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Abstract—A new state estimation method is proposed for
power distribution networks that suffer from low-observability.
The proposed distribution system state estimation (DSSE) method
leverages the high reporting rate of only a small number of
distribution-level phasor measurement units (D-PMUs), a.k.a.,
micro-PMUs, to unmask and characterize sparsity among the
state variables. The DSSE problem is formulated over differential
synchrophasors as an adaptive group sparse recovery problem
to track the changes that are made in the states of the system
due to the events that are captured in D-PMU measurements.
The formulated DSSE is further augmented to use adequate
side information on the support of the vector of unknowns that
is obtained from the outcome of an event-zone identification
analysis prior to solving the DSSE problem. The sufficient
conditions for the uniqueness of the obtained sparse recovery
solution are derived with respect to the available side information.
Moreover, a calibration mechanism is developed to address
drifting in the tracking state estimation to enhance robustness.

Index Terms—Distribution system state estimation, low-
observability, sparsity, adaptive group sparse signal recovery, dif-
ferential synchrophasors, distribution synchrophasors, D-PMU.

I. INTRODUCTION

A. Background and Motivation

Distribution system state estimation (DSSE) is an important
monitoring tool in power distribution system operation [1].
DSSE methods may use different types of available measure-
ments in order to recover the state variables of the system,
i.e., the nodal voltage phasors and branch current phasors [2].

The performance of DSSE is directly affected by the ex-
tent of observability in the power distribution system, which
depends on the type, number, and location of sensors [3].
In practice, power distribution feeders often suffer from low-
observability; because the number of sensors is much less than
the number of state variables. The installation of smart meters
and advanced metering infrastructure (AMI) have improved
observability in power distribution networks. However, smart
meters report measurements only once every 15 minutes to
1 hour [4]. These low reporting rates are not sufficient to
capture the high dynamic of power distribution systems, which
are caused by the growing penetration of distributed energy
resources (DERs), the emergence of new types of loads, and
the development of demand response programs [5]–[7].

The above issue can be resolved with the advent of the
state-of-the-art distribution-level phasor measurement units
(D-PMUs), a.k.a., micro-PMUs1, which report phasor mea-
surements once every 8 to 100 milliseconds [9], [10]. D-PMUs
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1Micro-PMU is a trademark of PSL [8]. Therefore, we use the term D-
PMUs; since our study is not specific to any particular commercial technology.

have been used in recent years at power distribution feeders
for various tasks, such as to achieve situational awareness [9]
and to support optimal grid reconfiguration [11].

D-PMUs can also be used in DSSE algorithms [10]. How-
ever, to resolve the low-observability issue to run a conven-
tional DSSE, we need to install hundreds of D-PMUs on each
feeder. This is cost prohibitive due to, not only the high cost of
sensors, but also the cost of the communications infrastructure.

Therefore, finding a suitable solution to mitigate the low-
observability in DSSE is an important practical challenge.

B. Related Works

The common approach to compensate for low-observability
in DSSE is to use pseudo-measurements. Pseudo-
measurements are often constructed by using historical
load data or real-time AMI data [12]. However, due to
the uncertainty and the variability in distribution systems,
pseudo-measurements are typically not accurate [13]. Lack
of time synchronization is another factor that can negatively
impact the accuracy of pseudo-measurements [14]. Inaccurate
pseudo-measurements can create ill-conditioned mathematical
optimization in the DSSE problem formulation; which may
prevent it from converging to a reliable solution [13].

There have been efforts to make pseudo-measurements more
robust against system uncertainties, through either statistical
approaches or machine learning methods. In [15], a Gaus-
sian mixture model is used for the load probability density
function for inclusion in a conventional weighted least square
(WLS)-DSSE. In [16], a two-stage data clustering method is
used to construct the pseudo-measurements. In [17], artificial
neural networks are trained to generate pseudo-measurements
from limited measurements. However, statistical methods still
require reliable statistical models to be accurate. As for the
machine learning methods, they require large sets of reliable
training data to generate accurate pseudo-measurements. The
authors in [18] proposed a new data-driven DSSE method
based on training a deep neural network model to solve the
DSSE problem without adding pseudo-measurements; instead
they added physical information of the underlying power dis-
tribution feeder, such as the parameters of the distribution lines
to further increase the accuracy. While this method is very
promising, as a data-driven method it naturally requires access
a considerably large data set in order to train the machine
learning model. Furthermore, as the size of network grows, it
may become difficult to cover all the possible scenarios in the
underlying physical system in the training process.

A different approach that has emerged recently is to ad-
dress low-observability through compressed sensing. In this
approach, instead of trying to make the low-observable DSSE
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TABLE I
COMPARISON AMONG DSSE METHODS WHICH USE COMPRESSED SENSING

Reference Grounds for Sparsity State Variables Solution Approach Tracking Analysis on Optimality

[19] Correlated structure of
nodal voltages Voltage `1 norm minimization

solved by Newton-Raphson No Yes

[20] Neglecting load currents
vs. the substation current Current Lasso minimization No No

[21] Missing measurements Voltage Rank minimization No No

[22] Temporal correlation of
state variables Voltage Trace norm minimization No No

[23] Correlated structure of
nodal voltage Voltages Survey which includes

several methods No No

[25] Differential
synchrophasors

Voltage
+ Current

Lasso minimization
solved by ADMM No No

This paper Grouped differential
synchrophasors

Voltage
+ Current

Group Lasso minimization
augmented by partial side

information solved by ADMM
Yes Yes

problem fully-observable through the above aforementioned
methods, the goal is to rather extract and leverage the potential
sparsity features in the DSSE problem so as to solve the
original DSSE problem while it remains low-observable. In
this regard, the authors in [19] used the correlation among
nodal voltages to compress the measurements; and then they
used techniques from compressed sensing to solve the DSSE
problem. In [20], the authors developed a current-based sparse
DSSE method that is built on the assumption that the load
currents are negligible in comparison with the injected current
from the substation. This consideration results in making the
problem sparse. In [21], a method based on matrix completion
is developed to estimate the missing values in the DSSE
problem, i.e., to estimate those state variables that do not have
direct measurements. In [22], a block tensor completion is
proposed to estimate the nodal voltages. In this method, the
correlations among the state variables are used in a tensor
norm minimization problem; which is a generalization of the
matrix completion method. Finally, in [23], the authors used
the correlation among the nodal voltages, and they accordingly
presented a comparison among the performance of four dif-
ferent compressed sensing techniques, where the robustness of
sparse recovery against bad data is also discussed.

C. Summary of Technical Contributions
In this paper, we propose a novel sparse tracking linear state

estimation method for three-phase power distribution feeders
with low-observability, where we take advantage of the high
reporting rates of a small number of D-PMUs to turn the DSSE
problem into a group sparse signal recovery problem. Our
approach is fundamentally different from the previous studies
which used compressed sensing; because we address low-
observability in the context of differential synchrophasors, c.f.
[24]. Unlike the studies that use the correlation among nodal
voltages to compress the measurements and extract the sparsity
features for a single time slot, in this paper, we propose a novel
tracking DSSE method over sequential time slots to capture
and track the changes that are made in the system due to
various events. To the best of our knowledge, this paper is
the first study to use differential phasors in a DSSE problem.
Moreover, the way that we define sparsity in our model and
the way that we formulate the problem are unique and novel.

