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Abstract—Achieving reliable harmonic state estimation (HSE)
is becoming increasingly important in smart grid development
due to the growing penetration of power electronics devices,
non-linear loads, and distributed energy resources. A major
challenge in this field is the limited availability of power quality
measurements in power distribution feeders. This inevitably
results in low-observability conditions in the HSE problem, where
harmonic phasors are measured at only a very few locations on
the distribution feeder. We address this challenge by proposing a
novel physics-aware sparse HSE method. It is built upon extract-
ing some unique sparsity patterns in power distribution systems
based on their radial topology and physical characteristics. Based
on the various extracted individual and group sparsity features,
we formulate and solve the physics-aware sparse HSE problem
with and also without knowing the location of the harmonic
source. The effectiveness of the proposed method is confirmed
through multiple case studies and sensitivity analysis.

Keywords—Harmonic state estimation, physics-aware
method, data-driven method, low-observability, sparse re-
covery, radial topology, harmonic phasor measurements.

I. INTRODUCTION

With the growing penetration of power electronics devices,
non-linear loads, and distributed energy resources, it is becom-
ing increasingly crucial to achieve situational awareness about
harmonic distortions in power distribution systems.

Harmonic state estimation (HSE) is a key step in achieving
situational awareness about harmonic distortions. However,
a major challenge in this field is the limited availability of
power quality measurements in power distribution feeders.
Although the cost of power quality sensors is dropping, it is
still impractical to maintain full-observability about harmonic
distortions by placing power quality sensors at every bus.

We seek to address this open problem in this manuscript.
Although there is a rich literature on the study of HSE

at power transmission networks [1], [2], developing HSE
methods at power distribution networks requires addressing
its own unique issues. For a radial or weakly-meshed power
distribution system, numerous harmonic measurement devices
are needed to make the system fully-observable. Therefore,
due to the lack of extensive monitoring at the distribution level,
a necessary requirement in any HSE method at distribution
level is to address the issue of low-observability [3]–[6].

A common approach to make up for the lack of measure-
ments in the HSE problem is to use pseudo-measurements such
as historical data. But in this case, the error and uncertainty
in the historical data can severely affect the accuracy of HSE.
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Another approach is not to use pseudo-measurements, but
rather to directly deal with the low-observability conditions
by using mathematical techniques to solve the HSE problem
as an undetermined system of equations. In [4], the HSE
problem is solved by using singular value decomposition,
where the HSE problem is formulated as a least square
optimization and solved by obtaining the pseudo-inverse of the
low-rank measurement matrix. In [3], a method is proposed
to solve the HSE problem based on sparse Bayesian learning
which involves regression analysis for power flow calculation
and recurrent neural network models for demand prediction
in power distribution systems. In [7], the HSE problem is
formulated as a constrained sparsity maximization problem
which is solved by using linear programming.

However, to the best of our knowledge, the prior studies in
the literature have not taken the unique physics-based features
of the power distribution system into account, such as its radial
topology, as the main tool in achieving sparse recovery. As a
result, they still require a considerably large number of sensors
to be deployed. Thus, there is still a need to explore some of
the most important sparsity patterns in the state variables of the
power distribution system, while the physics-based relations
and constraints among the state variables are being considered.

This paper proposes a novel physics-aware sparse HSE
method in power distribution systems with very few power
quality sensors. The proposed method is built upon extracting
some unique sparsity patterns in power distribution systems
based on their radial topology and other physical characteris-
tics. The main contributions of this paper are as follows:

1) The physics-based individual or group sparsity patterns
are identified for harmonic nodal injection current pha-
sors, harmonic line current phasors, and harmonic nodal
voltage phasors. Importantly, it is assumed that the
power distribution feeder has only very few harmonic
measurement sensors and there is only one harmonic
source of each harmonic order in the system.

2) Two scenarios are considered. First, we formulate and
solve the sparse HSE problem when the location of the
harmonic source for each harmonic order is known. We
formulate a constrained weighted-Lasso optimization
problem that incorporates the mathematical implications
of the various identified physics-based sparsity patterns.

