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Abstract—Sensitivity distribution factors (SDFs) have diverse
applications in power system operation. In particular, when SDFs
are obtained in a data-driven fashion based on measurements,
they can eliminate the need to repeatedly solve the computa-
tionally complex non-linear power flow equations. However, in
a typical low-observable power distribution system, where the
measurements are not sufficient to achieve full-observability, it is
a major challenge to estimate SDFs using the available measure-
ments. This challenge is addressed in this paper. Specifically, a
new method is proposed for joint estimation of SDF and power
flows in power distribution systems that lack full-observability.
The proposed method requires measuring the nodal injection
power and line power flow at only a few locations on the power
distribution feeder. The proposed method is physics-aware. It
is built upon extracting physics-based sparsity features of power
distribution feeders. In this regard, the aforementioned joint
estimation problem is formulated as a sparse matrix completion
problem. The advantages of the proposed method in comparison
with the existing methods are investigated via numerical results.

Keywords – Sensitivity distribution factor, injection
shift factor, power flow estimation, sparse recovery, low-
observability, power distribution systems, computation.

I. INTRODUCTION

Sensitivity distribution factors (SDFs), such as injection shift
factors (ISF) and power transfer distribution factors (PTDF)
are powerful computational tools to help grid operators to
obtain the solution of the power flow problem without the need
to repeatedly solve the non-linear power flow equations. SDFs
have various applications, such as in contingency analysis [1],
energy dispatch [2], and voltage regulation [3].

In general, there are two different types of methods to obtain
the SDF matrices: model-based and measurement-based. In
model-based methods, SDF matrices are obtained from the
Jacobian matrix of the power flow equations. Based on the
application, the power flow equations might be in form of
DC approximations [4] or non-linear AC equations [5], [6].
Because of the higher ratio of R/X in power distribution
lines, DC approximation typically does not work well. As
for the methods that use non-linear power flow equations, the
accuracy of the analysis depends on the operating points of the
system, which either may not be necessarily known or might
be changing frequently. Needless to say that, non-linear power
flow models also suffer from higher computation cost.

In measurement-based (i.e., data-driven) methods, the SDF
matrices are obtained by applying linear regression to the
available measurements [7], [8]. For instance, to estimate the

The authors are with the Department of Electrical and Computer Engi-
neering, University of California, Riverside, CA, USA; e-mails: {aakrami,
hamed}@ece.ucr.edu. The corresponding author is H. Mohsenian-Rad.

ISF matrix, which is the main focus in this work, the typical
required measurements include the changes in the nodal power
injection at every node, and the changes in the line power flow
in every line segment. One advantage of the measurement-
based methods over the model-based methods is that the
measurement-based methods do not need any prior knowledge
about the power system topology, parameters of the lines, or
the time-varying operating points of the system.

However, the accuracy of the measurement-based methods
highly depends on the sufficiency of the available measure-
ments. One issue is whether or not the measurements are
available at every bus or every line segment, such that a
regression analysis can be established based on the available
measurements. At a power transmission network, such com-
prehensive measurements might be available due to measure-
ment redundancy. However, this is not the case in a typical
power distribution network. Distribution feeders often suffer
from low-observability [9]–[12]. Therefore, unlike the existing
measurement-based methods that are developed for use at
transmission level, one should take into account the issue of
low-observability when estimating the SDF matrices using the
measurement-based methods in power distribution systems.

To the best of our knowledge no previous work in the
literature has looked into this aspect of the problem.

Another aspect about the sufficiency of the available mea-
surements is the sufficiency of the measurement samples. If
there are not enough measurement samples, then the measure-
ment matrices are not full-rank. In that case, special methods
are needed to deal with rank deficiency. In [13], a method
based on singular value decomposition (SVD) is proposed to
obtain the sensitivity matrix from the low-rank measurement
matrices. In [2], a recursive partial least square method is used
to address the same issue. In [14], the rows of the SDF matrix
are sparsified based on the electrical distance of the buses and
the lines of the power transmission network, to obtain the SDF
matrix from insufficient measurements via sparse recovery.

