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Abstract—This paper introduces a data-driven framework
for power system event analysis using harmonic phasor mea-
surements and empirical mode decomposition (EMD). Unlike
traditional methods that rely solely on fundamental phasors, we
show that harmonic phasors provide additional, non-redundant
insight—particularly for detecting subtle, high-frequency tran-
sients. We analyze two real-world datasets: a gapless harmonic
phasor stream and an extensive event-triggered dataset. We
extract features from EMD-applied harmonic phasor magnitude
streams that capture dynamic event signatures more effectively
than using raw phasor magnitudes alone. Leveraging a one-year
dataset containing over 2400 events recorded by harmonic phasor
measurement unite, we demonstrate that incorporating harmonic
features improves event clustering. Unlike conventional harmonic
analysis, our method focuses on transient phenomena, offering
a more robust approach for monitoring and distinguishing
power system disturbances in utility operations, with potential
applications in situational awareness, event classification, and
enhancing grid reliability.

Keywords: Harmonic phasor measurement units (H-PMU),
event signatures, power system situational awareness, emperical
mode decomposition (EMD), intrinsic mode function (IMF).

I. INTRODUCTION

A. Background and Motivations

This paper focuses on analyzing transient events in power
systems, which are often subtle, high-frequency deviations
from nominal operating conditions but are critical for system
reliability and protection. These event are often blurred in
conventional phasor domain analysis. Typical approaches have
mainly targeted these events using high-resolution waveform
data [1], but such methods are resource-intensive and not
widely available in real-world monitoring. Traditional phasor
measurement units (PMUs) tend to analyze such events by
primarily examining the fundamental frequency components
of the voltage and/or current waveforms. However, the de-
velopment of harmonic PMUs (H-PMUs) has introduced new
opportunities to characterize transient events beyond the fun-
damental frequency [2, Section 4.5].

As shown in Fig. 1(b), the nature of transient events is
different from those of steady-state harmonic distortion in
Fig. 1(a). Fig. 1(c) further illustrates this by showing the
per-cycle fundamental, 3rd, 5th harmonic voltage magnitudes
for the transient in Fig. 1(b), which forms the basis of the
analysis in this work. Rather than analyzing long-term har-
monic distortion, this work leverages H-PMUs to capture the
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Fig. 1. (a) Voltage waveform with harmonic distortion; (b) Voltage waveform
with transient high-frequency event; (c) per-cycle harmonics magnitude for
(b), illustrating how harmonic analysis here targets transient events rather
than conventional steady-state distortion studies.

dynamic system behavior of voltage during transient events.
In this context, harmonics are not merely distortive byproducts
but informative signatures of underlying system dynamics.
This shift in perspective highlights harmonics’ potential to
detect and characterize transient events, therby, supporting
more resilient grid monitoring and faster operator response.

B. Related Work

PMUs have long been used for analyzing events in modern
power systems. A significant body of research has explored
how fundamental phasor measurements can support applica-
tions such as event detection [3] and classification [4] and
situational awareness [5].

In contrast, research on H-PMUs has followed a different
trajectory. The bulk of prior work has focused on harmonic
sources and assessing system-level harmonic propagation us-
ing methods such as harmonic state estimation [6], or devel-
oping algorithms for accurate extraction of harmonic phasors
using advanced signal processing [7]. There are also some
other applications including fault location identification [8],
topology identification [9], etc. But, these efforts have primar-
ily focused on steady-state harmonic behavior and have not
directly addressed how harmonics respond to transient events.
One notable exception is the study in [10], which uses H-
PMU data and an information-theoretic framework to study
power system events. While [10] offered initial evidence of
the potential value of harmonic phasors, it primarily focused
on establishing foundational metrics like mutual information.
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However, the increased data complexity from H-PMUs
necessitates advanced analytical methods to reliably interpret
transient event signatures. Conventional signal processing ap-
proaches for time-frequency analysis, such as the Short-Time
Fourier Transform (STFT), rely on fixed basis functions, which
can limit their effectiveness for signals whose characteristics
change over time. While the STFT provides simultaneous time
and frequency localization, its resolution is fundamentally con-
strained by windowing effects. Wavelet transform techniques
offer multi-resolution analysis and have proven successful for
many nonstationary power system disturbances, but their per-
formance can be sensitive to noise [11] and requiers choosing
a mother wavelet which may not always match the underlying
event patterns. Empirical mode decomposition (EMD) [12] is
an adaptive method that decomposes nonstationary signals into
a set of intrinsic mode functions (IMFs), each representing
a specific frequency band. Unlike aforementioned methods,
EMD does not rely on predefined basis functions. Instead, it
adaptively derives them from the signal itself, which leads to
more effective decomposition of nonstationary power quality
(PQ) events [13]. This makes EMD a strong candidate for
identifying transient disturbances and isolating harmonics in
power system data [14], [15]. EMD has shown success in fault
detection [16], PQ monitoring [13], and signal denoising [17],
highlighting its robustness and versatility for power system
applications.

