clustering

After training the graph encoder, the graph-level repre-
sentations hω,gi , are obtained for all events i = 1, . . . ,M ,
and they are clustered by using the Gaussian Mixture Model
(GMM). The GMM uses expectation maximization algorithm
for fitting a mixture of Gaussian models to the training data
set, considering a pre-defined number of clusters. Then, each
hω,gi is assigned to the most probable cluster.

Note that, the purpose of our proposed method is to prop-
erly incorporate the topological information from the sensor
measurements to learn the most distinctive representation for
the type of each event, such that we can enhance the clustering
accuracy with the already existing clustering methods.

We shall note that, we did examine other clustering methods,
such as K-means and DBSCAN; however, GMM demonstrated
the highest average clustering performance.

F. Algorithm: Topology-Based Representation Learning

Algorithm 1 shows the summary of the steps that we took
in Sections II-B to II-E. It is divided into four segments. First,
we generate the positive and negative graphs; see lines 4 to
7. Next, we train the graph encoder and the discriminator; see
lines 9 to 16. Third, we obtain the graph-level representations
for all the events; see lines 18 to 20. Finally, we do the



6

clustering task using GMM and based on the obtained graph-
level representations of the events; see line 22.

III. TEMPORAL REPRESENTATION LEARNING

The design that we presented in Section II can fully incor-
porate the knowledge about the topology of the network and
the relative location of the measurements into the task of event
clustering. However, if we use the method in Section II as is,
then it may not result in a significant improvement compared
to some benchmark methods in the literature. The main issue
here is the high dimentionality in the time series that needs to
be placed at each node of the graph in this field.

A. Tackling High Dimensionality

To address the above issue, we propose to compress the data
in the time series by learning the temporal-dependent features
of the events. By compressing the event data in time domain,
we can lower the dimension of the feature space. This leads
to achieving a higher computational and clustering efficiency
with less numerical challenges.

Accordingly, an Auto-Encoder-Decoder (AED) [41] model
is proposed which includes Long Short Term Modules (LSTM)
[42] for proper temporal-based representation learning of each
node time series for each event. AED constitutes of two main
parts. The first part is the temporal encoder (E), which tries
to summarize and transfer each event time series matrix Xj

i

into a single embedding vector (Emj
i ). The second part is the

temporal decoder (D), which tries to reconstructs the actual
time series with the mentioned embedding vectors.

The objective function of AED is to minimize the Mean
Square Error (MSE) of the time series input to E and the time
series output of D. Here are the details of the AED model:

Emj
i = E(Xj

i ),∀i = 1, ...,M,∀j = 1, ..., N, (9)

θE , θD = argmin
θE ,θD

1

M

M∑
j=1

1

N

N∑
i=1

MSE(Xj
i , D(Emj

i )), (10)

which θE , θD are the encoder deep neural network and decoder
deep neural network parameters, respectively.

In this study, the parameters of AED are shared between
all the buses. This means that during the training phase, for
any event in any bus, the AED parameters are being updated.
In other words, instead of considering multiple AEDs for
each bus, we rather implement a global AED. This makes
the training process faster. It also allows the AED model to
take advantage of the learned features from different locational
time series. This prevents an over-fitting over a single bus data.
After training the AED model, all event time series data for
each node Xj

i can be encoded to their Emj
i by using (9).

B. Algorithm: Temporal Representation Learning

Algorithm 2 shows the steps for temporal representation
learning. First, we train the temporal encoder and decoder; see
lines 4 to 8. After that, we obtain the compressed embedding
vector for all events and nodes time series; see lines 10 to 12.

Algorithm 2 Temporal Representation Learning

1: Input: Normalized event time series Xj
i .

2: Output: Embedding vectors Emj
i as in (9).

3: // Training Phase
4: For each epoch Do
5: Pass Xb to the temporal AED (E and D).
6: Calculate loss function from (10).
7: Update θE and θD through back propagation [40].
8: End
9: // Embedding Extraction

10: For each event i and node j Do
11: Emj

i = E(Xj
i ).