Compared to the preliminary conference version of this
work in [25], the current journal version has several new and
important contributions; including new ideas and new results.
First, the method in this paper is significantly more rigorous to
address the grounds for sparsity. In particular, it systematically
defines four distinct groups of state variables to characterize
sparsity under different operating conditions. On the contrary,
the model in [25] was a preliminary model; and it was meant to
only introduce the basic idea in sparsity. Second, in this paper,
we extract and utilize side information prior to solving the
DSSE problem in order to augment the sparse signal recovery
method. This augmentation is a key reason for the significant
improvement in the performance in this paper. Third, the
preliminary study in [25] does not address the conditions for
optimality and uniqueness, drift identification, and calibration.
As we will see in our case studies, the proposed method in
this paper significantly outperforms the preliminary method in
[25].

A brief comparison between the new method that is pro-
posed in this paper versus the comparable methods that we
discussed above is provided in Table I.

The main contributions of this paper are as follows:
1) Developing a novel sparse tracking DSSE method to

leverage the measurements from only a small number of D-
PMUs in a low-observable three-phase distribution feeder,

2) Establishing the grounds for sparsity in the DSSE prob-
lem in differential mode based on the engineering character-
istics of power distribution systems as well as analyzing the
events that occur on the distribution feeders and are captured
by D-PMUs. We introduce four types of state variables in the
context of group sparsity, thus solving the DSSE problem as
an adaptive group sparse signal recovery problem,

3) Developing an event zone identification method that is
used before running the sparse tracking DSSE. It provides
the DSSE problem formulation with side information on the
support of the sparse vector of the four types of state variables,

4) Deriving sufficient conditions for the uniqueness of the
DSSE solution that is obtained from the sparse recovery
problem with respect to the constructed side information,

5) Developing a mechanism to identify potential drifting,
caused by accumulative estimation error of differential syn-
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chrophasors; thus to calibrate the estimated voltage phasors.

II. SPARSE LINEAR DSSE PROBLEM
FORMULATION IN DIFFERENTIAL MODE

Consider a multi-phase power distribution network that is
represented by a graph G := (N ,L), where N denotes the
set of nodes and L ⊆ N × N denotes the set of distribution
lines. Let ϕ = {A,B,C} denote the set of phases. Suppose
Vt denotes the vector of all voltage phasors at time slot t,
assuming that they are represented in the rectangular form:

Vt :=
[
R(vtn,φ) I(vtn,φ)

]>
, ∀n ∈ N , ∀φ ∈ ϕ, (1)

where R(.) denotes the real part of the phasor, I(.) denotes
the imaginary part of the phasor, and vtn,φ denotes the voltage
phasor at bus n on phase φ at time slot t. The length of Vt

is |N |. In a similar setting, It denotes the vector of all the
current phasors at time slot t:

It :=
[
R(itkl,φ) I(itkl,φ)

]>
, ∀kl ∈ L, ∀φ ∈ ϕ, (2)

where itkl,φ denotes the current phasor at line kl on phase φ
at time slot t. The length of It is |L|. Since we study radial
distribution feeders, we have |L| = |N | − 1.

A. DSSE Problem Under Low-Observability Conditions

Let xt be a N × 1 vector which contains all state variables
of the power distribution system at time interval t. Throughout
this paper, we assume that the state variables include the vector
of voltage phasors for all nodes, i.e., Vt, and the vector of
current phasors for all lines, i.e., It. That is,

xt :=
[

(Vt)> (It)>
]>
, (3)

where we have N = |N |+ |L|.
Also, let yt denote the vector of all available measurements.

At each time slot t, we assume that the measurements come
from only D-PMUs. Since our focus is on a challenging sce-
nario where the distribution network is not fully-observable,
we assume that D-PMUs are installed at only a few nodes. For
example, one D-PMU can be installed at the substation; and
one or at most two D-PMUs can be installed on each lateral,
as we will see in the case studies in Section IV. D-PMUs
measure voltage phasors on three-phases at nodes Nm ⊆ N
and current phasors on three-phases at lines Lm ⊆ L.

D-PMUs provide two types of measurements, voltage pha-
sors and current phasors. Accordingly, there are two types
of equations that we need to include in the state estimation
problem. First, there are equations that map the state variables
to the voltage phasor measurements through identity mapping
for each node n ∈ Nm:

R(vtn,φ) =
1

2
e>n,φ(vtn + vtn), (4)

I(vtn,φ) =
1

2j
e>n,φ(vtn − vtn), (5)

where en,φ is the φ-th canonical basis vector and vtn is the
vector of voltage phasors at all phases at bus n at time slot
t in complex form. Second, there are equations which map

the state variables to the current measurements for each line
segment kl ∈ Lm through the KCL equations:

R(itkl,φ) =
1

2
e>kl,φ(Ykl(v

t
k − vtl ) + Y kl(vtk − vtl )), (6)

I(itkl,φ) =
1

2j
e>kl,φ(Ykl(v

t
k − vtl )− Y kl(vtk − vtl )), (7)

where Ykl is the admittance of line segment kl.
For the rest of this paper, we represent the equations in (4)-

(7) in a compact form through measurement matrix Ψ. Thus,
we have:

yt = Ψxt. (8)

Matrix Ψ represents |Nm| + |Lm| equations. Therefore, its
size is (|Nm|+ |Lm|)×N .

Under the low-observability circumstances, we do not have
enough measurements to solve the system of linear equations
in (8). Thus, one can use the circuit laws to introduce addi-
tional equations, based on the so-called virtual measurements,
to capture the relationships among the state variables at the line
segments that are not equipped with sensors, i.e., ∀kl /∈ Lm:

0 =
1

2
e>kl,φ(Ykl(v

t
k − vtl ) + Y kl(vtk − vtl ))−R(itkl,φ), (9)

0 =
1

2j
e>kl,φ(Ykl(v

t
k − vtl )− Y kl(vtk − vtl ))− I(itkl,φ). (10)

Again, let us represent the equations in (9) and (10) in a
compact form as:

0 = Φxt. (11)

Matrix Φ represents |L| − |Lm| equations. Therefore, its size
is (|L| − |Lm|)×N .

While the system of equations in (8) maps the unknown
phasors to the known phasors, the system of equations in (11)
relates the unknown phasors to other unknown phasors.

Remark 1: In a standard DSSE problem, if a bus or a line
segment is already equipped with a sensor, then we do not need
to consider the corresponding virtual measurement anymore.
Because it does not provide any new independent equation.
However, in a low-observable network, virtual measurements
can sometimes provide new independent equations.