C. Approach and Contributions

Building upon this foundation, the current work shifts
focus toward demonstrating practical benefits: Using real-
world H-PMU data, we show how incorporating harmonic
phasors alongside fundamental phasors can enhance event
characterization and clustering, especially for subtle events
where fundamental-based analysis is insufficient. Additionally,
although this work does not propose a new event detection
algorithm, it demonstrates that the inclusion of harmonic pha-
sor data provides valuable insight which might be beneficial
even for enhancing event detection. Furthermore, in order to
evaluate the practical utility of this theoretical findings, we
apply them to real-world applications within power systems,
potentially enhancing the way we understand and handle
power system events.

The main contributions of this paper are as follows:
1) First real-world application of EMD to harmonic phasor

magnitudes to extract features for identifying brief, transient
events that are often missed by traditional methods.

2) Demonstration that EMD-based harmonic features pro-
vide both higher sensitivity and unique informational value
compared to fundamental-only analysis, detecting transient
events with minimal magnitude change while capturing dis-
tinctive event signatures that enhance characterization and
clustering performance.

II. EMPIRICAL MODE DECOMPOSITION AND FEATURE
EXTRACTION OF H-PMU MEASUREMENTS

Building on the motivations in Section I, in this section, we
first formalize the problem, then review the EMD method, and
finally, define the proposed EMD-based harmonic features.

A. Problem Statement

During an event, a conventional PMU records time-series
of voltage and current phasors at the fundamental frequency:

X1∠θ1, (1)

where vector X1 = [X1[1], . . . , X1[n]]
T represents a se-

quence of n voltage or current phasor samples, and θ1 =
[θ1[1], . . . , θ1[n]]

T represents the corresponding phase angles.
With the emergence of H-PMUs, it is now possible to

obtain synchronized phasor measurements not only for the
fundamental frequency but also for higher-order harmonics.
Specifically, an H-PMU may provide measurements for har-
monic orders i = 2, 3, . . . ,m, where the available harmonic
orders vary depending on the device and application [2,
Section 4.5]. Suppose an H-PMU provides such measurements
up to harmonic order m during an event. Then the sequence
of the harmonic phasor data can be represented as:

X2∠θ2,X3∠θ3, . . . ,Xm∠θm. (2)

In this paper, the focus is on voltage phasor magnitudes,
Xi, as they often show clearer transient signatures, while
harmonic phase angles are more noise-prone and demand
extra preprocessing. This scope enables a direct assessment
of harmonic contributions to event analysis.

While H-PMUs undoubtedly capture a richer set of mea-
surements compared to PMUs, the key question is rather about
the value of that data. Specifically, we investigate whether,
and to what extent, having harmonic phasor measurements in
(2) alongside the fundamental phasor in (1) offer additional
insight beyond what is already conveyed by the fundamental
phasor measurements for power system event analysis. Our
findings presented in the Sections III and IV, show that they
do offer non-redundant insight that improves the sensitivity
and robustness of characterizing subtle, high-frequency events
that are often missed by fundamental-only analysis.

B. Empirical Mode Decomposition

Let Xi[n] for i = 1, . . . ,m denote the time-series of voltage
phasor magnitudes for harmonic order i (with i = 1 for the
fundamental); and since the reporting resolution in our dataset
one sample per cycle, the sample index n corresponds to the
cycle number.