12: End

IV. GRAPHPMU: COMBINING TOPOLOGY-BASED AND
TEMPORAL REPRESENTATIONS

We are now ready to introduce our ultimate GraphPMU
method by combining the topology-based representation learn-
ing design in Section II with the temporal representation learn-
ing design in Section III. Fig. 3 shows how these two design
components are integrated in order to achieve GraphPMU.

The architecture in Fig. 3 can be explained by going through
its parts from left to right. The process starts with training the
time domain AED with matrices Xj

i . This step is independent
from the network topology; hence, it is the same for positive
and negative graphs, as they have the same input time series.

After the AED is trained, the obtained embedding vectors
Emj

i from the temporal encoder E, are used to train the
GNN model. Subsequently, the positive and negative graphs
are shaped based on the embedding vectors and the defined
topologies in Section II-D. These positive and negative graphs
are passed to the graph encoder E to construct the node-level
and graph-level representations. Then the obtained positive and
negative samples are used to train the discriminator ψ.

Given the models for (E and D) and (E and Ψ), the graph-
level representation vectors are obtained as hω,gi = E(E(Xj

i ))
for all buses j ∈ B. These graph-level representations are then
clustered by the GMM method as we explained in Section II-E.

V. EXTENSION TO INCORPORATE HARMONIC
SYNCHRO-PHASORS

So far, we have assumed that all the phasor measurements
are obtained at the fundamental frequency. This is indeed the
state of practice in this field for a typical PMU. However, as
we mentioned in Section I, it is envisioned that standard D-
PMUs may in the future also act as H-PMUs to provide the
phasor measurements not only at the fundamental frequency
but also at selected harmonic frequencies. Accordingly, in this
section, we will expand the GraphPMU model to incorporate
such emerging advancement in data availability in this field.

A. More Distinctive Event Signatures

Without loss of generality, we assume that each D-PMU
provides the synchronized phasor measurements for the 3rd
and 5th harmonics, in addition to the fundamental frequency.
Expanding the analysis to include higher harmonic orders
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Fig. 4. Comparing the signatures during the same event at the fundamental
phasor measurements vs. at the 3rd and 5th harmonic phasor measurements.

would be similar, although it may not be necessary; because
most events manifest themselves properly in either the 3rd
or the 5th harmonics, or in both. At each bus j in M, we
collect Vϕ, Iϕ, and PFϕ; however, this is done not only for
the fundamental frequency but also for the 3rd and the 5th
harmonics. In this regard, taking into account the harmonic
phasors can be highly beneficial as they can demonstrate
more distinctive signatures for the purpose of clustering the
events. This can help compensate for some of the challenges
in having locationally-scarce measurements; thus, contributing
to the overall success in the proposed GraphPMU method.

As an example, Fig. 4 shows the event signatures in different
types of phasor measurements during a single-line-to-ground
fault. The event signature in the fundamental frequency in
Fig. 4(a) is a simple voltage sag and a simple inrush cur-
rent. However, the event signatures in the harmonic phasor
measurements at the 3rd harmonic in Fig. 4(b) and at the 5th
harmonic in Fig. 4(c) are considerably more distinctive.

B. Extended Temporal-Based Learning

Same as in the case for the fundamental phasors data, we
use AED to learn time domain representations for the time
series of the harmonic phasor measurements. Accordingly, we
obtain the embedding vectors to use them in the clustering

process. Importantly, since the strength and the overall nature
of the time series of the harmonic phasors are different from
those of the fundamental phasors, we must train different
AEDs for each fundamental or harmonic order. This makes
the time domain representation learning more reliable and
more accurate than using a single AED for these different
time series. The training is done by using Algorithm 2.

We concatenate all the embedding vectors to form:

Emj
i = [Emj,1

i Emj,3
i Emj,5

i ]T . (11)

C. Extended Topology-Based Learning

Next, we feed the new vectors Emj
i that are derived in (11)

as the input to the GNN using Algorithm 1 to complete the
process for the event clustering task. Since the size and nature
of the input vector is different from those in Section II. We
need to re-train the GraphPMU based on the new vector of
features. Last but not least, for each bus j ∈ B\M, which does
not have a sensor, we use zero padding concatenation to the
fundamental embedding vectors that the previously obtained in
section III). This is because the default steady state values in
unobserved locations are assumed not to have any harmonics.