In this paper, our focus is on power distribution feeders
with their typical radial topology. We show that such radial
topology can create physics-based sparsity features, whose
utilization in this low-observability problem makes up for the
low-rank properties of the measurement matrices. Accordingly,
we address both issues about the sufficiency of measurements
in a low-observable power distribution network. We propose a
novel joint sparse estimation method for the SDF matrices and
power flows in a low-observable power distribution system. We
seek to estimate the ISF, which is an important class of SDFs.
Unlike the existing methods in the literature, which are either
model-based or measurement-based, the proposed method is
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hybrid, since a model-based approach is used with respect to
the physics-aware component of our design; while all other
aspects of our approach is measurement-based.

Our method works based on extracting the sparsity features
of the SDF matrix and power flows based on the typical
radial topology of the power distribution networks and by
augmenting the estimation problem formulation based on the
extracted features to make up for the lack of observability.

We also develop a novel iterative solution to deal with
the non-linearity of the optimization problem that is caused
because of the missing measurements in the regression model.

II. PROBLEM STATEMENT

A. System Model

Let us represent a radial power distribution feeder by graph
G := (N ,L), where N denotes the set of nodes and L denotes
the set of line segments. Let ∆xti denote the change in the
nodal power injection at node i at time t. Accordingly, let
∆xt ∈ R1×n denote the vector that captures ∆xti for all buses
in N at time t, where n is the number of nodes in the system.
Also, let ∆ytj denote the change in the power flow of line
segment j at time t. Similarly, let ∆yt ∈ R1×l denote the
vector which contains ∆ytj for all line segments in L at time
t, where l is the number of line segments in the system. Our
goal is to obtain the linear sensitivity ISF matrix such that:

∆yt = ∆xt H, (1)

where H ∈ Rn×l is the ISF matrix. Based on equation (1), the
change in the power flow of line segment j, for any j ∈ L,
can be obtained from the product of the sensitivity factors by
their corresponding change in the nodal power injection as:

∆ytj = ∆xt1 h1j + · · ·+ ∆xtn hnj . (2)

Here, h1j , . . . , hnj are the entries of column j in matrix H.

B. Problem Statement

The current measurement-based models in the literature,
such as in [7], [8], [13], [14], assume that the changes in
the nodal power injection, i.e., ∆xt, and the changes in the
line power flow, i.e., ∆yt, are known quantities measured
by a variety of sensors that are installed across the power
system. Hence, they form a linear regression model to obtain
the unknown entries of the ISF matrix. In this measurement-
based approach, the total number of unknowns is n× l. But,
the number of equations in (1) is only l. Therefore, at least
n× (l− 1) more independent measurements are needed, such
that the unique solution of (1) can be obtained.

Next, let ∆Y ∈ RT×l be the matrix that includes all the
measurement samples of the changes in the line power flows,
i.e., the matrix whose rows are vectors of ∆yt from time
t = 1 to time t = T . Similarly, let ∆X ∈ RT×n be the matrix
which includes all the measurement samples of the change in
the nodal power injection. We can rewrite equation (1) as:

∆Y = ∆XH. (3)

If the measurement matrix ∆X is a full-row-rank matrix, then
the system of equations in (3) can be solved by applying a
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Fig. 1. An illustrative example for substation connector path in a radial power
distribution network. The red path corresponds to the injection at bus 31.

conventional least square method, such as in [7], [15], to obtain
H. However, having measurements at every location is not a
common setting in power distribution systems. Therefore, we
need to develop a new model which can directly address the
issue of low-observability in the estimation of the ISF matrix.

C. Sparsity Pattern of Power Flows and Distribution Factors
Consider the radial power distribution system in Fig. 1.

Suppose a change in the nodal power injection occurs at bus
31. Let us call the path that connects bus 31 to the substation as
the substation connector path associated with bus 31. This path
is marked in red on the figure. Based on the Compensation
Theorem in Circuit Theory [16], when a change happens in
the power injection of a node, then we can replace the element
that causes such change by an equivalent current source which
injects a current to the circuit that causes the same changes on
the operating points of the system. Therefore, approximately,
the equal amount of current flows from bus 31 all the way up to
the substation through the substation connector path, see [17].
The reason is that the impedance of the Thevenin equivalent
circuit of the power grid as seen by the distribution feeder at
the substation is much less than the impedance of the loads
[18]. As a result, in a radial power distribution feeder, once a
change in the nodal power injection happens, it only changes
the power flow of those distribution line segments that are on
the substation connector path, while the power flow for the
rest of the line segments remains approximately unchanged.