Now, let us concatenate the system of equations in (8) and
(11) to obtain:

zt = Hxt (12)

where

H :=
[

Ψ Φ
]>
, zt :=

[
yt 0

]>
. (13)

Matrix H is M×N , where M denote the rank of matrix H,
i.e., the number of independent rows in stacking of matrices
Ψ and Φ. For the rest of this paper, we assume that matrix
H is full-row-rank, i.e., it includes only the independent rows
in Ψ and Φ. The DSSE problem under the low-observability
condition is the problem of solving (12) when

M < N. (14)

In that case, the system of equations in (12) is undetermined
and its solution is unspecified. The set of solutions are

H>(HH>)−1zt + null(H), (15)

where null(·) denotes the null space of matrix H. Therefore,
the DSSE problem cannot be solved in its standard form.
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B. DSSE Problem in Differential Mode

Let us consider the same overall setting as in Section II-A,
but let us represent all the D-PMU measurements and all the
state variables in a differential mode as

∆zt := zt − zt−1, (16)

∆xt := xt − xt−1. (17)

We can write the relationship in (12) in differential mode as

∆zt = H∆xt. (18)

If (14) holds, then the system is still not fully-observable
even in differential mode. Thus, in principle, we still cannot
find a unique solution for the equations in (18). However,
unlike in (12), we can solve the differential form of the DSSE
problem in (18) by posing it as a sparse signal recovery
problem [26]. The key is to show that the vector of state
variables in the DSSE problem in differential mode, i.e., ∆xt,
is a sparse vector. Next, we explain the grounds for sparsity.

C. Grounds for Sparsity

In this section, we examine the engineering characteristics
in power distribution systems and make the case that the
DSSE problem in differential mode can be formulated as a
sparse signal recovery problem. The fundamental observation
throughout this section is as follows; given the short time
interval in D-PMU measurements, the changes in the states
of the system from time t − 1 to time t are caused by only
one major change in the components of the power distribution
system. We refer to these major changes as events, such as
load switching, a sudden change in a DER output, etc. [24].

When an event takes place on a distribution feeder, it may
impact a subset (or all) of nodal voltages and branch currents.
The impact of an event on the network can be studied by
considering compensation theorem from circuit theory [27];
based on which we can replace the circuit element that is the
source cause of an event with a current source that injects
the same level of current at the location of the event. The
advantage of using compensation theorem is that it provides
us with a direct relationship and also an equivalent circuit
model to study how an event may change the state variables.

1) Partitioned Network Representation at an Event: Con-
sider the power distribution network in Fig. 1(a). Suppose a
major load switching event occurs at bus 29 during the short
time-period between time t− 1 and time t. Consider the path
between the substation and the event bus; as marked in red.
Let us represent this path with T := (V, E), where V is the
set of buses and E is the set of line segments on this path.

Next, let us partition the rest of the distribution system into
four subgraphs, denoted by (Vi, Ei), ∀i ∈ {1, · · · , 4}. These
partitions are marked in Fig. 1(a). Note that, together with path
(V, E), these partitions cover the entire distribution system:

4⋃
i=1

Vi = N\V,
4⋃
i=1

Ei = L\E . (19)

In our analysis, it is critical to figure out under what
circumstances the changes in voltage or current are non-zero or
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Fig. 1. An example to illustrate sparsity: (a) An instance of the IEEE 33-node
test system right after a major load change at node 29; (b) The changes in
line currents, i.e., ∆I; (c) The changes in bus voltages, i.e., ∆V .

(approximately) zero, i.e., they lay outside or inside the zero
approximation region; as marked with the yellow ribbon in
Figs. 1(b) and (c). Note that, a key feature of sparse signal
recovery is its capability to manage the width of the zero
approximation region as a trade-off against estimation error.

2) Impact of an Event on Line Current: Following the
compensation theorem [27], suppose we replace the event
on node 29 in Fig. 1(a) by an equivalent current source.
If we write the Kirchhoff’s current law at all nodes in V ,
we can show that the change in the current for all the line
segments in set E is equal to the amount of current that is
injected by a current source, in the equivalent circuit of the
power distribution system that is constructed by applying the
compensation theorem; because the change in the injected
current to all the nodes is zero; except for the node where
the event occurs. Moreover, if we write the same system of
equations for all the nodes in N\V , we can show that the
amount of change in the current for all the line segments in
set L\E is zero; otherwise it means that there is a non-zero
change in the injected current to one of the nodes outside
the red path, i.e., there is another event somewhere else on
the distribution feeder which is in contradiction to our initial
assumption that there is only one event at the current time.

In summary, once an event occurs somewhere on a power
distribution feeder, the line segments on the red path may
experience non-zero changes; while the line segments outside
the red path do not experience any change in their current.

3) Impact of an Event on Nodal Voltage: When an event
takes place, the nodal voltages on the nodes along the red
path are directly affected. This is because of the changes in
the current of the line segments that are along the red path.
However, the voltages on the nodes outside the red path may or
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may not change drastically depending on several factors, such
as line parameters, network topology, and most importantly,
how the event changes voltage across the nodes that are located
on the boundaries of the red path and other partitions. To
elaborate, suppose s is a node on the red path that has a
neighboring node r outside the red path. For example s could
be bus 2, 3, 6, or 29 in Fig. 1 (a). By writing down the Eq.
(6) for line segment sr that lays outside the red path, one can
show that the following equality holds:

Rsr
Xsr

=
R(∆vts)−R(∆vtr)

I(∆vts)− I(∆vtr)
, (20)

where Rsr and Xsr are the resistance and reactance of line sr,
respectively. From (20), whether or not the differential voltage
phasors for the nodes outside the red path, i.e., ∆vtr, is small
enough to be replaced by zero; depends on the value of other
parameters in (20). However, in either case, the same zero/non-
zero condition would hold also for any other node in the same
partition. As a result, there exists a group sparsity among the
nodal voltages in differential mode for the buses that are in
the same partition Vi, ∀i ∈ {1, · · · , 4} outside the red path.
For example, in Fig. 1(c), the parameters in (20) are such that
the differential voltage phasors for the nodes in partition V1

are all non-zero and the differential voltage phasors for the
nodes in partition V2 are all approximately zero.

4) Fundamental Conclusions: We can combine the analysis
in Sections II.C.1, II.C.2, and II.C.3 to conclude the following
corollary; which builds a foundation for our analysis:

Corollary 1: At each time slot t, we can divide the state
variables in differential mode into four types:
1) Differential current phasors known to be zero: For all

the line segments in set L\E , ∆I would be zero.
2) Differential current phasors known to be non-zero: For

all the line segments in set E , ∆I would be non-zero.
3) Grouped differential voltage phasors: For all buses in

each of the sets Vi, ∀i ∈ {1, · · · , 4}, either ∆V would be
(approximately) zero or non-zero for all such buses.