VI. CASE STUDIES

In this section, we conduct various case studies based on the
IEEE 34-bus three-phase power distribution test system, which
is shown in Fig. 5. The network simulation model is developed
in PSCAD to assure capturing the transient signatures of the
events [43]. Nine different types of events are simulated:

1) Three-Phase Capacitor Bank switching at bus 840
2) Three-Phase Capacitor Bank switching at bus 849
3) Single-phase load switching at bus 858
4) Three-phase load switching at bus 836
5) Three-phase motor-load switching at bus 812
6) Three-phase motor load switching at bus 828
7) Single-phase-to-ground fault at bus 852
8) Two-phase-to-ground fault at bus 862
9) Three-phase-to-ground fault at bus 816.
Unless stated otherwise, we assume that there are only

four phasor measurement units are available on the power
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D-PMU 1

D-PMU 2

D-PMU 3

D-PMU 4

VR

Fig. 5. The IEEE 34-bus test system with locationally-scarce phasor mea-
surements. There are only four D-PMUs (H-PMUs) available on this network,
as marked on the figure. However, the events can happen at any location.

distribution network. The location of the D-PMUs (H-PMUs)
are shown on Fig. 5. Note that, we have:

M = {806, 824, 836, 846}. (12)

Depending on the case study, we assume that each D-PMU
either provides the phasor measurements only for the funda-
mental component, or for the fundamental component together
with the 3rd and the 5th harmonics. As in practice, we assume
that events occur rarely [7]; therefore, we assume only a small
number of each type of event are available to train GraphPMU.
We augmented the data from the few available events by
conducting time shifting and adding noises to the raw data.
This is done for each type of event and for all sensors. In total,
we considered 50,000 events of various types for training,
5000 events for evaluation, and 5000 events for testing.

The number of epochs for each model training is considered
to be 100, and the batch size is 1000. During the training
phase, the average learning time for each epoch is about
28.8 seconds, which is around 48 minutes for all the 100
epochs. Importantly, we do not have any learning process
during the testing phase when we label the test events. All that
is needed during the testing phase is to obtain and pass the
features to the trained model to have it label/cluster each event.
The average calculation time (considering all the different
scenarios of the analysis with different number of D-PMUs,
different locations for sensitivity analysis, and different hyper-
parameters choices) is 7.8 seconds for 5000 test events, which
is 1.56 milliseconds for each test event. It should be noted that,
the AED model is trained separately. The training time of the
AED model is about 13.6 minutes for 100 epoch. The average
testing time of the AED is 0.73 milliseconds for each event,
for all the time-series features from all the buses. Therefore,
in total, the entire testing phase takes 1.56 + 0.73 = 2.29
milliseconds for each event.

A. Parameters of GraphPMU

The graph encoder has two layers of GCN [33], where the
sizes of the vectors for the hidden layers are 128 and 64,
respectively. The discriminator contains two fully-connected
layers with 192 and 32 neurons. We concatenate the hidden
layer features and the global graph features together; thus, the
input size of discriminator is 128+64 = 192. By intentionally
choosing a naive discriminator with only two fully-connected
NNs, we enforce the GNN encoder to learn more discrimina-
tive features. This can help with event clustering.

TABLE I
ARI SCORE FOR DIFFERENT METHODS UNDER

LOCATIONALLY-SCARE PHASOR MEASUREMENTS AT FOUR BUSES

Method ARI

W
ith

ou
t

G
ra

ph
M

od
el AED 0.473

DEC 0.520
Kernel TS 0.237
k-shape TS 0.418
k-means TS 0.343

W
ith

G
ra

ph
M

od
el TS + N/G + NL 0.487

AED + N/G 0.423
AED + N/G + RL 0.533
AED + G + NL 0.585

GraphPMU = AED + N/G + NL 0.720

The encoder portion of the AED has two layers of LSTM
modules with 32, and 64 units, following with a 32 units fully-
connected layer. The decoder portion is an almost reverse
version of the encoder, with a fully-connected 64× 125 layer,
followed by two LSTM layers with 64 and 32 units.

