
1

Event Signatures in H-PMU Measurements: An
Information-Theoretic Analysis of Real-World Data

Fatemeh Ahmadi-Gorjayi, Student Member, IEEE, Lutz Lampe, Senior Member, IEEE,
Hamed Mohsenian-Rad, Fellow, IEEE

Abstract—A harmonic phasor measurement unit (H-PMU) is
a technological evolution of the conventional PMU. Unlike a
conventional PMU that solely captures fundamental phasors, an
H-PMU encompasses the measurements of both fundamental and
harmonic phasors. So far, the application of H-PMU measure-
ments has been on the analysis of steady-state characteristics
of harmonic phasors, such as for harmonic source identification
or harmonic state estimation. However, in this paper, we take
a rather unique and multi-disciplinary approach to harness the
additional information provided by harmonic phasor signatures
to better analyze power system events. The proposed approach
is data-driven and from the view point of information theory, and
based on real-world H-PMU measurements. Our analysis reveals
the presence of significant independent information content in
the extracted features from the event signatures in harmonic
phasor measurements. This study also explores the applications of
utilizing such additional information content, such as to optimally
select the orders of the harmonic phasors for the analysis of
power system events, as well as to enhance the performance in the
task of event clustering in power systems situational awareness.

Keywords: Harmonic phasor measurements, event signatures,
power system situational awareness, H-PMU, information theory.

I. INTRODUCTION

A. Background and Motivations

Data from Phasor Measurement Units (PMUs) have been
widely used in recent years to detect, characterize, identify,
and classify events in power systems. An event in this field
is defined broadly and may refer to load switching, capacitor
bank switching, connection or disconnection of distributed en-
ergy resources, inverter malfunction, momentary oscillations,
a minor fault, a signature for an incipient fault, etc. Analysis
of events has major applications in power system situational
awareness [1]–[3], equipment condition monitoring [4], cyber-
security [5], and modeling power system dynamics [6].

Traditionally, PMUs provide phasor measurements based on
the fundamental component of voltage or current. However,
the fundamental phasor measurements may not fully capture
the rich information content that is embedded in the changes
that occur in voltage and current during an event.

This area has recently received a boost with the development
of Harmonic Phasor Measurement Units (H-PMUs), which are
a new class of smart grid sensors. H-PMUs can provide not
only the phasor measurements for the fundamental component
(same as in the traditional PMUs), but also the phasor measure-
ments for the harmonic components. We refer to [7] for more
details about the recent developments in the field of H-PMUs.
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Fig. 1. Signatures of an event in: (a) fundamental phasor measurements, (b)
third harmonic phasor measurements, (c) fifth harmonic phasor measurements.

Accordingly, in this paper, we seek to examine the event
signatures as captured not only in the fundamental phasor
measurements but also in the harmonic phasor measurements.

Throughout this paper, we use real data from a test site in
California. An example is shown in Fig. 1. The measurements
are three-phase, but only one phase is shown here. Fig. 1(a)
shows the signature of an event in the fundamental phasor
measurements. Figs. 1(b) and (c) show the signatures of the
same event in the third and the fifth harmonic phasor measure-
ments, respectively. These signatures demonstrate important
features, both in transient changes and in steady-state changes,
as well as both in magnitude and in phase angle.

The type of harmonic phasor signatures that are shown in
Figs. 1(b) and (c) are currently unexplored as they have not
been used in the literature to study power system events. How-
ever, when available, the further information that is provided
about an event by these additional phasor measurements can
significantly enhance our ability to make inferences.

B. Related Work

PMU measurements have been widely used for the analysis
of power system events. Various methods have been developed
for examining the event signatures in the fundamental phasor
measurements, such to do event detection [2], event location
identification [8], and event type classification [9], [10].

As for the literature on harmonic phasor measurements, the
focus so far has not been on the analysis of event signatures.
It has been rather on the following three general categories.
First, there are studies that focus on the design of H-PMU
devices and the signal processing methods to accurately obtain
the harmonic phasors, such as by using matrix pencil method
[11]. Second, there are studies that seek to identify the sources
of harmonics in power systems, such as based on Harmonic
State Estimation (HSE) [12], [13]. This line of work also
includes methods to assess the daily harmonic variations in
power systems [14]. Importantly, the work in this category is
only concerned with the steady state analysis of harmonics.
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It is not concerned with the analysis of power system events.
Third, there are studies that focus on other (less traditional)
applications of harmonic phasor measurements, such as in
topology identification [15], fault location identification [16],
and detection of wideband oscillations in power systems [17].

