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Safety of Life Applications:
• Performance
• Reliability
• Robustness

Increasingly capable autonomous 
vehicles: a worthy challenge 

necessitating increased ability along 
various dimensions of intelligence
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Human Driving Performance



The Survey Says ….
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Reliable Precise Positioning: AV & CV
• Autonomous & Connected Vehicles are in our future.

• Early Phase: Commercial
• Later: Consumer

• Vehicle Position
• Control
• Coordination

• Infrastructure
• Other vehicles

• Sensor Fusion
• Accuracy: 10m, 1m, 0.1m
• Reliability = Trust



Tesla Model S (Beta): “Autopilot comprises multiple systems … that use cameras, radar, 
ultrasonic sensors and data to … automatically steer down the highway, change lanes, and 
adjust speed in response to traffic.” (Consumer Reports)

Radar: (Tesla Press Release, Sept. 11, 2016)
• Radar added in October 2014 as a supplementary system
• Radar (10 Hz) now can be used as primary sensor without confirmation by vision system.  

• The big problem is avoiding false alarms (e.g., soda cans).   … 
• Comparing several contiguous frames …
• Fleet learning of overhead sign locations ….
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Establishing Trust ?



Autonomous Driving to Expo 2010
• U. of Parma (Alberto Broggi)
• 13000 km, 3 months
• Leader (human/autonomous)-

follower (autonomous)
• Vision, navigation, control, 

planning, sensor fusion, …



Partially Autonomous Driving
(Commercially Available)

• Cruise control
• Parallel parking
• Blind spot and lane departure warning
• Intelligent cruise control w/ crash avoidance



Control is not the Limitation
Parallel Parking Demonstrations: First IEEE research papers appear in 1989

• I. E. Paromtchik, C. Laugier, “Autonomous parallel parking of a nonholonomic vehicle,” IEEE Intelligent 
Vehicles Symposium, 1996.

• I.E. Paromtchik, C. Laugier, “Automatic parallel parking and returning to traffic manoeuvres” IEEE IROS, 
1997.

• S. Patwardhan; Han-Shue Tan; J. Guldner; M. Tomizuka, “Lane following during backward driving for front 
wheel steered vehicles,” American Control Conference, pp. 3348 – 3353, 1997.

Platooning Demonstrations: First IEEE research papers appear in 1994

• U. Franke, F. Bottiger, Z. Zomotor, D. Seeberger, “Truck platooning in mixed traffic,” IEEE Intelligent Vehicles 
Symposium,  1995.

• O. Gehring, H. Fritz, Practical results of a longitudinal control concept for truck platooning with vehicle to 
vehicle communication, IEEE Intelligent Transportation System, pp. 117 – 122, 1997.

US National Automated Highway System Consortium proof of technical feasibility demonstration 1997

• C. Thorpe, T. Jochem, D. Pomerleau, “The 1997 automated highway free agent demonstration,” IEEE 
Conference on Intelligent Transportation System, pp. 496 - 501, 1997. 

• R. Sebastian, T. Kaufmann, F. Bolourchi, Han-Shue Tan, "Design of an automated highway systems steering 
actuator control system,” IEEE Conference on Intelligent Transportation System, pp. 254 – 259, 1997. 

• D. Farkas, J. Young, B. Baertlein, U. Ozguner, Forward-looking radar navigation system for 1997 AHS 
demonstration, IEEE Conference on Intelligent Transportation System, pp. 672 – 675, 1997. 



Autonomy: Not there yet.
– Key Insight: 

“A good state estimate, in the form of a map, is the most critical piece 
of information for a team of robots – and the most difficult to obtain.”

– Multi-Autonomous Ground robot International Challenge (MAGIC), November 
2010 in Adelaide, Australia

– Cover Story: “Exploration and Mapping with Autonomous Robot Teams” By E. 
Olson, J. Strom, R. Goeddel, R. Morton, P. Ranganathan, A. Richardson

Vol. 56 No. 3, Pages 62-70, 
Communications of the ACM, 
0.1145/2428556.2428574



Connected Vehicles
Enhanced Throughput, enhanced safety, 
decreased emissions.
• V2V: Vehicle to vehicle
• V2I: Vehicle to Infrastructure



Feature Accuracy Requirements
• Required quantities: d, SL, SR
• Consider d = N .(PV – PL)   where N is the normal to the stop bar
• Uncertainty in d affected by uncertainty in both PV and  PL :

Accurate estimation is required for both:
• Map feature locations
• Real-time vehicle location



• Achieved by standard GPS with sufficient satellite reception
• Possibly achievable by feature sensors with Enhanced Digital Map (EDM)

• Differentially corrected GPS with sufficient satellite reception 
• Possibly achievable by feature sensors with EDM