EMD decomposes the signal Xi[n] into a set of IMFs
i.e., {IMFk,i[n]}Kk=1 and a residual component ri[n]. The
decomposition can be expressed as:

Xi[n] =

Ki∑
k=1

IMFk,i[n] + ri[n] (3)

where Ki is the number of IMFs. Each IMFk,i satisfies two
conditions: 1) the number of zero crossings and extrema can
differ by at most one, 2) the envelope defined by its local
maxima and minima must be zero mean. In the context of
phasor magnitude signals, each IMF isolates a specific band
of temporal variations: IMF1,i captures the most rapid (i.e.,
high-frequency) transient oscillations, IMF2,i captures slightly
slower oscillations, and so on. In practice, only the first few
IMFs are typically relevant for capturing the information from
the signal [16].
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Fig. 2. First two IMFs extracted from a one-second of a gapless harmonic
phasor magnitude stream of fundamental, 3rd and 5th harmonic order.

C. Feature Extraction

In this work, we focus on the first two IMFs (k = 1, 2),
which capture the most rapid temporal variations. Accord-
ingly, we define the following signed-peak features, for each
harmonic order i:

f1i = max
n

|IMF1,i[n]| · s1i (4)

f2i = max
n

|IMF2,i[n]| · s2i (5)

where s1i and s2i ∈ {−1,+1} are the signs of IMF1,i and
IMF2,i at the cycles where they reach their absolute peaks
respectively. The extremum in (4) and (5) is computed over all
n within the analysis window. Here, we use non-overlapping
windows; a sliding window could be used for continuous
detection. We extract these features from the fundamental, 3rd,
and 5th harmonic voltage magnitudes. For instance, Fig. 2
shows the extracted IMF1,i on the left column and IMF2,i

on the right column. Here we can see the IMFs reach their
extremum at cycle number 30. Also, for instant, f11 is −0.22,
while f25 is −0.05.

III. FEATURE SENSITIVITY ANALYSIS AND ILLUSTRATIVE
APPLICATIONS USING CONTINUOUS H-PMU DATA

In this section, we use a gapless stream of real-world
harmonic voltage phasor magnitude data to assess the sen-
sitivity of the proposed EMD-based harmonic features under
steady-state and event conditions. Two examples are presented:
(i) their use in detecting short-duration transients; and (ii)
qualitatively clustering events using fundamental versus har-
monic features. The goal is not to design new detection or
clustering methods, but to show that harmonic features provide
complementary information to the fundamental phasor.
A. Feature-Based Analysis of Harmonic Phasors

We first examine event signatures in a continuous stream of
harmonic voltage magnitudes under two operating conditions:
steady state and event. The dataset comprises 16 hours of
real-world harmonic phasor measurements at a substation in
California. For analysis, we select two one-second segments:
one captured during a transient event and another from one
second prior, representing normal operation, as shown in Fig.
3. From each segment, we extract the features in (4) and (5)
for the voltage harmonic magnitudes.
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Fig. 3. Two one-second intervals of a gapless harmonic phasor magnitude
stream with a transient event at cycle 90.

TABLE I
VOLTAGE FEATURES IN (4) AND (5) OF HARMONIC PHASOR MAGNITUDE:

NORMAL VS. EVENT

Harmonic Order Non-Event (f1i, f2i) Event (f1i, f2i)
Fundamental 0.09, −0.17 0.32, −0.25

Percent change in (f1i, f2i): 259%, −47%

Percent change in phasor magnitude: 0.32%
Third −0.05, −0.02 −0.60, −0.29

Percent change in (f1i, f2i): −1093%, −1374%

Percent change in phasor magnitude: 78.91%
Fifth −0.01, −0.01 −0.11, −0.05

Percent change in (f1i, f2i): −955%, −395%

Percent change in phasor magnitude: 4.21%

Table I shows the values for the features and their relative
changes between the cases of no event and event. It also
includes the percent changes in phasor magnitude, calculated
as the percentage difference between the event cycle value
and the average over one second of no-event data. As we
can see, the fundamental phasor magnitude changes by only
0.32%, while the corresponding features changes by about
259% and 47%. This dramatic contrast highlights the feature’s
robustness even in fundamental phasor, as even subtle events
yield strong, distinguishable signals in the defined feature
space. Furthermore, not only is the difference in the fun-
damental phasor’s feature level much more distinguishable
compared to the phasor magnitude itself but, the difference
in the harmonics magnitude (i.e., 79% for 3rd and 4.2% for
5th harmonic order) is even more pronounced. This again
shows that harmonics contain insight that may not be captured
by the fundamental phasor alone, and supports the features’
sensitivity to subtle events.