There are also studies that investigate which certain har-
monic orders are created as the result of which certain physical
phenomena; albeit with focus on steady-state harmonics. For
example, the third harmonic is common when there are issues
in three-phase systems without a neutral, while the fifth
harmonic can be due saturation in the transformers’ cores [18].

Different from the above-mentioned literature, in this paper,
we take a rather unique approach to harness the additional
information provided by harmonic phasor signatures to better
analyze power system events. The only other study that has
touched on a similar idea is the recent work in [19], in which
Graph Learning is used to investigate events. In [19], the
main focus is still on fundamental phasors; yet an example
is presented for the case where some harmonic phasor mea-
surements are included in the analysis. Notably, the example
in [19] was based on computer simulations, and not real-world
data. Here, we take a new and more fundamental approach by
using information theory and by analyzing real-world data.

II. PROBLEM STATEMENT

The purpose of this study is to investigate the hypothesis that
the event signatures in harmonic phasor measurements can un-
cover some significant insights about power system events, that
are not captured by the event signatures in the conventional
fundamental phasor measurements. Suppose a conventional
PMU provides the following vectors of fundamental voltage
and current phasor measurements during an event:

V1∠θ1, I1∠ϕ1, (1)

where

V1 =
[
V1[1] . . . V1[n]

]T
, I1 =

[
I1[1] . . . I1[n]

]T
θ1 =

[
θ1[1] . . . θ1[n]

]T
, ϕ1 =

[
ϕ1[1] . . . ϕ1[n]

]T (2)

are the time-series of the magnitude of the fundamental voltage
phasor, the magnitude of the fundamental current phasor,
the phase angle of the fundamental voltage phasor, and the
phase angle of the fundamental current phasor, respectively.
Parameter n is the number of phasor measurements that are
recorded in the window of time series that captures each event.

Next, suppose we replace the conventional PMU with an
H-PMU. In addition to providing the fundamental voltage and
current phasor measurements in (2), the H-PMU can also
provide the following complex-valued vectors of harmonic
voltage and current phasor measurements during the event:

V2∠θ2,V3∠θ3, . . . ,Vm∠θm

I2∠ϕ2, I3∠ϕ3, . . . , Im∠ϕm

(3)

Here, the harmonic phasors are reported by the H-PMU up
to harmonic order m. In practice, the H-PMU may not report
all the harmonic phasors. For example, it may only report the
third and the fifth harmonics. Or it may only report the two
most dominant harmonics; see [20, Section 4.5]. Furthermore,

the H-PMU may or may not report both the harmonic voltage
phasors and the harmonic current phasors. For example, for
the phasor measurements in Fig. 1, the H-PMU only reported
V3∠θ3 and V5∠θ5, in addition to reporting V1∠θ1.

It is clear that an H-PMU provides more data than a
conventional PMU. However, our question is on whether (and
to what extent) the event signatures in the harmonic phasor
measurements in (3) provide more information than the event
signatures in the fundamental phasor measurements in (2), as
far as the analysis of the power system events is concerned.
The presence and the extent of such additional information can
depend on the type of the event that is captured and the order
of the harmonic phasor that is measured. We seek to address
this open problem by using concepts from information theory.

The nature of this study is inherently data-driven. There-
fore, we leverage a real-world dataset from a substation in
California. The measurements are made at the secondary side
of a 69 kV to 12.47 kV transformer that supplies a power
distribution feeder. The dataset covers one whole year of power
system events, from March 1, 2022 to February 28, 2023. A
total of 2400 events were recorded during this period. All
events are three-phase and often unlabeled. For each event,
the voltage and current phasors are recorded, both at the
fundamental and harmonic frequencies.

III. METHODOLOGY: AN INFORMATION
THEORETIC APPROACH

A. Entropy and Information Content

We commence our proposed approach by introducing the
concept of entropy, which is the foundation of information
theory [21]. For a random variable, entropy measures the
inherent uncertainty or randomness of its outcomes. For a
discrete random variable A, entropy H(A) is defined as:

H(A) = −
∑
a∈A

PA(a) logPA(a), (4)

where PA is the probability mass function of discrete random
variable A over its support set A, which is the set of all
possible values that A can take with a non-zero probability.