• Real Time Kinematic and/or carrier phase differentially corrected GPS with 
sufficient satellite reception 

• Already achievable in relative sense by feature sensors under suitable 
conditions

CV Positioning Specifications
• No Positioning: No knowledge of position is required.
• Coarse Absolute Positioning (Which Road): O(10 m)

• Lane-Level Absolute Positioning (Which Lane): O(1m)

• Where-in-Lane Positioning: O(0.1m) 
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EDM’s (containing features) provide the means to interconnect data between:
• vehicles and infrastructure
• feature sensors and IMU & GNSS/GPS



World Model & Sensing: Scale & Complexity

Commercial success requires EDM 
on a global scale

In US alone:
300,000 Signalized Intersections
6,000,000 miles of multilane roads
• Manual mapping is impractical.
• Independent SLAM processing 

by millions of vehicles on a daily 
basis inefficient and inconsistent

• Enhanced digital map – stores roadway features (fixed 
in global frame for large time-scales)
– Facilitates feature processing
– Knowledge of global vehicle state enables V2V and V2I 

sharing
• Short-range relative sensing – detects features & 

unmapped objects near vehicle
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Sensor Type: Comparison
• Relative: where-in-lane currently feasible; which-lane & which-road are not

– Sensors: Camera, Radar, Ultrasound; Lidar (currently expensive)
– Pros: Does not require map. Directly senses road relative position (locally). 

Many urban features. Also detects obstacles.
– Cons: Vision can be occluded. Light sensitive performance. 

Instantaneous degradation with loss of vision.
– Currently: Used for land departure warning, adaptive cruise control

• Absolute: which-lane and course positioning are currently feasible; where-in-lane is not 
currently reliably feasible

– Sensors: GNSS (absolute position), IMU (high rate and bandwidth), Map
– Pros: High sample rate, high bandwidth, graceful degradation to loss of GNSS
– Cons: GPS can be occluded, challenged in urban canyons
– Currently: Used for routing, (non-roadway) vehicle control

• Relative and Absolute Integrated with Inertial Sensors
– Higher reliability 

• Sensor failure modes are independent
• Abs. position & roadway feature map facilitates real time image processing

– High rate & bandwidth
– Graceful degradation

• Relative and Absolute Integrated with EDM
– Facilitates data fusion
– Facilitates collaboration: V2V and V2I
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Reliable Precise Positioning: Background
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Relative: obstacles & features 
• Camera, Lidar, Radar, …

Absolute: Earth rel.
• GNSS
• Inertial Measurements
• EDM & Camera, Lidar, ….

Differential Carrier Phase GNSS:
• Attains 0.01m accuracy 
• Used in surveying 1990’s-present
• Too fragile for real-time (RT) human 

safety applications

Reliability by redundancy through 
sensor fusion
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LIDAR Operation

Spectrum.ieee.org

Data: R, ψ, θ, I
64 samples/vertical slice
1000 vertical slices/revolution
15 revolutions/second

Cost: $75,000 USD (2011)

Both size and cost are 
rapidly decreasing.

Clemson



Driving and data collection …
Scenario:
• Instrumented vehicle driven through 

environment
• Recording: IMU, GNSS, LIDAR, 

Imagery

Velodyne LIDAR:
• 64 vertically aligned 

lasers
• Rotate around vertical 

axis at 15-20 Hz
• Measure time-of-flight 

and reflection intensity






N
E

𝑷𝑷𝑭𝑭𝑾𝑾 = 𝑹𝑹𝑾𝑾𝑷𝑷 𝑹𝑹𝑷𝑷𝑷𝑷𝑷𝑷𝑭𝑭𝑷𝑷 + 𝑻𝑻𝑷𝑷𝑷𝑷𝑷𝑷 + 𝑻𝑻𝑾𝑾𝑷𝑷
𝑾𝑾

𝑷𝑷𝑭𝑭𝑷𝑷 : Position of feature in LiDAR
frame, measured by LiDAR

𝑹𝑹𝑷𝑷𝑷𝑷 & 𝑻𝑻𝑷𝑷𝑷𝑷𝑷𝑷 : Rotation and Translation
from platform frame to LiDAR frame,
constant & known from calibration

𝑹𝑹𝑾𝑾𝑷𝑷 & 𝑻𝑻𝑾𝑾𝑷𝑷
𝑾𝑾 : Rotation and

Translation from world frame to
platform frame, measured by GPS and
IMU

𝑷𝑷𝑭𝑭𝑾𝑾: Position of feature in world frame

Georectification

Subscript and Superscript Definitions
W – World
P  – Platform
F  – Feature
L  – Lidar 

Reliable and Accurate estimation of vehicle state is critical
• Post-processed for Georectification
• Real-time for planning and control

The methods to be discussed 
apply to both.