All activation functions are LeakyReLU, where the slope
of the leak is 0.2. For tuning the hyper-parameters, we used
the coarse-to-fine method [7]. The learning rate α is 1e−3 for
Adam optimizer, and β1 is 0.5 for better stability in training.
All models are developed with Pytorch. The GNN models are
built with the Deep Graph Library [44], by using Nvidia GTX
1050 ti GPU and a core i-7 2.2GHz CPU with 32 GB RAM.

The MSE for the training and testing stages in the fun-
damental phasor are 0.04425 and 0.04522, respectively. This
shows that the encoder is able to compress high-resolution data
to a low dimension such that the decoder can reconstruct the
time series with high accuracy. This confirms the performance
of the AED sub-system for the rest of our analysis.

In this paper, Adjusted Rand Index (ARI) score [45] is
used to assess accuracy in a clustering task. ARI is a number
between 0 and 1. A higher ARI means a better clustering.

B. Comparison with Temporal-Based Benchmarks

Table I shows the ARI for the proposed event clustering
method (in the last row), in comparison with several bench-
mark methods (in the first nine rows). In this section, our focus
is on the top segment in Table I, i.e., the first five methods.
These are the methods that do not use any information about
the network topology. These five methods are AED [41],
DEC [46], Kernel k-means, k-Shape clustering and k-means
clustering methods [47]. Here, Time Series (TS) means that the
method uses the raw time series data, without any encoding.

From Table I, among the five methods that do not use graph
models, DEC and AED have the highest accuracy. To have a
fair comparison, we assume the same steady-state values of
nominal loading information at the buses without D-PMUs
for all the ten methods in Table I.

C. Comparison with Topology-Based Benchmarks

The next five methods in the bottom segment of Table I
do use the information about the network topology. All of
these combinations could have been used for our purpose.
However, only the last row shows our ultimate design for
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GraphPMU. The rest of the methods serve as benchmarks.
Regarding the new abbreviations in Table I, G means using
only the graph-level representation in the GNN, N/G means
using both the node-level and the graph-level representations,
NL means using the nominal load flow model to obtain the
constants at the buses with no sensors, RL means using random
loading data instead of using nominal loading data.

1) Advantage of Using Data Compression: If we compare
TS+N/G+NL versus GraphPMU in Table I, we can see that
their difference is only in the use of AED instead of TS.
Importantly, since the input to the GNN is more compressed
in GraphPMU, it becomes more distinctive for the GNN, as
opposed to using the raw time series in TS+N/G+NL. Thus,
the overall performance in event clustering is much better for
the GraphPMU. Nevertheless, the use of topology information
in TS+N/G+NL can still outperform most of the benchmark
methods in the top segment of Table I that do not use any
graph model.

2) Advantage of Pairing Node-Level and Graph-Level Vec-
tors: If we compare AED+G+NL versus GraphPMU in Table
I, we can see that their difference is only in terms of using
G versus N/G. The method with AED+G+LN considers only
the last layer of the graph learning model for the positive
and the negative graphs for the MI maximization, rather than
using the node-level/graph-level pairs. However, the use of
such pair in GraphPMU is necessary to properly extract the
shared structure between the node-level and the graph-level
representations, in order to have more distinctive clusters.

3) Advantage of Using Nominal Load Data: If we compare
AED+N/G versus GraphPMU in Table I, we can see that their
difference is only in terms of using N/L. In AED+N/G, we do
not include the buses with no sensors in graph-based learning.
As a result, the accuracy of the method drops significantly. The
reason is that there are only four nodes on the graph, i.e., the
four buses with sensors. This is due to the locational scarcity
of the sensors. Such a small graph does not give much room to
benefit from topology-based learning. As for AED+N/G+RL,
this method too suffers a considerable drop in performance.
These results confirm that we do benefit from conducting a
simple power flow analysis based on the nominal loading data.

It is worth clarifying that for all the methods under “without
Graph Model” in the top segment of Table I, they too make use
of the nominal loading information for the buses without D-
PMUs. However, for the methods under “with Graph Model”
in the bottom segment of Table I, we separately examined the
cases where the nominal loading information is used versus
the cases where such information is not used, such that we can
explicitly evaluate the importance of using such information
in the design of GraphPMU.