4) Differential voltage phasors known to be non-zero: For
all buses in set V , ∆V would be non-zero. �

The proof of Corollary 1 is provided in Appendix A.
Remark 2: The discussion on the grounds for sparsity in

this paper are made based on the assumption that only one
major event happens across the distribution feeder during each
time slot of the proposed DSSE process. This is a reasonable
assumption in practice; as it is observed in the previous studies
that have looked at real-world D-PMU data, such as in [?],
[24], [28]–[30]. However, for the occasional scenarios, where
two or more events occur simultaneously during the same
100 msec time slot, one may need to modify the grounds for
sparsity that we discussed in Section II-C. Addressing such
cases could be the subject of an extension of this work in the
future.

Remark 3: The grounds for sparsity that we discussed above
are developed based on the assumption that the distribution
feeder has a radial topology; which is very common in prac-
tice. The above discussions are not applicable to transmission
systems, where the network has a meshed topology. Therefore,

the analysis in this paper is specific to the DSSE; because it
takes advantage of the features of power distribution systems.

Note that, in principle, we do not know the actual type for
any of the above state variables in advance; unless the location
(i.e., the bus number) of the event is known to us.

D. Event Zone Identification

There are recent methods that use D-PMU measurements to
identify the location of events on power distribution systems,
e.g., see [24]. If such methods are truly accurate, then we can
use them to identify exactly which state variables belong to
each of the four groups that we introduced in Section II-C.

However, in practice, event location identification is not
exact. This is particularly the case in low-observable networks,
where the number of D-PMUs may not be enough to identify
the exact location of all events. Interestingly, our approach
here does not require knowing the exact location of the event.

Suppose we do not know the exact location of the event
at bus 29 in Fig. 1(a), but we do know that the event occurs
somewhere on the lateral that includes bus 26 to bus 33. In
other words, suppose we only know the zone of the event. In
that case, all the discussions in Section II-C on the features of
voltage and current differential phasors for all nodes and line
segments in (V1, E1) and (V2, E2) and (V3, E3) would still be
valid. Moreover, all the previous analysis for the nodes and
line segments on the path between the substation and the event
zone up to node 29 would also still be valid.

The difference between knowing the exact event bus versus
only knowing the zone of the event would affect our analysis
only with respect to the differential voltage and current phasors
for the nodes and line segments in (V4, E4). Given that we do
not know the exact location of the event at bus 29, we can
simply merge set (V4, E4) to set (V, E). That is, we simply do
not include set (V4, E4) in our sparsity assumptions; everything
else will remain the same as in Section II-C.

As for how to obtain the event zone, we propose an
extension of the event location identification method in [24].
First, we split the distribution feeder into several mutually
exclusive zones and represent each zone by an index c. One
simple way to form the zones is to consider all the nodes on
the same lateral as one zone, provided that we have installed at
least one D-PMU on each lateral. Then, we can simply replace
Eq. (12) in [24] with the following:

c? = arg min
c

1

nc

∥∥∆Vc,f −∆Vc,b
∥∥

2
, (21)

where nc denotes the number of buses in zone c; ∆Vc,f is
the vector of estimated differential voltage phasors from the
forward sweep in zone c; and ∆Vc,b is the same vector from
the backward sweep. For more details please refer to [24].

E. DSSE as a Sparse Signal Recovery Problem

We now go back to the DSSE problem in differential mode
based on the system of linear equations in (18). Based on
grounds for sparsity that we established in Section II-C, we
can now formulate this problem in a form that can be solved
using techniques in sparse signal recovery.
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To recover a sparse solution of the system of equations in
(18), we can solve the following basis pursuit problem which
is a well-known convex relaxation of the original intractable
`0-norm minimization problem in sparse recovery [26]:

min
∆xt

∥∥∆xt
∥∥

1
s.t. ∆zt = H∆xt, (22)

where ‖ · ‖1 denotes the `1-norm. Next, we will modify (22)
to incorporate the following “side information” so that we can
solve the above optimization problem: 1) the four groups of
state variables that we introduced in Section II-C; and 2) the
zone of the event that we identified in Section II-D.

III. SOLUTION METHOD, UNIQUENESS,
AND CALIBRATION

A. Incorporating Side Information

To incorporate the side information that we listed in Section
II-D, we modify (22) into an adaptive group-sparse recovery
problem [31]. Recall from Section II-C that we divided all
the state variables in differential mode into four types. Let
us refer to them as Type 1, Type 2, Type 3, and Type 4.
Accordingly, suppose vector ∆xt is partitioned into P groups.
Three partitions are formed based on the state variables of
Type 1, Type 2, and Type 4, respectively. For the state variables
of Type 3, the number of partitions is equal to the number of
sets Vi, as we defined in Section II-C. As we discussed in
Section II-C, the state variables in each partition have similar
tendency towards being (approximately) zero or non-zero.

Let us represent the state variables in each partition p by
∆xtp, where p = 1, . . . , P . Let wp denote the adaptive weight
for partition p. Set wp = 1 for Type 1 state variables because
they can be replaced by zero. Set wp = 0 for Type 2 and Type
4 state variables; since they are expected to be non-zero. Set
wp for Type 3 state variables to be a number between 0 and 1
based on their distribution of historical zero/non-zero values.

To incorporate the weights, we reformulate the basis pursuit
problem (22) as the following weighted `1-norm minimization:

min
∆xt

P∑
p=1

wp‖∆xtp‖1 s.t. ∆zt =

P∑
p=1

Hp∆xtp, (23)

where Hp denotes a submatrix of H with only the columns
associated with the state variables in partition p.

It is more common to solve the related unconstrained
relaxation of (23), a.k.a., weighted Lasso problem [32] as

min
∆xt

1

2
‖∆zt −

P∑
p=1

Hp∆xtp‖22 + λ

P∑
p=1

wp‖∆xtp‖1, (24)

where λ > 0 is a regularization parameter which controls the
trade-off between the estimation error and the sparsity level of
the unknown vector ∆xt. By changing λ we change the width
of the yellow ribbon in Figs. 1(b) and (c). The first term in (24)
is the squared error loss and the second term is the weighted
`1-norm penalty. If λ is such that λwp > ‖H>p ∆zt‖∞, then
we force the corresponding estimated ∆xtp to be zero.

B. ADMM Solution

We use the alternating direction method of multipliers
(ADMM) [33] to solve problem (24). We obtain the augmented
Lagrangian for (24), under constraints ∆xtp − µp = 0, as

Lρ(∆xt,µ,u) =
1

2
‖∆zt −

P∑
p=1

Hp∆xtp‖22 + λ

P∑
p=1

wp‖µp‖1

+ ρ〈u,∆xt − µ〉+
ρ

2
‖

P∑
p=1

(∆xtp − µp)‖22,

(25)
where ∆xt and µ are the primal variables, u is the dual
variable, and ρ > 0 is a Lagrangian parameter.