This robustness is particularly valuable because event detec-
tion methods are often highly sensitive to threshold settings.
As we illustrate in the next section, by incorporating harmonic
phasors, we can enhance the robustness and accuracy of
event detection, allowing for more reliable identification and
distinction of event conditions.
B. Harmonic-Based Features for Robust Event Detection

We now exemplify that incorporating EMD-based harmonic
features can enhance event detection, especially for tran-
sient events. We compute a weighted sum of the absolute-
valued features to function as a scalar detection score. Using
magnitudes prevents cancellation between harmonics whose



4

TABLE II
EVENT DETECTION RESULTS FOR DIFFERENT WEIGHT COEFFICIENTS

(ω11, ω12, ω13, ω23, ω15, ω25) Detection Accuracy False Positives
(0.35, 0.05, 0.25, 0.05, 0.25, 0.05) 73.08% 29

(0.2, 0.1, 0.3, 0.1, 0.2, 0.1) 57.69% 9
(0.25, 0.05, 0.35, 0.05, 0.25, 0.05) 76.92% 11
(0.25, 0.05, 0.25, 0.05, 0.35, 0.05) 65.38% 12
(0.15, 0.05, 0.35, 0.05, 0.35, 0.05) 46.15% 0

(0.95, 0.05, 0.0, 0.0, 0.0, 0.0) 65.38% 67

deviations have opposite signs, allowing all disturbance con-
tributions to be reflected in the final score:

ω11 × |f11|+ ω12 × |f12|
+ ω13 × |f13|+ ω23 × |f23|
+ ω15 × |f15|+ ω25 × |f25|.

(6)

where, ωki is the weight assigned to the feature fki from
(4) and (5). An event is flagged if (6) exceeds a predefined
threshold. For this illustrative application, the threshold was set
heuristically to balance missed detections and false positives.
The intent here is not to optimize this value, but to use a
reasonable setting that demonstrates the effect of including
harmonic features. Such tuning could be pursued in a dedi-
cated event-detection study.

We tested this method using different sets of weights wki
on 16 hours of harmonic phasor data from a substation, where
26 transient events (each lasting less than a couple of cycles)
were identified using methods similar to [18]. The weight sets
shown in Table II span a spectrum of patterns: from those
dominated by the fundamental frequency, to ones emphasizing
the 3rd or 5th harmonics, and to balanced contributions across
harmonic orders. These weights are not optimized but meant
to show that adding harmonic-based features can enhance
detection. In a full event-detection study, weights could be
selected systematically to maximize accuracy and minimize
false positives. Table II also shows the detection accuracy
and false positives when using the different weights in (6).
These results suggest that emphasizing the 3rd harmonic’s
feature (i.e., fk3) improves accuracy, while over-reliance on
the fundamental phasor feature, (i.e., fk1) increases false pos-
itives. These findings show that harmonic features help identify
short-duration disturbances even with limited-resolution data
(1 sample/cycle), underscoring harmonics’ practical value for
situational awareness.

It is worth noting that waveform-based event detection,
typically sampled at 64–512 samples per cycle, indeed offers
superior temporal resolution for capturing transients. However,
it generates large volumes of data. The proposed H-PMU-
based approach may offer a reliable and resource-efficient
alternative for utilities seeking to monitor transient events.