Given another discrete random variable B, the notion of
conditional entropy can be similarly defined as [22]:

H(A|B) =
∑
a∈A

∑
b∈B

PA,B(a, b) log

(
PA,B(a, b)

PA(a)

)
, (5)

where PA,B is the joint probability mass function of A and
B. The conditional entropy measures the average residual un-
certainty about variable A once variable B has been observed.

Together, the above two concepts lay the groundwork for
the definition of Mutual Information (MI), a measure of
the reduction in uncertainty about random variable A when
random variable B is observed [21], or in other words, the
overlap in information content between two variables:

MI(A;B) = H(A)−H(A|B). (6)

We note that MI is symmetric in A and B, i.e., MI(A;B) =
MI(B;A). It is zero when A and B are statistically inde-
pendent, indicating that observing A provides no additional
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information about B and vice versa [21]. A Normalized
Mutual Information (NMI) has been introduced in [23] as:

NMI(A;B) =
MI(A;B)

H(A) +H(B)
, (7)

which takes a value between 0 and 1. If there is no shared
information content between A and B, then NMI(A;B) =
MI(A;B) = 0. The more the overlap in information content
of A and B, the closer the NMI approaches a value of 1.

The formulations in (6) and (7) can be extended to also
measure the overlap in the information content among sets of
variables. For instance, the NMI between random variable A
and the pair of random variables B and C is obtained as:

NMI(A;B,C) =
MI(A;B,C)

H(A) +H(B,C)
, (8)

where
MI(A;B,C) = H(A)−H(A|B,C). (9)

Note that H(A|B,C) is the conditional entropy of A, given
both B and C. Again, the value of NMI(A;B,C) is always
between 0 and 1, where 0 implies no shared information
content between A and (B,C). The closer NMI(A;B,C) is
to 1, the more information content is shared by A and (B,C).

B. Information Content of Features in Phasor Measurements

In order to apply the above concepts to the context of our
study, we take two steps. First, we represent the event sig-
natures, whether in the fundamental phasor measurements or
the harmonic phasor measurements, based on features, which
represent a summary statistic of time series measurements.
Second, we discretize the extracted features from the first step.

With regards to feature extraction, we start from the existing
literature in the analysis of event signatures in phasor measure-
ments. Specifically, we focus on extracting the features from
the following time-series on each of the three phases [10]:

Vi, Ii, cos(θi − ϕi), i = 1, . . . ,m. (10)

Note that, for i = 1, i.e., for the fundamental phasors, the term
cos(θi − ϕi) in (10) is the same as power factor. However,
for any i > 1, i.e., for harmonic phasor measurements, the
term cos(θi − ϕi) in (10) can too be viewed as a notion of
power factor, but based on harmonic phasors. Importantly, it
is common not to directly use the phase angles of voltage and
current in the analysis of events. Instead, the cosine of their
difference is used to eliminate the impact of the fluctuations
in the frequency of the power system, see [20, p. 114].

Let X(t) denote a time-series from the list in (10)Suppose
X̄pre and X̄post denote the average of X(t) before and after
the event, respectively. Furthermore, let Xmin and Xmax denote
the minimum value and the maximum value of X(t) during the
event. We define two features with respect to each X(t):

S = X̄post − X̄pre (11)

and

T =

{
Xmax − X̄pre if |Xmax − X̄pre| ≥ |Xmin − X̄pre|
Xmin − X̄pre otherwise,

(12)

TABLE I
NORMALIZED MI AMONG CERTAIN PAIRS OF FEATURES

V I cos(θ − ϕ)
NMI(T1;T3) 0.1034 0.0445 0.0208
NMI(T1;T5) 0.0653 0.0389 0.0217
NMI(S1;S3) 0.0524 0.0417 0.0191
NMI(S1;S5) 0.1386 0.0544 0.0203

where S is the change in the steady-state conditions of the
time-series, before and after the event; and T is the maximum
change in the transient conditions of the time-series during the
event, either as overshoot or as undershoot during the event.

Importantly, for each event, the above two features are
extracted from not only the event signatures in the fundamental
phasor data but also the event signatures in the harmonic
phasor data. Accordingly, a total of 6m features are extracted
from the phasor data in (10) on each phase for each event.

The discretization of the extracted features is done by
dividing the range of each continuous-valued feature into a
number of bins (equal to the square root of the number of data
points). This choice balances the objectives that discretization
effects remain negligible for NMI measurements and that the
numerical NMI estimates are sufficiently accurate.