The ADMM method alternately updates all the primal and
dual variables at every iteration as follows

∆xt = arg min
∆xt

Lρ(∆xt, µ̃, ũ) (26)

µ = arg min
µ

Lρ(∆xt,µ, ũ) (27)

u = ũ + (∆xt − µ), (28)

where (∆x̃, µ̃, ũ) and (∆x,µ,u) denote the estimates from
the previous and the current iteration, respectively. The solu-
tions to (26) and (27) can be obtained by setting the derivatives
of (25) w.r.t. ∆xt and µt, respectively. The resulting closed
form solutions for the updates can be described as

∆xt = (H>H + ρI)−1(H>∆zt + ρ(µ̃− ũ)) (29)
µp = Swpλ/ρ(∆xtp + ũp) ∀p ∈ P (30)

u = ũ + (∆xt − µ) (31)

where Swpλ/ρ(·) is a soft-thresholding operator [34]; and µp,
∆xtp, and ũp forms the p-th partition of the respective vectors.

Importantly, the convergence of the ADMM is guaranteed
for the above sparse DSSE problem; because the objective
function in the proposed problem formulation is the sum of
several convex functions with linear constraints, c.f [33].

C. Uniqueness of the Sparse DSSE Solution

The conditions for the uniqueness of the solution in a sparse
signal recovery problem typically depend on the structure of
the measurement matrix H, the number of non-zero entries,
and the support and the sign sequence of the non-zero entries.
Thus, to check the uniqueness of the sparse DSSE solution,
we extend the dual certificate-based method in [35], where we
incorporate the side information by assigning different values
to wp for different partitions p = 1, . . . , P .

Suppose the true sparse signal ∆x in (18) has non-zero
entries on an index set Γ. Let us denote ∆xΓ as the non-zero
entries, sΓ = sign(∆xΓ), and HΓ as a matrix that consists
of the columns in H that correspond to the indices in Γ. We
can show that ∆x is also the unique solution of the `1-norm
minimization problem in (24) using the following theorem.

Theorem 1: A vector ∆x that satisfies the equations in (18)
with support Γ and sign sequence sΓ can be recovered from
the unique optimal point of the optimization problem in (24)
if the following conditions are satisfied:
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1. Submatrix HΓ is full-rank.
2. For all γ /∈ Γ, the following inequality holds:

|H>γ HΓ(H>Γ HΓ)−1WΓsΓ| < wγ . (32)

3. λ and W are selected so that

sign(∆xΓ − λ(H>Γ HΓ)−1WΓsΓ) = sΓ. (33)

Hγ denotes the column of H with index γ, WΓ is a diag-
onal matrix whose diagonal entries are wp for the partitions
associated with the indices in Γ, and wγ is the corresponding
weight of the partition that γ belongs to., �

The proof of Theorem 1 is provided in Appendix B. The
conditions in (32) relax the tightness of similar conditions
discussed in [35] for standard Lasso problem in which all
weights wγ are equal. From (32), if a wγ is very large, then
the corresponding condition becomes irrelevant and does not
affect the uniqueness of the solution. This condition supports
our claims that incorporating the side information can help us
recover the correct solution with provable guarantees.

D. Computational Complexity

The main computational complexity for solving the Lasso
problem in (24) comes from the complexity of solving the
least-squares optimization problem in (26). This optimization
problem is solved once at every iteration. The solution for
this problem is provided in (29). We can pre-calculate and
store the inverse matrix (H>H + ρI)−1 and use it in every
iteration, for as long as the topological configuration of our
network remains unchanged. The typical computational cost
for solving such least-square optimization problem for a dense
matrix H with size M ×N is O(MN +N2). However, since
H in our problem is sparse, the cost of computing is reduced to
O(kM+N2), where k is the number of nonzero entries in each
row of matrix H. For the base case scenario in our case studies
where we have only six D-PMUs in the system, we have:
k ≤ 8. As for the number of iterations in our case studies, in
the worst case scenario, we approximately use a maximum of
1000 iterations in the process of solving the Lasso problem.

As for the WLS-DSSE method with linear equations, the
cost of computation per iteration is O(MN2+N3). Therefore,
our proposed method is computationally less expensive than
the conventional WLS-DSSE method. We will further discuss
the computation time in the case studies in Section IV-A.

E. Sparse Tracking Linear DSSE

The solution for ∆xt tells us whether and how the states
of the power distribution system change during each measure-
ment interval. This by itself is an important result. However, to
make the DSSE results more useful to the utility operator, we
need to convert the results from the differential mode back to
the standard mode to obtain the standard state variables. This
can be done in the context of tracking state estimation.

Similar to the real-world power distribution networks, we
assume that there are other legacy meters available in addition
to the D-PMUs, such as through a SCADA system and/or an
AMI. Regardless of how the legacy meters are installed at the

primary side and/or the secondary side of the network, they
are assumed to be sufficient to achieve full-observability at the
moment when such legacy measurements become available.
However, importantly, as we discussed in Section I-A, the low
reporting rate of the legacy meters requires the power system
operator to operate the power distribution system without
updating the state variables for 30 to 60 minutes, i.e., until
the next readings of the legacy meters become available [7],
[18]. Accordingly, our goal in this paper is to take advantage
of the high reporting rate of the D-PMUs to continue updating
the state variables; yet addressing the low-observability in D-
PMU measurements, i.e., the fact that in practice only a few
D-PMUs can be available on each power distribution feeder.

In this setting, the measurements from legacy meters are
assumed to be used in order to update the initial values for
the tracking state estimation problem at time t = 0. The
details on how such initial values are obtained by using the
measurements from the legacy meters are not of concern in
this study; because they are beyond the scope of this paper.
For example, one can use any of the existing DSSE methods
in the literature, such as WLS-DSSE [36], or use power flow
analysis [3], or any other method to obtain the initial values for
the state variables from the low-reporting-rate legacy meters.

Once the initial values are provided by the measurements
from the legacy meters, we start the use of the proposed DSSE
method to continue updating the state variables without access
to any new measurement from the legacy meters. In this regard,
we keep solving the low-observable DSSE problem in (18)
once every 100 milliseconds solely based on the measurements
from only a few D-PMUs for the next 30 to 60 minutes. In
this 30 to 60 minutes period, we keep adding the estimated
values that are obtained in differential mode to the initial
values in order to obtain the nodal voltage phasors for the
whole network at each iteration:

Vt = V0 +

t−1∑
τ=1

∆Vτ (34)

where V0 denotes the vector of the initial voltage phasors that
is obtained at time t = 0 by using the measurements from the
legacy low-reporting-rate meters in the system. Note that, if
needed, the time-step for the proposed tracking DSSE can be
adjusted with respect to the time frame in which the dynamics
in the power distribution system may change due to the events.

F. Drift Identification and Calibration

1) Drift Identification: By solving the adaptive group Lasso
in (24), we minimize the error in estimating the differential
voltage phasors at each time slot. However, as time goes by,
we inevitably see accumulative error in estimating the voltage
phasors in (34). Such accumulative error can ultimately result
in a considerable drift in the DSSE results from the true values.