For each node i ∈ N , let us define tree Ti := (Vi, Ei) as
the sub-graph which includes the nodes and lines that are on
the substation connector path. Based on the above discussion,
once a deviation in the power injection of node i happens, it
only changes the power flow in those line segments that belong
to set Ei, while the power flow in the rest of line segments
remains unchanged. To take advantage of such physics-based
approximation, let us denote the set which includes all the
nodes that line segment j belong to their associated set Ei as:

Γj = {∀i ∈ N | j ∈ Ei}. (4)

A major observation here is that, if the change in the nodal
power injection for every node in Γj is zero, then the change in
the line power flow of line j would be zero. This observation
can be used in the estimation of power flows. It can also play
an important role in the estimation of sensitivity distribution
factors. The above statement means that the line segments
which do not belong to set Ei are insensitive to a change in
the nodal power injection of node i. Therefore, we have:

hij = 0, ∀j /∈ Ei. (5)
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III. PHYSICS-AWARE MEASUREMENT-BASED MODEL

In this section, we consider three scenarios for the availabil-
ity of the measurements. We develop our proposed method to
estimate the ISF matrix in each scenario accordingly.

A. Scenario 1: Nodal Power Injections and Line Power Flows
are Fully Measured

Suppose we can measure the power flow at every node and
every line of the power distribution feeder. As discussed in
section II-A, this does not necessarily make the system of
equations in (3) overdetermined; depending on the number of
measurement samples. Based on the discussion in Section II-C,
we know that the ISF matrix is a sparse matrix, and we have
already extracted the sparsity pattern of this matrix in (5).
Therefore, we can formulate the problem in Scenario 1 as:

minimize
H

||∆Y −∆XH||2F + λ

l∑
j=1

||c(H, j)||1

subject to AH = 0,

(6)

where ||.||F is the Frobenius norm, c(H, j) is the operator
which returns the j-th column of matrix H, λ is the sparsity
regularization parameter, and matrix A is constructed based on
the sparsity patterns in equation (5). The minimization problem
in (6) is convex and can be solved by any convex optimization
solver, such as the CVX toolbox [19].

B. Scenario 2: Nodal Power Injections are Fully Measured
but Line Power Flows are not Fully Measured

In this scenario, we consider a more realistic and more
challenging case, where the nodal power injection measure-
ments are available for every node, but the line power flow
measurements come from only a few lines. Due to the setting
of the problem in this scenario, some entries in the measure-
ment matrix ∆Y are unknown, because they are not directly
measured. Instead, they have to be estimated simultaneously.

To address Scenario 2, let us split the measurement matrix
for line power flows into two sub-matrices as:

∆Y = ∆Yu + ∆Yk, (7)

where ∆Yu denotes the unknown part and ∆Yk denotes the
known part. Based on the discussion in Section II-C, we know
that matrix ∆Y is a sparse matrix, and its sparsity pattern is
a function of the sparsity pattern of matrix ∆X. In particular,
since we know which entries of matrix ∆X are non-zero, we
also know which entries of the unknown matrix ∆Yu are zero.
Therefore, we can modify the minimization problem in (6) as:

minimize
H,∆Yu

||∆Yu + ∆Yk −∆XH||2F + λ

l∑
j=1

||c(H, j)||1

+ γ

T∑
i=1

||c(∆Y>u , i)||1

subject to AH = 0

B∆Yu = 0
(8)

where γ is the sparsity regularization parameter, and B is the
matrix which captures the sparsity pattern of the line power
flows based on the values in measurement matrix ∆X.

The optimization problem in (8) is a convex minimization
problem which can be solve by a commercial solver.

C. Scenario 3: Neither the Line Power Flows nor the Nodal
Power Injections are Fully Measured

In this scenario, we consider the most challenging case,
where only a subset of line power flows and only a subset
of nodal power injections are measured. Therefore, similar
to equation (7), we split the matrix of nodal power injection
measurements into two sub-matrices as follows:

∆X = ∆Xu + ∆Xk, (9)

where ∆Xu denotes the unknown part and ∆Xk denotes the
known part. Unlike the minimization problem in (8), we cannot
define a matrix similar to B, because some of the values of
the changes in the nodal power injection are unknown to us.
Therefore, we need to develop a way such that the sparsity
pattern of the power flows can still be utilized.