D. Analysis Based on Different Types of Events

Fig. 6 shows the t-distributed stochastic neighbor embed-
ding (t-SNE) scatter plot of all test events for three methods:
a) DEC; b) AED+G+NL; c) GraphPMU. Each point indicates
one event. The shapes and colors indicate the true labels of
the nine different event types. One of the major weaknesses
of the methods that do not use graph models is their inability
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Fig. 6. The t-SNE scatter plots for the test events for three different methods
based on two main features. Only four D-PMUs are available.

to properly cluster the “smaller” events, such as events types
3, 4, 5, and 6. For example, see the area in Fig. 6(a) that is
marked with an oval with a solid line. These four different
event types are all mixed up in this area. Accordingly, the
DEC method is not able to distinguish event types 3-6.

Next, consider the results in Fig. 6(b), which are for
AED+G+NL. The area that is marked with a diamond shows
that AED+G+NL too is incapable of separating the “small”
events. However, its ARI is slightly higher than that of DEC
due to the more distinctive clusters for the “major” event types
1, 7, 8 and 9. However, the DEC method has incorrectly split
event type 2 into two separate groups of points, as we see in
the two separate circles with dashed lines in Fig. 6(b).

GraphPMU addresses all of these shortcomings, as we can
see in Fig. 6(c). On one hand, GraphPMU tends to separate
the “major” event types as far as possible. For example, in the
dashed oval area in Fig. 6(c), all the points for event type 2
are close to each other and away from the rest of the events.
This highly improves the accuracy in clustering event type 2.
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Fig. 7. ARI scores for AED, AED+N/G and GraphPMU methods vs. the
number of D-PMUs, with and without using harmonic synchrophasors.

On the other hand, GraphPMU also maintains the “smaller”
event types reasonably away from each other. For example, in
the circle area that is marked with a solid line in Fig. 6(c), the
points for event types 3, 4, 5, and 6 are separated from each
other much better compared to the other figures.

E. Impact of Adding Harmonic Phasor Measurements

Table II shows the event clustering results for AED, DEC
and GraphPMU when we use not only the fundamental phasor
measurements but also the harmonic phasor measurements.
By comparing Table II with Table I, we can see that the
performance in event clustering has highly improved in all
three methods. This is due to the more distinctive transient
signatures for different event types, as we saw in Section V.

Among the nine event types, unbalanced events i.e., event
types 3, 7 and 8, have the highest accuracy improvements.
Based on Tables I and II, GraphPMU significantly outperforms
the rest of the methods, whether we only use the fundamental
phasor measurements as in Table I, or we use both the
fundamental and harmonic phasor measurements as in Table
II. An ARI of 0.814 is very high, given that we have sensors
in 4 of the 34 buses, i.e., only in 12% of the buses.

It is worth reiterating the fact that, when we use H-PMUs,
we take advantage of both the fundamental phasor measure-
ments and the harmonic phasor measurements; because H-
PMUs can provide both; e.g., see [3]–[6].

F. Impact of the Number of D-PMUs

Fig. 7 shows the ARI scores for GraphPMU in comparison
with two other methods versus different number of available

TABLE II
ARI SCORE FOR GRAPHPMU AND THE TOP TWO METHODS WITHOUT
GRAPH MODELS WHEN ADDING HARMONIC PHASOR MEASUREMENTS

Method ARI
AED (Fundamental + Harmonics) 0.666
DEC (Fundamental + Harmonics) 0.694

GraphPMU (Fundamental + Harmonics) 0.814
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Fig. 8. The t-SNE for GraphPMU for all test events when using 10 D-PMUs.

sensors. We can identify three patterns in these figures. First,
GraphPMU always outperforms the rest of the methods. Its
relative superior performance is the highest when we have
fewer sensors, i.e., under the locational-scarcity conditions.
Second, as we increase the number of available sensors, the
overall clustering accuracy improves for all these methods.
Third, AED+N/G always has a worse performance than AED
under severe locational-scarcity, but it surpasses AED as we
increase the number of sensors. This is due to the fact that,
AED+N/G is capable of taking advantages of the information
about the network topology only when we have several sensors
available. This shortcoming is addressed by GraphPMU.