In order to identify a possible drifting in the state estimation
results, we check the following condition:

‖zt −Hxt‖22 ≥ β, (35)

where β is a threshold parameter. If condition (35) holds at
any time t, then we trigger a calibration mechanism.
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TABLE II
COMPARING DIFFERENT DSSE METHODS IN ESTIMATING VOLTAGE PHASORS AND ESTIMATING DIFFERENTIAL VOLTAGE PHASORS

Method Average MAPE STD of MAPE Average MAE ×10−3 STD of MAE ×10−3

No Calibration Calibration No Calibration Calibration
The Proposed Sparse

Tracking DSSE 4.51% 4.66 8.2 6.1 5.2 4.7

The DSSE
Method in [25] 12.04% 12.74 9.1 - 4.6 -

The Conventional
WLS-DSSE as in [36] 19.57% 9.65 28.2 - 17.4 -

2) Calibration: At each time interval t, D-PMUs can serve
as reference to obtain voltage at the few specific locations
where D-PMUs are installed. Accordingly, whenever calibra-
tion is needed, we use the available D-PMU measurements in
each partition p as the reference point to calibrate the voltage
estimation for all the nodes within the same partition through:

Vt
p,cal := Vt

p × ζp, (36)

where ζp is the ratio of the voltage phasor measured by the
D-PMU to the voltage phasor estimated at the same bus in
partition p. The ratio is calculated separately for the real part
and the imaginary part of the voltage phasor.

IV. CASE STUDIES

The case studies are done by simulating the IEEE 33-bus
distribution test network [37]. Tracking DSSE is performed
upon receiving the D-PMU measurements at 100 milliseconds
intervals during the one hour period between two consecutive
AMI readings. The legacy meters’ data provide the initial
states for the proposed tracking DSSE. At most, one event
is assumed to occur within each time slot between the two
readings of D-PMUs. Each event can be a change in ac-
tive/reactive power load, distributed generation, or capacitor
bank switching; and it is assumed to be within ±50% of its
value at the previous time slot. The loads are assumed to be
constant-power loads.

Unless we state otherwise, we consider five zones in the
network. The longer lateral is divided into two zones. Each
shorter lateral is one zone. One D-PMU is placed at the
substation; and five D-PMUs are placed at the end of each
zone, i.e. at buses 9, 18, 22, 25, and 33. Thus, the ratio of the
available measurements to the unknowns is 12/65 = 0.185.
Error in D-PMU measurements have zero mean and standard
deviation of σV = 0.1% for voltage measurements and
σI = 1% for current measurements. A total of 120,000 random
scenarios are generated in MATPOWER in MATLAB R2018b.

A. Performance Comparison

Performance comparison is done with two other methods.
The first one is the conventional WLS-DSSE method [36]. For
the WLS-DSSE method, we inevitably need to add pseudo-
measurements to make the network fully-observable; other-
wise the WLS-DSSE method cannot solve the undetermined
system of equations for the DSSE problem. Thus, to have a
consistent and fair comparison with our proposed method, we
used the initial measurements from the legacy meters at time

t = 0 as pseudo-measurement for the rest of time slots. Of
course, the pseudo-measurements that come from the legacy
meters will be updated at the next interval when new mea-
surements become available, i.e., after 30 to 60 minutes. The
second one is our previous method in [25]. Since differential
synchrophasors are small, we use mean absolute percentage
error (MAPE) to assess the estimation of differential phasors:

MAPE =
1

2N

N∑
i=1

( ∣∣∣∣R(∆x̂i −∆xi)

R(∆xi)

∣∣∣∣+∣∣∣∣I(∆x̂i −∆xi)

I(∆xi)

∣∣∣∣ )× 100%,

(37)

where ∆x̂i denotes the estimated value and ∆xi denotes the
true value of the i-th differential state variable, respectively.
Also, we use the mean absolute error (MAE) to assess the
estimation of the synchrophasors:

MAE =
1

2N

N∑
i=1

( ∣∣R(x̂i − xi)
∣∣+
∣∣I(x̂i − xi)

∣∣ ), (38)

where x̂i denotes the estimated value and xi denotes the true
value of the i-th state variable, respectively.

The statistical results for performance comparison are
shown in Table II. We can see that the proposed method has
a much lower MAPE and MAE; both in terms of its mean
and its standard deviation. In 97.9% of all the scenarios, the
MAPE is less for the proposed method than WLS-DSSE.

Remark 4: Given the sparsity in the vector of state variables,
the true value for some of state variables is zero; this causes the
denominator in (37) to be zero. As a result, if a state variable
with zero value is estimated incorrectly with a non-zero value,
then it would cause the MAPE to become infinity; which
would make the MAPE useless. Therefore, for those rare
scenarios, we consider the percentage error of the associated
state variables to be 100% (as the maximum error level).
Importantly, in our proposed DSSE method, the weighted
Lasso optimization in (24) has an `1-norm penalty term
whose associated weights are assigned such that the above
misestimation is avoided. On the contrary, the conventional
WLS-DSSE cannot prevent such misestimation; because it is
not designed to recover a sparse vector. This is one of the
reasons that MAPE for the WLS-DSSE is quiet larger than
that of other two methods which use sparse signal recovery.

The average computation time, as well as the total number
of divergent cases, are shown for each method in Table III. We
can see that the computation time of the proposed sparse DSSE
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TABLE III
COMPARISON OF COMPUTATIONAL TIME AND

CONVERGENCE RATIO OF DSSE METHODS

Method Average Computational
Time (ms)

Number of
Divergence Cases

The Proposed Sparse
Tracking DSSE 764 0

The Conventional
WLS-DSSE 2234 3748
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Fig. 2. The estimation of the real part of differential voltage phasors at all
buses in a typical scenario: a) the proposed sparse tracking DSSE; b) the
DSSE method in [25]; and c) The conventional WLS-DSSE method in [36].

method is much lower than that of the conventional WLS-
DSSE. Also, unlike the WLS-DSSE method, the proposed
method does not experience any case with divergence.

B. State Estimation Profiles and Impact of Calibration

The state estimation results for an example scenario for
differential voltage phasors and ordinary voltage phasors are
shown in Figs. 2 and 3. Real parts of the estimated states are
shown here. The results for the imaginary parts are similar
and omitted due to space limitation. We can see that the
proposed DSSE method significantly outperforms the other
two methods. Moreover, the proposed calibration method has
further enhanced the performance of voltage estimation in
comparison to the case without calibration. Importantly, the
calibration method is not applicable to the WLS-DSSE. That is
why the curve for WLS-DSSE does not include the calibration.

Furthermore, the changes over time in the gross error in
state estimation of the voltage phasors is shown in Fig. 4.
As we can see, when the state estimation error hits the drift
identification threshold β as in Eq. (35) at t = t1, the proposed
calibration mechanism is triggered and it helps the tracking
DSSE method to reduce the gross error. No need to say
that this calibration can improve the performance only to a
certain limit and the gross error inevitably continues to rise;
until the next cycle when the measurements from the legacy
meters become available at t = t2. At that moment, the
system becomes momentarily fully-observable; thus, the state
estimation error is reset to zero. It is worth clarifying that,
based on the setup in our case studies, the difference between
using and not using the proposed calibration method is visible
in Fig. 4 only during the period between t = t1 and t = t2.
That is why the blue curve is visible only during this period.