3) We also formulate and solve the sparse HSE problem
under a more challenging scenario where the location
of harmonic source is not known. Accordingly, we
combine the proposed sparse recovery formulation with
a proper exhaustive search in order to enforce the various
identified sparsity features despite the lack of prior
knowledge about the location of the harmonic source.
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II. PROBLEM FORMULATION

Let G := (N ,L) denote the graph representation of a power
distribution feeder, where N is the set of nodes and L is the
set of distribution lines. For a harmonic order h, let IN (h)
denote the vector which contains the nodal harmonic injection
current for all the nodes in set N . Also, let IL(h) denote the
vector of harmonic line currents for all the line segments in
set L for harmonic order h. Let V(h) denote the vector of
nodal harmonic voltage phasors for all the nodes in set N for
harmonic order h. In our problem formulation, the vector of
state variables for each harmonic order h is denoted by

X(h) = [ IN (h) IL(h) V(h) ]>. (1)

Suppose there are only a few harmonic phasor measurement
units (H-PMUs) available across the distribution feeder to
measure the harmonic nodal voltage phasors Vm(h) and the
harmonic line current phasors ImL (h) at the locations of H-
PMU installations. Let Z(h) denote the measurement vector:

Z(h) = [Vm(h) ImL (h) ]>. (2)

The goal in HSE is to estimate the state variables X(h)
based on the available measurements Z(h).

A. Basic Equations

Since all the harmonic measurements are in phasor domain,
the following relationship holds between the harmonic phasor
measurements and the harmonic state variables:

Z(h) = H(h)X(h), (3)

where H(h) is the measurement matrix at harmonic order h.
Next, we explain the construction of matrix H(h).

The first type of equations in matrix H(h) are associated
with harmonic voltage phasor measurements. The following
relationship holds between the nodal harmonic injection cur-
rent phasors and the harmonic voltage phasor measurements:

Vm(h) = Y−1(h) IN (h), (4)

where Y(h) is the admittance matrix for harmonic order h.
In addition to (4), the harmonic voltage phasor measurements
can be mapped also to their associated entries in the vector of
harmonic voltage phasors through an identity mapping:

Vm(h) = UV(h), (5)

where U is a diagonal matrix, where a diagonal entry is 1 if
its corresponding state variable is a harmonic voltage phasor
that is directly measured; otherwise it is 0.

The second type of equations in matrix H(h) are associated
with the harmonic line current measurements. The harmonic
line current measurements are mapped to the vector of nodal
harmonic voltage phasors as follows:

ImL (h) = Yprim(h) V(h), (6)

where Yprim(h) is the primitive admittance matrix [8], which
includes the line admittances only for the line segments whose
harmonic current phasors are measured. Harmonic line current
phasor measurements can also be related to the vector of the
harmonic line current phasors through an identity mapping:

ImL (h) = U IL(h), (7)

where U is a diagonal matrix, where a diagonal entry is 1 if
the corresponding state variable is a harmonic current phasor
that is directly measured; otherwise it is 0.

B. Additional Equations

The equations in (4)-(7) capture all the basic relationships
between the entries of vector Z(h) and those of vector X(h).
We can use the equations in (4)-(7) to construct matrix H.
However, due to the limited measurements, which is due to
the limited number of H-PMU installations in practice, matrix
H(h) is a low-rank matrix. Thus, the system of equations in
(3) has an infinite number of solutions; which is not desirable.

The main remedy to the above issue is the use of sparsity
analysis as we will see in Section III. However, it is useful to
also add more equations to the basic set of equations in (4)-
(7). In particular, we need to create more couplings among the
state variables, even though such additional couplings does not
make matrix H(h) full-rank. To do so, for the line segments
that do not come with a direct harmonic phasor measurement,
we propose to write an equation similar to (6), as follows:

0 = Yprim(h)V(h)− IL(h). (8)

Unlike in (6), the equations in (8) are not based on measure-
ments; but they do serve the purpose of further coupling the
state variables. Here they act as auxiliary equations.

We can treat the zeros on the left hand side in (8) as virtual
measurements to revise the vector of measurements in (2) as:

Z(h) = [Vm(h) ImL (h) 0 ]>. (9)

C. Original HSE Formulation

If the power distribution feeder is fully observable at har-
monic order h, then we can formulate the HSE problem as:

min
X(h)

‖Z(h)−H(h)X(h)‖22. (10)

However, if the network is not fully observable, i.e., if we
only have a few H-PMUs, then solving the above problem
does not lead to a meaningful solution. Therefore, for the rest
of this paper, we seek to address this open problem by making
use of concepts from sparse recovery in signal processing.