We can incorporate each pair of the extracted discretized
features as random variables A and B to obtain NMI as in
(7). For example, A can be the transient change in the event
signature in the fundamental phasor measurements and B can
be the transient change in the event signature in the harmonic
phasor measurements of the third harmonic. Accordingly,
we can investigate the information content of the extracted
features in the real-world power system events in the dataset.

In this paper, we estimate the joint probability functions
as well as the marginal probability distribution functions by
discretizing the extracted features into bins, and using bivariate
or multivariate histogram bin counts depending on the number
of features. The results are then normalized based on the
number of events. Marginal distributions are obtained by
summing the joint probabilities for the two features.

IV. CASE STUDIES USING FIELD DATA

A. Analysis of Pairwise Information Content

Suppose the harmonic phasor measurements are limited to
the third harmonic phasors, and the fifth harmonic phasors.
The results are shown in Table I. Each row provides the NMI
between a feature from the fundamental phasor measurements
and a comparable feature from the harmonic phasor mea-
surements. These results are based on taking the average of
the NMI across all the power system events in the dataset.
The features are extracted by (11) and (12). For example, T1
is the transition change in the event signature based on the
fundamental phasor data, and S3 is the steady-state change in
the event signature based on the third harmonic phasor data.

All the NMI values in Table I are close to 0, highlighting
that every feature for every harmonic phasor that is listed in
this table carries distinct information. The varying levels of
NMI values in this table suggest that the information overlap
between these features are different for different features and
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TABLE II
NORMALIZED MI FOR TWO DIFFERENT SCENARIOS FOR
CHOOSING A FIXED NUMBER OF HARMONIC PHASORS

Selection Scenario 1 NMI(T1; T3, T5, T7, T9) 0.2463
NMI(S1; S3, S5, S7, S9) 0.2620

Selection Scenario 2 NMI(T1; T2, T3, T4, T5) 0.1334
NMI(S1; S2, S3, S4, S5) 0.1383

for different harmonics. A lower value for NMI means that
the second feature provides more additional information to
the first feature. For example, consider the lowest value of
NMI in the column under V , which is NMI(S1,S3) = 0.0524.
This means that by using the steady-state changes in the
voltage magnitude of the third harmonic phasors, we can most
significantly increase the information content of the features,
compared to the case where we only use the steady-state
changes in the voltage magnitude of the fundamental phasors.

B. Application in Optimal Selection of Harmonic Phasors to
Maximize Information Content in Event Signatures

Recall from Section II that an H-PMU may provide har-
monic phasor measurements only for a small and specific
number of harmonics. One may ask: if we can only measure
a few harmonic phasors, which ones should we pick for the
analysis of events? Next, we seek to answer this question.

Specifically, we compare two scenarios, which contain an
equal number of harmonic phasors within their feature sets.
Without loss of generality, we assume that only the magnitudes
of the voltage phasors are used in this case study. Scenario 1
exclusively employs odd harmonic phasors:

V1∠θ1, V3∠θ3, V5∠θ5, V7∠θ7, V9∠θ9. (13)

Scenario 2 employs both odd and even harmonic phasors:

V1∠θ1, V2∠θ2, V3∠θ3, V4∠θ4, V5∠θ5. (14)

The above two scenarios use the same number of phasors, i.e.,
five. The question is: which scenario carries more information
about the event? We can answer this question by conducting
a multivariate mutual information analysis corresponding to
the formulation in (8), but based on five variables to account
for the number of phasors in (13) and (14). The results are
shown in Table II. We observe that, whether with respect to the
transient features or with respect to the steady-state features,
Scenario 2 has a lower NMI than Scenario 1 on average:

NMI(T1; T2, T3, T4, T5) < NMI(T1; T3, T5, T7, T9)
NMI(S1; S2, S3, S4, S5) < NMI(S1; S3, S5, S7, S9).

(15)

That means that the features in Scenario 2 have less informa-
tion overlap with the features of the fundamental phasors than
those in Scenario 1. Thus, the event signatures in Scenario 2
are expected to be more informative with respect to the charac-
teristics of the events than the event signatures in Scenario 1.
This approach can help with systematic and optimal selection
of the harmonic phasors to maximize their information content.