0 20 40
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

 R
e
a
l(
V

t ) 
(p

.u
.)

(a)

0 20 40

Bus Number

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
(b)

True value Estimated Estimated after calibration

0 20 40
0.8

0.85

0.9

0.95

1
(c)

Fig. 3. The estimation of the real part of the ordinary voltage phasors at all
buses: a) The proposed sparse tracking DSSE; b) The DSSE method in [25];
and c) The conventional WLS-DSSE method in [36].
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Fig. 4. The gross estimation error of voltage phasors over time for the
proposed sparse tracking DSSE method.

C. Importance of Side Information

Next, we repeat the scenarios in Section IV-A but this time
we use non-adaptive sparse recovery, i.e., we do not use the
side information. This results in using the same weights for
all the unknowns in the problem formulation. The average
MAPE increases from 4.51% to 15.58%; and the average MAE
increases from 8.2×10−3 to 12.4×10−3. The new error levels
are still less than that of the conventional WLS-DSSE. These
results show the importance of using the side information;
which is one of the key contributions in this paper.

D. Impact of Renewable Energy Resources

Without loss of generality, suppose the distribution network
has four renewable generators at nodes 14, 20, 23, and 30.
Fig. 5 shows the DSSE results. Increasing the penetration rate
of the renewable energy resources results in decreasing the
accuracy of the DSSE method. The degraded accuracy in the
DSSE algorithm is due to the degraded accuracy in the event
zone identification. This makes the classification of state vari-
ables more challenging; although the basic sparsity features
remain the same. In other words, the unknown vector is still a
sparse vector even under high penetration of renewable energy
resources; however, obtaining the side information about the
location of the zero/non-zero entries is more difficult. This is
not a surprising result; because the increasing penetration of
renewable energy resources is a major challenge in practically
every DSSE method; e.g., see a similar concern in [38].
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Fig. 5. Average MAPE versus the penetration rate of renewable generation.
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Fig. 6. Average MAPE versus the number of newly installed micro-PMUs.

E. Importance of the Number of D-PMUs

So far, we have assumed using five D-PMUs. However, in-
creasing the number of D-PMUs can improve the performance
of the proposed DSSE method; even though the network may
still remain low-observable. The average MAPE with respect
to the number of installed D-PMUs is shown in Fig. 6. Note
that, the number of D-PMUs also affects the number of zones
and the way that we extract the side information. However,
to have a consistent comparison, we do not change the way
that the zones are defined and identified. Based on the results
in Fig. 6, adding more sensors slightly lowers the average
estimation error; however, we believe that for the defined
sparse DSSE in a low-observable network, some points near
the knee point on the curve can be assumed as the optimal
number of sensors. One practical way to add new sensors is
to simply equip buses which have the highest estimation error.

F. Importance of the Location of Event

To figure out the effect of the location of event on the
performance of the proposed method, the distribution of aver-
age MAPE versus the node of the event is plotted in Fig. 7,
where the red bar shows the median and the blue box shows
the distribution of the first to the third quartile of MAPE.
As we can see, the higher MAPE belongs to the scenarios
wherein the event occurs at locations which have greater
distance from the substation. This lowers the sparsity level
of the unknown vector. Thus, the capability of the proposed
sparse DSSE method to recover the solution is compromised
in such scenarios. Of course, the magnitude of the event also
has impact on the MAPE. Events with lower magnitude cause
such small changes in the operating points of the system that
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Fig. 7. Distribution of MAPE with respect to the node of event.

sparse DSSE method cannot track them. Once the magnitude
is larger, the performance of proposed method is enhanced.

G. Importance of Measuring Phase Angle

A unique feature of D-PMUs is their ability to measure
phase angle [9]. In this section, we seek to answer the follow-
ing question: is it critical is to use phase angle measurements?
To answer this question, we repeat all the scenarios, but we
assume that phase angel at all nodes is zero. This will cause
the average MAPE to increase from 4.51% to 11.76% and the
average MAE to increase from 8.2×10−3 to to 11.39×10−3.
Furthermore, removing phase angle causes a negative effect
on the calibration mechanism to the extend that it increases
the average MAE from 6.1×10−3 to 18.67×10−3. Therefore,
the use of D-PMUs is indeed necessary in this method.

H. Impact of Unbalanced Three-Phase Operation

In this section, we examine the IEEE 123-bus test system
[39]; which is a highly unbalanced distribution network with
Wye load connections. We use the percentage unbalance (PU)
in current at the substation as the metric for unbalance in the
network. We assume that only 19 D-PMUs are available; and
they are installed at nodes 6, 11, 16, 18, 32, 39, 47, 56, 59,
66, 71, 75, 85, 86, 96, 101, 114, 250, and 450. This means
that the ratio of the available measurements to the unknowns
is 38/245 = 0.156. All phasor measurements are three-phase.

We set the initial PU to 8%. Next, we modify the loads
across the network to increase the PU level. As shown in Fig.
8, under various PU levels, the average MAPE is much lower
for the proposed DSSE than for the conventional WLS-DSSE.
Note that, since the DSSE formulation based on synchrophasor
measurements is inherently linear; the unbalanced operation of
the distribution system does not affect the core characteristics
of the proposed sparse DSSE. The small increment in the
MAPE is due to the increase in the neutral current as the
unbalance level increases. Moreover, the estimation error in
this case study is higher than that of the previous case studies
based on the IEEE 33-bus test system. This is due to the higher
number of small laterals for the IEEE 123-bus test system. It
is not due to the unbalanced operation. The performance can
be improved if we add more D-PMUs to the laterals; even
while the system still remains low-observable.



11

8 12 16 20

Percentage Unbalance (%)

14

16

18

20

22

24

26

A
v
e

ra
g

e
 M

A
P

E
 (

%
)

Sparse Tracking DSSE

WLS DSSE

Fig. 8. Average MAPE versus the percentage phase unbalance.

I. Examining the Uniqueness of Solution

As we discussed in Section III-C, the exactness of the
solution in a sparse recovery problem directly depends on
its uniqueness. Of interest in this context is the tightness of
the theoretical sufficient conditions to assure that the obtained
DSSE solution is unique and thus exact. Importantly, the suf-
ficient conditions in [35] are satisfies only in 0.8% of the sce-
narios. However, the sufficient conditions that we developed
in Theorem 1 are satisfied in 11.3% of the scenarios. Thus, the
theoretical optimality conditions have significantly improved
in our analysis; compared to the conventional sufficiency
conditions for a generic sparse recovery problem without side
information. This is an important theoretical achievement. Of
course, since these theoretical results are based on sufficient
conditions, in theory, the rest of the scenarios may or may
not achieve the unique solution. Nevertheless, our numerical
results confirm that the mean square error in state estimation
is less than 10−8 in 96.4% of the scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel sparse tracking DSSE method is
proposed to address the low-observability in power distribution
networks, where the measurements come from only a small
number of D-PMUs. The analysis is done using differential
synchrophasors and by dividing the state variables into four
types based on their group sparsity properties. Prior to solving
the formulated DSSE problem, an event zone identification
analysis is applied to augment the proposed sparse DSSE with
the side information on the support of the unknown vector.
The DSSE is modeled as an adaptive group sparse recovery
problem to estimate the differential synchrophasors, which are
added to the initial values to estimate the voltage phasors in
standard mode at each time slot. Since the proposed method
has a tracking scheme, a drift identification and calibration
method is developed to enhance robustness. The proposed
method is tested on the IEEE 33-bus and IEEE-123 bus power
distribution feeder and the simulation results show the effec-
tiveness of the proposed method over the conventional WLS
DSSE method which is aided by the pseudo-measurements.