III. PHYSICS-BASED SPARSITY FEATURES

From the theory of sparse recovery in signal processing,
when it comes to an undetermined system of linear equations,
such as the one in (3), if the unknown vector is sparse, then
we might be able to obtain the unique solution of the undeter-
mined system of linear equations despite the low observability
conditions [9]. To do this, we need to first identify and extract
the inherent sparsity patterns in the physical system.

Consider the IEEE 33-bus distribution test network in Fig. 1.
Suppose there is a harmonic current source at bus 13. As it
is previously shown in [10]–[12], the harmonic current in this
power distribution feeder almost entirely flows through the
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Fig. 1. An example distribution feeder with one harmonic source. In practice,
the harmonic current almost entirely flows through the substation.

substation and not through the loads. The reason is that the
impedance in the Thevenin equivalent of the substation that is
seen by the distribution feeder is much less than the impedance
of the loads across the distribution feeder. Therefore, almost
the entire harmonic current that is injected by the harmonic
source at bus 13 passes through the line segments that are
marked with red color, all the way up to the substation.

The above physical observation can be used as the founda-
tion to introduce sparsity to harmonic state estimation. Based
on the notations that we defined in Section II, the sparsity is
primarily in the vector of nodal harmonic current injection,
i.e. IN (h). Since only one harmonic source of each harmonic
order is assumed to be in the network, only one entry in IN (h)
is non-zero, which is associated with the node of the harmonic
source. The rest of the entries in IN (h) are zero.

There is also a major sparsity in the vector of harmonic line
current phasors, i.e., IL(h). Recall from Fig. 1 that only the
line segments on the red path between the harmonic source
and the substation carry harmonic current. Therefore, only the
entries in IL(h) that are associated with the line segments on
the red path are non-zero. All the other entries in IL(h) that
are associated with the line segments that are outside the red
path are almost zero. Moreover, all the line segments that are
on the red path have almost equal harmonic current; because
the harmonic current almost entirely flows to the substation.

The above analysis also has implications for the harmonic
voltage phasors. Since there is harmonic line current on the
red path in Fig. 1, the nodal voltage for all the buses on this
red path include some level of harmonic distortion associated
with the same harmonic source. However, the story is a bit
different for the nodes that are outside the red path.

To see this, let us first group the nodes that are outside the
red path such that all the nodes that are laid on the same lateral
are put in the same group; see [13] for a similar grouping idea.
For example, buses 26, 27, 28, 29, 30, 31, 32, and 33 form one
group in Fig. 1. Bus 6 is the boundary node for this group. For
any such group, if there is no (almost no) harmonic component
in the voltage at the boundary node, then there is zero (almost
zero) harmonic component in the voltage of all the nodes in
the group; otherwise, there is non-zero harmonic component in
the voltage of all the nodes in the group. If all of the harmonic
voltage phasors are non-zero in a group, they are equal to the
harmonic voltage phasor at the boundary node.

For example, again consider buses 26 to 33 in Fig. 1 which
are outside the red path and on the same lateral. They form one
group. For all the nodes in this group, all would have equal
nodal harmonic voltage phasors. If there is zero (or almost
zero) harmonic component in the voltage at the boundary node,
i.e., bus 6, then there would be zero (or almost zero) harmonic

component in the voltages at buses 26 to 33. If there is a
considerable harmonic component in the voltage at bus 6, then
there would be an equal harmonic component in the voltages
at buses 26 to 33. This is because there is no harmonic current
flowing on any of the lines between the nodes in the above
group of nodes. Thus, in addition to the sparsity in harmonic
current phasors IN (h) and IL(h), there is also a group sparsity
in the nodal harmonic voltage phasors V(h). We can enforce
all these various sparsity patterns by constructing the following
additional equality constraint in our problem formulation:

A X(h) = 0. (11)

The rows are corresponding to two types of equality con-
straints: 1) the harmonic line current phasors are equal for
all the line segments on the path between the substation and
the node where the harmonic source is located; and 2) the
harmonic voltage phasors are equal at the nodes within each
group, including the boundary node of the group.

For instance, in the example that we mentioned earlier, to
set the harmonic voltage phasor at bus 26 to be equal to the
harmonic voltage phasor at bus 6, we need a row in matrix A
to include 1 as the coefficient to the harmonic voltage phasor
at bus 6; and −1 as the coefficient to the harmonic voltage
phasor at bus 26. Notice that, one single constraint in matrix
form can capture all such equalities across all the groups. The
same holds for the equality of harmonic line currents.