In Fig. 7(b), GraphPMU achieves a very high ARI score of
0.92 with only 8 H-PMUs in a network with 34 buses.

Fig. 8 shows the performance of GraphPMU in clustering
different types of events, when there are 10 sensors available.
If we compare Fig. 8 with Fig. 6(c), we see that having more
D-PMUs helps GraphPMU to put almost all events in correct
separated clusters, for both “major” or “small” event types.

Before we end this section, it is worth noting that, the
proposed GraphPMU is applicable even if fewer D-PMUs
are available. Note that, in principle, one would need at
least two sensors to be available to take advantage of time-
synchronization among the phasor measurements. Further-
more, one cannot take advantage of the relative locations of
the sensors on the network’s graph if less than two sensors
are available. Therefore, the minimum number of the sensors
in the context of this paper is two. Accordingly, we applied
GraphPMU to the case where there are only two D-PMUs
available. In this regard, we removed the D-PMUs at buses
824 and 846; to have M = {806, 836}, instead of the default
four D-PMUs in set M in (12). The ARI is obtained as 0.498
for GraphPMU, 0.355 for AED+N/G, and 0.442 for AED. As
we can see, GraphPMU outperforms the other methods even
if only two D-PMUs are available. Of course, the performance
is not as good as the case where four D-PMUs are available,
where GraphPMU would achieve an ARI of 0.720 as we saw
in Table I. Similar results are obtained if we replace the two
D-PMUs with two H-PMUs. In this case, the ARI is obtained
as 0.654 for GraphPMU, 0.439 for AED+N/G, and 0.591 for
AED. Again, GraphPMU outperforms the other methods even
if only two H-PMUs are available. Of course, the performance
is not as good as the case where four H-PMUs are available,
where GraphPMU would achieve an ARI of 0.814.
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TABLE III
ARI SCORE FOR THE GRAPHPMU WHEN WE CHANGE

THE LOCATION OF D-PMU 2.

Location of D-PMU 2 ARI
Bus 824 0.720
Bus 812 0.650
Bus 850 0.721
Bus 854 0.704
Bus 858 0.689

G. Impact of the Location of D-PMUs

In this section, we conduct a sensitivity analysis with respect
to the location of the D-PMUs. We assume that four D-PMUs
are available. Recall that the default locations of the D-PMUs
are at the four buses that are listed in (12). We assume that
the locations of three D-PMUs are fixed at buses 806 (D-
PMU 1), 846 (D-PMU 3), and 836 (D-PMU 4). However, we
change the location of D-PMU 2 to place it at five different
locations. In each case, we report the ARI of the GraphPMU
methodology. The results are shown in Table III. As we can
see in this table, the performance of GraphPMU can change
depending on the exact location of the D-PMUs. However,
the changes are not very significant. In fact, compared to the
default locations, changing the locations can decrease the ARI
by at most by 9.7% when D-PMU 2 is placed at bus 812, and
it can increase the ARI by at most 0.1% when D-PMU 2 is
placed at bus 850.

H. Impact of Incorporating Traditional Measurements

In all the previous case studies, we assumed that we do
not have access to any measurements other than the high-
resolution and time-synchronized measurements that are ob-
tained from the very few D-PMUs (or H-PMUs) on the net-
work. However, in practice, one may have access to additional
measurements from the traditional measurement devices; such
as the measured power consumption at each bus. While
such traditional measurements cannot directly provide much
information about the events due to their very low granularity
and lack of time-synchronization, they may still help improve
the performance of GraphPMU to do a better event clustering
based on the locationally scarce phasor measurements that are
available.

The traditional measurements can be incorporated in Graph-
PMU as part of the NL step. In the original NL step, we use the
nominal loading at each bus (from the utility’s network model)
as a very rough approximation of the true loading at that bus so
as to approximate the power flow across the power distribution
network at the time when the event occurs. However, if
we have access to the power consumption measurements at
each bus that are obtained by the traditional measurement
devices, then we can use them to enhance our power flow
approximations in the NL step. This can in turn potentially
improve the overall performance of GraphPMU.