As a possible extension of this work in the future, one can
further study the problem when multiple major events happen
on the distribution feeder at the same time. Also, one can
investigate how adding other types of measurements, such as
load measurements, or power measurements that are obtained
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Fig. 9. Equivalent circuit of distribution feeder when an event happens at
node m. This equivalent circuit is used in the proof in Appendix A.

from the voltage and current phasors at the D-PMUs, to the
existing phasor measurements in our proposed tracking DSSE
method may affect the problem formulation and the results.

APPENDIX A
PROOF OF COROLLARY 1

Consider the network in Fig. 9, which is the equivalent
circuit of a power distribution feeder at the time of event that
is obtained by applying the Compensation Theorem [27]. The
event at bus m is replaced by a current source which injects
the same level of current due to the event to event bus. By
applying the Kirchhoff’s Current Law (KCL) at the event bus,
i.e., the last bus on the red path, we have:

∆im −∆ilm +

N∑
j=1

∆iml′j = 0. (39)

We can write a similar equation at node l as

∆il + ∆inl −∆ilm = 0. (40)

Based on the Compensation Theorem, since no event occurs
at bus l, there is no change in the injected current to this bus,
i.e., we have: ∆il = 0. This is also true for all other buses in
set V . Thus, ∆inl = ∆ilm. If we continue writing the same
type of equations for the buses on the red path until we reach
the substation, we can conclude that the change in the line
current for all the line segments in set E is equal to the change
in the injected current that is drawn from the substation:

∆isub = ∆ilm ∀lm ∈ E . (41)

Next, let us write the KCL at all nodes in set V1. For the
same reason, the change in current for all the line segments in
set E1 is equal to ∆iml′1 . Consider the whole set of (V1, E1)
as a super node. If the value of injected current to this supper
node, i.e., ∆iml′1 is non-zero, then it means that this current
is being injected to one of the inner nodes of the super node,
which means that there is an event somewhere inside the super
node that would be against our initial assumption.Therefore,
∆iml′1 = 0. Accordingly, we have:

N∑
j=1

∆iml′j = 0. (42)
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By replacing (42) in (39), we obtain:

∆im = ∆isub. (43)

Therefore, when an even happens, the change in current for all
the line segments in set E is non-zero, and equal to the value
of injected current from the substation node, or the value of
the equivalent current source. Also, the change in current for
all the line segments in set L\E is zero.

Next, let us write the Ohm’s law for line segment ml′1 as
in (6). Since ∆iml′1 = 0, we can obtain

Rml′1
Xml′1

=
R(∆vm)−R(∆vl′1)

I(∆vm)− I(∆vl′1)
. (44)

Thus, based on the values of the parameters, there are two
scenarios to consider. First, if the impedance of line ml′1 and
the differential voltage at node m are such that

Rml′1
Xml′1

≈ R(∆vm)

I(∆vm)
; (45)

then, we can (approximately) replace ∆vl′1 by zero. This is
the case that holds for the nodes in set V2 in the illustrative
example shown in Fig. 1(c). Second, if the corresponding
parameters are not such that (45) holds, then ∆vl′1 6= 0. �

APPENDIX B
PROOF OF THEOREM 1

The proof of Theorem 1 largely follows the procedure
outlined in [40]. We will first discuss the necessary and
sufficient conditions that any optimal point of the convex
optimization problem in (24) must satisfy. Let us rewrite the
problem in (24) in a compact form as

min
∆x

1

2
‖∆z−H∆x‖22 + λ‖W∆x‖1, (46)

where W is a diagonal matrix with weights wγ for γ ∈
{1, . . . , N}. The optimality conditions can be obtained by
using the first-order necessary KKT conditions that are also
sufficient; the optimization problem in (24) is convex. A
necessary condition for vector ∆x∗ to be an optimal solution
of (46) is that zero vector belongs to the subgradient of its
objective. We can write this condition as

H>(H∆x∗ −∆z) + λW∂‖∆x∗‖1 = 0. (47)

∂‖∆x∗‖1 denotes the subgradient which can be defined as

∂‖∆x∗‖1 ∈

{
sign(∆x∗) ∆x∗ 6= 0

[−1, 1] ∆x∗ = 0.

We can write (47) in a compact form as

|H>γ (H∆x∗ −∆z)| ≤ λwγ .

One can show that the solution is a unique minimum if the
following sufficient conditions are satisfied [33]:

H>γ (H∆x∗ −∆z) = −λwγsign(∆x∗γ), if ∆x∗γ 6= 0 (48)

|H>γ (H∆x∗ −∆z)| < λwγ , if ∆x∗γ = 0. (49)

We can now prove that if a vector ∆x with support Γ and sign
sequence sΓ satisfies the set of equations H∆x = ∆z and the

conditions in (32) and (33), then we can explicitly write the
unique solution of (46) supported on Γ as

∆x∗Γ = ∆xΓ − λ(H>Γ HΓ)−1WΓsΓ. (50)

The sign condition in (33) implies that sign(∆x∗Γ) = sΓ.
To prove the optimality of ∆x∗ in (50), we need to show

that ∆x∗ satisfies the necessary and sufficient conditions in
(48) and (49). Let us first look at the condition in (48) as

H>Γ (HΓ∆x∗Γ −∆z)

= H>Γ (HΓ[∆x− λ(H>Γ HΓ)−1WΓsΓ]−∆z)

= H>Γ (HΓ∆x−∆z︸ ︷︷ ︸
=0

)− λWΓsΓ

= −λWΓsΓ = −λWΓsign(x∗Γ). (51)

For the condition in (49), we can show that for any γ /∈ Γ

|H>γ (HΓ∆x∗Γ −∆z)|
= |H>γ (HΓ[∆x− λ(H>Γ HΓ)−1WΓsΓ]−∆z)|
= |λH>γ HΓ(H>Γ HΓ)−1WΓsΓ|
< λwγ . (52)

The last inequality is due to the main condition in (32). The
above inequality completes the proof; since ∆x∗Γ, as defined
in (50), satisfies the necessary and sufficient conditions to be
the strict optimal solution of the problem in (46). �
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