Remark 1: The assumption that the network topology is
radial is necessary for the proposed method. For the case of
a weakly meshed network, we may still apply our method to
the radial sub-segments of the network. We may also take
a meshed sub-segment of the network as a super-node, thus
reducing the weakly meshed network topology to radial topol-
ogy with a few super-nodes for applying our proposed method.
However, for a truly meshed network topology, such as in
some micro-grids, our method may no longer be applicable.

Remark 2: The sparsity patterns that we discussed in this
section are based on the assumption that there is only one
harmonic source of the same harmonic order on the distribu-
tion feeder. Of course, we can have multiple harmonic sources
of different harmonic orders. If there are multiple harmonic
sources of the same order, then our method may still work;
however, as the number of harmonic sources increases, the
sparsity in state variables diminishes, which might degrade the
performance of the method. Addressing this issue is beyond
the scope of this paper and can be studied in a future work.

IV. HSE WITH SPARSE RECOVERY

Methods from compressed sensing and sparse recovery can
be used to obtain the solution of the undetermined system of
equations in (3). In this regard, we can formulate the HSE
problem as a Lasso optimization problem [9]:

min
X(h)

1

2
‖Z(h)−H(h) X(h)‖22 + λ‖X(h)‖1. (12)

The first term in the objective function is the least square error
in state estimation. The use of `1-norm in the second term is a
common approach in sparse recovery to minimize the number
of non-zero state variables, where λ is a penalty factor.



4

Although the Lasso optimization in (12) treats X(h) as
a sparse vector, it does not distinguish between its entries.
Whilst, in our discussion in Section III, we extracted valuable
information about the sparsity pattern of the specific entries in
vector X(h) based on the physics of the system. Hence, we
need to reflect that information in the the problem formulation.
This raises the question on how this would be done if:

1) The location of harmonic source is known,
2) The location of harmonic source is unknown.

A. Known Location of Harmonic Source
In this scenario, we assume that the location of the harmonic

source is known. We know which entry in the nodal harmonic
current injection vector IN (h) is non-zero; however, its value
is still not known and it must be estimated by the HSE.
Similarly, we know which entries in vector IL(h) are non-
zero; but we do not know their values. We also know which
entries in vectors IL(h) and V(h) are in the same group.

To incorporate the above information to the sparse recovery
process, we reformulate the Lasso optimization in (12), and
present it as a constrained weighted-Lasso optimization [14]:

min
X(h)

1

2
‖Z(h)−H(h) X(h)‖22 + λWX(h)

s.t. A X(h) = 0.

(13)

where W is a vector which contains the weight for each entry
in vector X(h) to enforce the extracted sparsity patterns. If
an entry in X(h) is known to be zero, then a large weight is
used in W to create a large penalty to push the value toward
zero. In contrast, for the entries in X(h) that are known to be
non-zero, we only use a small weight in W to create a small
penalty for that entry such that it does not grow.

Problem (13) is convex. We can use any convex optimization
solver, such as CVX toolbox (www.cvxr.com), to solve it.

B. Unknown Location of Harmonic Source
As a more challenging scenario, next, we assume that the

location of the harmonic source is not known. Hence, we do
not know which exact entries are zero in advance.

Nevertheless, all the sparsity patterns that we extracted in
Section III are still valid. Therefore, we can still solve this
more challenging case by combining the method in Section
IV-A with an exhaustive search. The idea is as follows:

If we assume a tentative location for the harmonic source,
we can use the exact formulation as in (13) to solve the HSE
problem by using the sparsity patterns based on such tentative
assumption. Suppose we assume that bus k is the location
of the harmonic source; and accordingly, we obtain Rk as
the corresponding residue when we solve the optimization
problem in (13). In other words,Rk(h) is the optimal objective
value of the optimization problem in (13) based on the
assumption that the harmonic source is at bus k.