An example is shown in Table IV. The case study in this ex-
ample is based on the default scenario, where there are four D-
PMUs on the network as listed in (12). Note that, the two cases
in Table IV are based on the exact same phasor measurements

TABLE IV
ARI SCORE FOR THE GRAPHPMU WHEN WE

INCORPORATE TRADITIONAL MEASUREMENTS.

Method ARI
GraphPMU (Nominal Loading) 0.720
GraphPMU (Measured Loading)† 0.763
† By using traditional power meters.

from the same D-PMUs. As we can see, the incorporation of
the measurements from the traditional measurement devices
can improve the performance of GraphPMU, increasing ARI
by 5.97% from 0.720 to 0.763.

VII. CONCLUSIONS AND FUTURE WORK

A novel unsupervised graph-representation learning method,
called GraphPMU, was proposed to cluster different types of
events in power distribution systems. The proposed method
does not require any prior knowledge about the events. It
is solely based on the event signatures in D-PMU (and H-
PMU) measurements, as well as the information about the
network topology. Importantly, GraphPMU is meant to address
a challenging scenario, where the phasor measurements are
locationally scarce. By conducting a comprehensive data-
driven analysis, it was shown that the proper combination of
topology-based and temporal-based representation learnings
of phasor measurements can result in very high clustering
accuracy. The results of different case studies confirmed that
the proposed method outperforms the existing methods in the
literature. By using the measurements from not only funda-
mental but also the harmonic phasors, we further improved the
clustering accuracy, particularly for unbalanced event types.

Future work may include: 1) extending the analysis to also
achieve unsupervised event location identification; 2) applying
the proposed method to other sensor measurements such as
synchronized waveform measurements; and 3) incorporating
some additional physical information to the graph-based anal-
ysis, such as the impedance of the distribution lines.

APPENDIX

In this appendix, we explain the definition of ARI and
the way that it is calculated. The Rand Index is a similarity
measure between two clustering results by considering all
pairs of samples and counting pairs that are placed in the
same or different clusters in the conducted and true clus-
tering. Let M denotes the total number of events. Suppose
A = {A1, . . . , AP } is the true clustering of the events, while
B = {B1, . . . , BQ} is a clustering that is constructed by a
clustering method that we seek to evaluate. Parameters P and
Q denote the number of clusters in A and B, respectively. Let
w be the number of pairs of events that are placed in the same
cluster in A and in the same cluster in B, x be the number
of pairs of events that are placed in the same cluster in A
but not in the same cluster in B, y be the number of pairs
of events that are placed in the same cluster in B but not in
the same cluster in A, and z be the number of pairs of events
in different clusters in both partitions. Quantities w and z can
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be interpreted as agreements, x and y as disagreements. The
Rand Index (RI) is defined as [48]:

RI =
w + z

w + x+ y + z
,

which is a number between 0 and 1. When the A and B
perfectly match, then RI is 1. However, one issue with the
RI is that its expected value when A and B are random
partitions does not take a constant value , for instance zero.
This issue is addressed in the Adjusted Rand Index (ARI),
which is proposed in [45]:

ARI =

∑
i,j

(
Mij

2

)
−
[∑

i

(
Mi

2

)∑
j

(
Mj

2

)]
/
(
M
2

)
1
2

[∑
i

(
Mi

2

)
+
∑
j

(
Mj

2

)]
−
[∑

i

(
Mi

2

)∑
j

(
Mj

2

)]
/
(
M
2

)
where parameter Mij is the number of events that are in cluster
Aj ∈ A and also in cluster Bi ∈ B, parameter Mi is the
number of events in cluster Bi ∈ B, and parameter Mj is
the number of events in cluster Aj ∈ A. The notations with
parentheses denote the mathematical combination. In general,
an ARI value lies between 0 and 1. A smaller ARI means
a lower agreement between the true clustering A and the
obtained clustering B, while a larger ARI means a higher
agreement between the true clustering A and the obtained
clustering B.
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