To do so, let us define a binary variable bti. It is 1, if the
node i experiences a change in the nodal power injection at
time t, otherwise it is zero. At each time t, let us stack up all
the binary variables into vector bt ∈ R1×n. We have:

−M.bt ≤ ∆xt ≤M.bt, (10)

where M is a large number. Based on matrix ∆Xk, we already
know the value for some of the binary variables. However,
for the rest of the nodes that we do not measure their power
injection directly, the associated binary variable is unknown.

For each line segment j, from the definition of Γj in (4)
in Section II-C, we know that if all of the binary variables
that are associated with the nodes in set Γj are zero, then the
change in the line power flow of line segment j is zero. We
can mathematically express this observation as:

−M.max{bt
Γj
} ≤ ∆ytj ≤M.max{bt

Γj
}, ∀j ∈ L. (11)

Now, we can rewrite the minimization problem in (8) as:

minimize
H,b,∆Yu,∆Xu

||∆Yu + ∆Yk − (∆Xu + ∆Xk)H||2F

+λ

l∑
j=1

||c(H, j)||1 + γ

T∑
i=1

||c(∆Y>u , i)||1

+ω

T∑
i=1

||c(∆X>u , i)||1

subject to AH = 0

Eqs. (10)− (11)
(12)

where ω is the sparsity regularization parameter.
The minimization problem in (12), is non-convex, because

of the product (i.e., bilinear) term in the objective function.
Therefore, to be able to work with this formulation, we
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propose to break down the minimization problem in (12) into
the following two optimization problems:

minimize
b,∆Yu,∆Xu

||∆Yu + ∆Yk − (∆Xu + ∆Xk)H0||2F

+ γ

T∑
i=1

||c(∆Y>u , i)||1 + ω

T∑
i=1

||c(∆X>u , i)||1

subject to Eqs. (10)− (11)
(13)

and

minimize
H

||∆Y∗ − (∆X∗)H||2F + +λ

l∑
j=1

||c(H, j)||1

subject to AH = 0.
(14)

In the optimization problem in (13), we obtain the solution
of b, ∆Yu, and ∆Xu for a given initial value for matrix
H, which is denoted by H0. Once the estimations of the
power flows are obtained by solving (13), next, we solve the
optimization problem in (14) in order to update matrix H.
After that, we will continue to iterate between (13) and (14)
until we convergence to a solution. It is worth to mention that,
the choice of the initial value for the entries of matrix H has
impact on both convergence and the accuracy of the obtained
solution. One good choice to obtain the initial matrix H0 is
to hypothetically assume that the power distribution system is
lossless, and set all the non-zero entries equal to one. Another
option, which might be more accurate, is to use the estimated
values for the previous time slots as the initial choice for H0.
More discussion on this issue will be given in the next section.

IV. CASE STUDIES

In this section, we test the performance of our proposed
method in jointly estimating both the uknown power flows and
the ISF matrix. The case studies are completed by simulating
the IEEE 33-bus distribution test network which has a radial
topology. We use the default values the of loads per the IEEE
33-bus test system as the operating points of the system. We
assume that the measurement noise is Gaussian with zero mean
and standard deviation of 0.01.

A. Performance Evaluation

For all the three scenarios in Section III, we consider a
range of 20 to 200 measurement samples to be available for
each measurement. For Scenarios 2 and Scenario 3, we assume
that between 10% to 50% of the power flow measurements
are unknown. We compare our proposed method with the
conventional least square estimation only for Scenario 1, as
it cannot address the cases in Scenario 2 and Scenario 3
with unknown entries in measurement samples. We use Mean
Absolute Percentage Error (MAPE) as the index for this
assessment. The result for this comparison is shown in Fig 2.