We note that the above results are in contrast to the
traditional analysis of harmonics in the field of power quality,
where even harmonics are almost never considered due to the
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Fig. 2. (a) Fundamental phasor signature feature space, (b) Third harmonic
phasor signature feature space, (c) Fifth harmonic phasor signature feature
space. In all subfigures, the color coding is based on clustering of the events
with respect to their S and T features in the fundamental phasors.

often symmetric nature of voltage waveforms in steady-state
conditions. However, when it comes to the analysis of power
system events, the above results suggest that the use of even
harmonics, as in Scenario 2, can be beneficial.

C. Application in Event Clustering

The additional information content of H-PMU measure-
ments can improve the performance of event-based tasks in
power systems. An example is in the field of event clustering
and event classification, where we seek to identify the type or
cause of an event based on its signatures in the measurements.

Fig. 2 depicts the use of harmonic phasor measurements in
event clustering. The clusters are obtained by using K-means
clustering for different choices of the feature space. Different
subfigures demonstrate different harmonic phasor signature
feature spaces, while sharing a common color-coding. The
color coding is based on clustering of the events with respect
to their S and T features as captured in Fig. 2(a) based
on the fundamental phasor measurements. This representation
provides a baseline scenario to assess how the events that may
seemingly belong to the same cluster appear very differently
based on their features in the higher harmonic spaces.

To see this, consider the feature spaces in Figs. 2(b) and
(c), which are based on the features that are extracted from
the third and the fifth harmonic phasor measurements, respec-
tively. The crucial aspect to note here is that the colors repre-
sent the same clusters that were identified in Fig. 2(a), based
on the features from the fundamental phasor measurements.

The comparison of Figs. 2(a), (b), and (c) confirms that
the clusters based on the features in the fundamental phasor
measurements are not valid for the higher harmonic feature
spaces. This discrepancy implies that clustering based purely
on fundamental phasors may not fully capture the character-
istics that are hidden in the higher harmonic phasor features.

Since the event data in real-world power systems is pre-
dominantly unlabeled, we propose to use the silhouette value
to assess the performance in event clustering, leveraging the
various features derived in our analysis. Silhouette value indi-
cates how well each object lies within its cluster. Specifically,
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it is a measure of how similar an object is to its own cluster
(cohesion) compared to other clusters (separation) [24].

The silhouette value ranges between −1 and 1. A higher
value indicates a better clustering quality of the power system
events. Without loss of generality, we assume that the number
of clusters is fixed at four. That is, the target in each clustering
task is to create four clusters based on certain features.

If we use only the features from the fundamental phasors,
i.e., T1 and S1, then the silhouette values are obtained as:

I V cos(θ − ϕ)
Silhouette Value: 0.174 0.2151 0.2248 (16)

If we use the features from the fundamental phasors and the
third harmonic phasors, i.e., T1, S1, T3, and S3, then we have:

I V cos(θ − ϕ)
Silhouette Value: 0.2884 0.4526 0.3432 (17)

Finally, if we use the features from the fundamental phasors,
the third harmonic phasors, and the fifth harmonic phasors, i.e.,
T1, S1, T3, S3, T5, S5, then the silhouette value becomes:

I V cos(θ − ϕ)
Silhouette Value: 0.3547 0.677 0.5011 (18)

By comparing the results in (16), (17), and (18), we can
conclude that the silhouette values are highest in all variables
when all features are included in the event clustering task.
This outcome supports the premise that the inclusion of the
features from the event signatures in the harmonic phasor
measurements, particularly both the third and fifth harmonics,
can significantly enhance the event clustering performance.

V. CONCLUSIONS

The event signatures in harmonic phasor measurements
that are recorded by H-PMUs can uncover new information
about power system events that are not captured by the
event signatures in fundamental phasor measurements from
conventional PMUs. Based on the results in this paper, while
the use of fundamental phasors is necessary, having access
also to harmonic phasors as additional phasor measurements
can be highly beneficial. This can be shown systematically
by applying techniques from information theory to real-world
phasor measurements. One key issue here is to decide which
exact orders of the harmonic phasors we may need to analyze
when it comes to event signatures. While the traditional
analysis of harmonics often focuses on odd harmonics due
to the often symmetric shape of the waveforms in steady-
state conditions, the information content of event signatures
can be valuable from both odd and even harmonic phasor
measurements. Another application of the proposed methods
is in event clustering. Future research can further explore the
applications of this new direction in power system monitoring.
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