C. Event Clustering via Fundamental vs. Harmonic Features

After analyzing feature sensitivity and demonstrating the
value of the extracted features, clustering events based on the
extracted features can be applied to group similar or recurring
patterns to enhance situational awareness. For this purpose,
a qualitative clustering of the 26 events from Section III-A
is shown in Fig. 4. In Fig. 4(a), three clusters are obtained
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Fig. 4. Clustering of the 26 transient events in the gapless harmonic magnitude
dataset using features from fundamental phasors. Colors represent clusters
formed in the fundamental phasor feature space, which do not hold when
applied to harmonic features.

from the feature space of the fundamental phasor using k-
means. Fig. 4(b) and (c) show the feature spaces of the 3rd

and 5th harmonic phasors, respectively, with the same color
labels from Fig. 4(a) applied. The key observation is that the
cluster separation visible in Fig. 4(a) is no longer present in the
harmonic feature spaces. This confirms that harmonic phasors
capture event-specific insight not present in the fundamental
alone.

IV. VALIDATING HARMONIC-BASED INSIGHTS USING
REAL-WORLD EVENT-TRIGGERED DATASET

Complementing the analysis from the previous section, we
now shift to a large-scale, real-world event-triggered dataset
to further investigate the role of harmonics. The data was
collected over one year (March 2022–February 2023) from
the secondary side of a 69 kV/12.47 kV transformer, capturing
2400 three-phase events. Each event includes voltage phasor
magnitudes of both fundamental and harmonics. The gapless
harmonic phasor magnitude dataset in Section III allowed us
to compare feature behavior under both event and non-event
conditions and to assess their event-detection sensitivity. In
contrast, the large event-triggered dataset used here contains
thousands of events but no continuous baseline data. This
make it suitable for quantitative analyses such as clustering
to evaluate the added value of 3rd and 5th harmonic order
features alongside the fundamental.

A. Clustering Analysis Using Proposed Harmonic Feature Set

To assess whether harmonics help differentiate between
events more effectively, we perform an unsupervised clustering
analysis using features derived from our analysis in both
fundamental and harmonic phasor measurements. Given that
real-world event datasets are often unlabeled, we rely on
silhouette values to evaluate clustering quality. The silhouette
score, ranging from −1 to 1, indicates how well a data point
fits within its cluster compared to others, where higher values
reflect better cohesion and separation [19].

We apply k-means clustering for k = 2 to 10 clusters to
examine performance across different grouping granularities.
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Fig. 5 illustrates the clustering performance for two scenarios:
in the first scenario, only the features of the fundamental
phasor magnitudes are used, while in the second scenario, the
features for the 3rd and 5th harmonics are also incorporated.
As shown, incorporating harmonic features consistently yields
higher silhouette values for all k. Although the gain varies with
the chosen number of clusters, the overall result is a notably
improved separation between event types.

B. Performance Comparison with Prior Work

To distinguish this study from our prior work in [10], we
compare clustering performance on the same event-triggered
dataset using the same number of four clusters. In [10],
each event was characterized using two heuristic features,
i.e., transient and steady-state signatures, yielding a silhouette
value of 0.22 using only fundamental phasors, and 0.68 when
harmonic phasors were included. In contrast, the features in
this work are extracted according to (4) and (5). In this regards,
using only features f11 and f21 from the fundamental phasor,
the silhouette score improves to 0.28. When harmonic-based
features f12, f22, f13, and f23 are also incorporated, the
score rises significantly to 0.91. This highlights the improved
expressiveness of the proposed EMD-based feature set and its
effectiveness in revealing structure in real-world event data.

V. CONCLUSIONS

This paper introduced a data-driven framework for en-
hancing power system event analysis using harmonic phasor
measurements. By applying EMD to the voltage phasor mag-
nitude streams, we extracted features from the first two IMFs
that captured high-frequency transients more effectively than
traditional fundamental-only analysis. Our results, based on
two distinct sets of real-world H-PMU data, confirm that har-
monic phasors at the 3rd and 5th orders offer non-redundant
and insightful information not captured by the fundamen-
tal component alone. Including harmonic features improved
event detection accuracy and enhanced clustering quality, as
quantified by silhouette scores. These findings highlight a
practical opportunity: utilities can leverage existing H-PMU
infrastructure not only for harmonic distortion monitoring, but
also for improved situational awareness and faster response to
subtle disturbances.
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