As we can see, the proposed method outperforms the
conventional least square method in Scenario 1. Also, from
the curve of the Scenario 2 and Scenario 3 in which 30%
of the measurements are unknown, we can see that missing
measurements can cause a degradation on the performance of
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Fig. 3. The performance of the proposed method under different levels of
low-observability severance, i.e., different percentage of missing measurement
data. Scenario 1 is not included; because it assumes no missing data.

the proposed method; however, it still outperforms the con-
ventional least square method which is not built to deal with
rank deficient matrices. Moreover, as we can see, increasing
the number of measurement samples for all methods leads to
improvement in the performance of estimation.

We also investigate the impact of missing data percentage
on the accuracy of the proposed method in Scenario 2 and
Scenario 3. To the best of our knowledge, we are the first who
studies this problem under the settings in these two scenarios.
Therefore, we only compare the accuracy of estimation for
the missing values with respect to their true value for different
level of missing data ranging from 10% to 50%. The results are
shown in Fig. 3, where the number of measurement samples is
200. As we can see, higher percentage of missing data causes
the accuracy of the proposed method to degrade.

B. Importance of Initial Guess for the ISF Matrix

As mentioned earlier, solving the non-linear optimization in
(12) through the proposed iterative approach in (13) and (14)
depends on the choice for the initial guess of the decision
variables, in particular the choice of H0. An inappropriate
initial guess can cause convergence issue. Also, it drastically
impact the accuracy of the obtained solution. In this section,
we study this impact by comparing the convergence rate and
the value of the objective function for multiple initial guesses.

As explained in Section III-C, a good choice for the initial
guess is to start from the lossless system, and assume every
non-zero entry in the ISF matrix to be one. The second choice
is to use the estimated ISF matrix from the previous time
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Fig. 4. The application of estimating the ISF matrix in a low-observable
network on estimating the impact of DER failure at buses a) 12, b) 33.

instances t = 1 to t = T , as the initial estimation at time t =
T + 1. Besides the above two options, we have also randomly
selected two other initial guesses as the third and the fourth
selections. The performance of the above four initial guesses
on the convergence and accuracy of the results are shown on
Table 1, where 25% of the measurements are unknown and
the total number of available measurement samples is 200. We
can see that, when we get the initial guess based on estimated
values of the previous time slots, proposed method converges
to the solution in lower number of iterations, and additionally,
its accuracy is higher. Also, random selections of initial guess
can cause either to convergence and divergence.

C. Application in Contingency Analysis: DER Failure

An example for the application of estimating ISF is in
contingency analysis. In this section, we consider the failure
of a major DER and we seek to examine how the estimated
ISF can help estimate the impact of such DER failure on the
amount of power flow across the power distribution feeder,
without the need to solve the power flow equations.

In our base case scenario, we assume that there are four
DERs installed at buses 6, 12, 26, and 33, and each one has
the capacity of 120 kW. Our goal is to find out how the line
power flows would change if one of the DERs suddenly fails.
The results for this analysis are shown in Fig. 4; focusing on
the failures of DERs at buses 12 and 33. As we can see the
estimated ISF matrix has reasonably estimated the change in
line power flow in each case. In Fig. 4(a), the average error
is 2.45% and the maximum error is 9.32%. In Fig. Fig. 4(b),
the average error is 4.65% and the maximum error is 12.08%.

V. CONCLUSIONS

A new physics-aware measurement-based approach was
proposed for joint estimation of the ISF matrix and the power
flows in power distribution systems with low-observability.
Due to low-observability, the measurement matrices, whether
for measuring nodal power injection or line power flow, have
several unknown entries. To address low-observability, sparsity
patterns of the ISF matrix and the changes in power flows
were approximated based on the radial topology of the power
distribution systems. Three scenarios were defined based on
the availability of measurements: 1) nodal power injections
and line power flows are fully measured; 2) nodal power inj-
ections are fully measured but line power flows are not fully
measured; 3) neither the line power flows nor the nodal power

TABLE I
IMPACT OF INITIAL GUESS ON THE CONVERGENCE AND

ACCURACY OF ESTIMATION

Initial Guess Converged No. Iterations MAPE
Point 1 Yes 382 31%
Point 2 Yes 566 26%
Point 3 No - -
Point 4 Yes 573 45%

injections are fully measured. The optimization problem was
formulated and solved in each case. The performance of the
proposed method was verified via case studies, with respect to
the impact of the number of measurement samples, the extent
of low-observability, and application in contingency analysis.
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