Therefore, by taking each of the buses in the network as the
location of the harmonic source and solving the optimization
problem in (13) accordingly, we can identify the unknown
location of the harmonic source at harmonic order h as:

k? = arg min
k

Rk(h). (14)

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT HSE METHODS FOR

HARMONIC ORDER h = 3

Method MSE V STD V MSE IL STD IL
Physics-Aware

Sparse HSE 0.0174 0.094 0.00275 0.0274

Sparse HSE 223.8 7.56 13.34 2.53
Method in [4] 221.1 7.368 9.79 2.512

The above problem can be solved by using an exhaustive
search. This requires to solve N optimization problems of the
form in (13), where N is the number of buses in the network.
Once we obtain Rk(h) for each k = 1, . . . , N , we can obtain
k? by simply taking the minimum of the N obtained residues.

Once k? is obtained, the analysis in this section reduces to
the same analysis in the first scenario in Section IV-A.

V. CASE STUDIES

We apply the proposed physics-aware sparse HSE method
to the IEEE 33-bus distribution test system [15]. All the
case studies are simulated in the Open Distribution System
Simulator (OpenDSS) [16]. Six H-PMUs are assumed to be
installed at the substation and at nodes 6, 18, 22, 25, and 33.

A. Performance Comparison

We compare the performance of the proposed physics-aware
sparse HSE method with two other methods: 1) the sparse
HSE but without utilizing the physics-based knowledge; and
2) the method in [4] which works based on singular value
decomposition. We use the Mean Square Error (MSE) as the
metric to compare the performance of different HSE methods:

MSE =
1

N
||Xact(h)−Xest(h)||22, (15)

where N is the number of unknown harmonic state variables.
Table I shows the results based on the mean and the variance

of the MSE index; which are calculated separately for the
unknown harmonic nodal voltages, denoted by MSE V and
STD V, and for the unknown harmonic line currents, denoted
by MSE IL and STD IL. The harmonic source is assumed to
be of harmonic order h = 3. The magnitude of the injected
harmonic current is assumed to vary randomly between 10%
to 50% of the load at the location of the harmonic source. We
assume that the location of the harmonic source is known.

As we can see, the proposed method has a drastically lower
average MSE and standard deviation in comparison with the
method in [4] and the sparse HSE without physics-awareness.

B. Unknown Location of Harmonic Source

Next, we assume that the location of the harmonic source
is not known. Accordingly, we use the proposed method in
Section IV-B. The results from the exhaustive search are shown
in Fig. 2. Here, we plotted the Residue Rk(h) versus the can-
didate location of the harmonic source at buses k = 2, . . . , 33.
We can see that the minimum residue is obtained at k? = 4.
This is indeed the correct location of the event bus; which
confirms the effectiveness of the proposed method even when
the location of the harmonic source is not known.
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Fig. 2. Residue Rk(h) versus the candidate location of the harmonic source.
The location of the harmonic source is not known in advance.
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C. Sensitivity Analysis: Harmonic Order

In practice, the magnitude of harmonic source may vary
depending on the harmonic order. Thus, to have a fair as-
sessment, we compare the normalized MSE for voltages for
different harmonic orders. The results are shown in Fig. 3. We
can see that the normalized MSE increases as we increase the
harmonic order as well as the magnitude of harmonic source.

D. Sensitivity Analysis: Location of the Harmonic Source

Fig. 4 shows the HSE residue, i.e., the optimal objective
value of the HSE optimization problem, for all the possible
scenarios for the location of the harmonic source. We can see
that, as the distance of the harmonic source from the sub-
station grows, the performance of the HSE method gradually
degrades. This is due to the fact that a longer distance for
the harmonic source from the substation means a less sparse
scenario. Also, when distance increases, the estimation error
increases as well; because the observability over the nodes that
are far from the sensors is lowered. As a result, as we move
to bus 33, the HSE estimation error increases in general.

VI. CONCLUSIONS AND FUTURE WORK

A novel physics-aware sparse HSE is formulated and solved
for radial power distribution systems under low-observability
conditions. The key in this design is to extract the various
individual and group sparsity patterns in the harmonic nodal
injection current phasors, harmonic line current phasors, and
harmonic nodal voltage phasors with respect to the location of
the harmonic source. Accordingly, the HSE is formulated as a
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Fig. 4. HSE residue versus the location of the harmonic source, where h = 3.

constrainted weighted Lasso optimization. Our analysis covers
the challenging scenario where the location of the harmonic
source is not known. Multiple case studies in OpenDSS
confirmed the effectiveness of the proposed method.

As a future work, one may relax the assumption on having
only one harmonic source of the same order. One may also
examine the case where the network topology is not radial.
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