Georectified point cloud prior to processing. Top down image of target intersection.

Georectified Point Cloud: Processing



2. YZ Slice projection, with road surface seed points (red), 
calculated from the trajectory points (green)

3. Seed point curve fitting 4. Residuals 5. Extracted surface

YZ 

projection

Road marking extraction 

1. Roadway lateral slice



Top down view of georectified point cloud processed 
to extract high reflectivity points near the ground.

Top down image of target intersection with 
extracted J2735 data structure superimposed.

Georectified Point Cloud: Intersection Mapping

Feature types: Lane, road, meridian edges; Stop bars; signs, signals, ….



Automated Mapping Work Flow

26
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Reliable Precise Positioning: How it Works

• Inertial Navigation: 
• High bandwidth, sampling rate, reliability
• Slow, but unbounded, error growth
• Used in military & commerce since 1960’s

• GNSS
• Bounded absolute position error 
• Bound is dependent on processing
• Reliability is dependent on environment 

• Feature sensors (Camera, Radar, Lidar)
• Bounded feature relative accuracy. Abundant in urban areas.
• No absolute accuracy (without EDM). 
• Not robust to environmental conditions (e.g. lighting)

Sensor fusion can achieve, high bandwidth, high sample rate, and 
accurate positioning, with reliability versus computational load tradeoff.



RTK GPS background

State:                 𝒙𝒙 𝑡𝑡 = [𝒑𝒑 𝑡𝑡 , 𝜏𝜏𝑟𝑟 𝑡𝑡 ]𝜖𝜖 𝑅𝑅4

Code meas.:     

Phase meas.: 

Real Time Kinematic (RTK): 

Figure from Swift Navigation

Differential GPS 



RTK GPS background

State:                 𝒙𝒙 𝑡𝑡 = [𝒑𝒑 𝑡𝑡 , 𝜏𝜏𝑟𝑟 𝑡𝑡 ]𝜖𝜖 𝑅𝑅4

Code meas.:     

Phase meas.: 

Real Time Kinematic (RTK):

Challenges:
1. Requires 7+ satellites to ensure good constellation geometry
2. Outlier & incorrect integer (i.e., error) detection 
3. Frequent loss-of-lock in urban environments, need reliable on-the-fly 

integer ambiguity solutions

Figure from Swift Navigation



RTK GPS/INS background

State:                                                                                         𝑛𝑛𝑠𝑠≥ 15

Code meas.:     

Phase meas.:

Prior for the initial state: 

Rover kinematics:  

IMU meas.:  

Standard (Extended) Kalman Filter:
• Single epoch (K=1), linear, Gaussian
• Redundancy insufficient for required reliability



Constraints:
• IMU:

• Standard Measurements: Y

• Measurements with Unknown Integer: Z

where X is the trajectory over a K second window 

Solved using computational methods developed in the SLAM literature, 
extended to accommodate integer unknowns.

Bayesian Trajectory Estimation



Problem Statement

ũ2 ũ1 ũк-1 ũк 

t*

Y1 YK 

CRT Window

x1 ,P1 

…

…Y2 



Bayesian Trajectory Estimation

Physical ideas:
• is accurate to a few meters
• is accurate to centimeters
• is very small per step, but 

accumulates due to integration

Available Constraints: Notation:
• U – IMU data
• Y – GNSS pseudorange data
• Z – GNSS carrier phase data
• X – state trajectory

1. IMU Constrained Trajectory Estimate

2. Pseudorange Constrained Trajectory Estimate:

3. Carrier Phase Constrained Trajectory Estimate:

Prior
IMU Kinematic Integration Pseudorange

Carrier Phase



Trajectory Estimation Process
• Joint Estimation: platform trajectory and landmarks

– Bayesian:
– Equiv:

1. Prior
2. Integrated inertial measurements
3. GPS: Code, Phase, Doppler
4. Landmark parameters (not shown)

Decompose J = [A, B], where A is full column rank.A B

Large set of residual enables 
reliable outlier detection



Integer Estimation (by MILES)
Nonlinear constraint equations:

Linearized residual equations: MILS Decomposition:

ILS Solution:

• X.-W. Chang, T. Zhou, “MILES: MATLAB package for solving Mixed Integer LEast Squares problems,” GPS Solutions, Springer-Verlag, 2007.
• P. De Jonge, C. Tiberius, “LAMBDA method for integer ambiguity estimation: implementation aspects,” Delft Geodetic Computing Center LGR-

Series, No. 12. 

QR factors:

Physical ideas:
• is accurate to a few meters
• is accurate to centimeters
• is very small per step, but 

accumulates due to integration

• For any N, there exist z to solve first 
term exactly

• Involves search over integers within 
feasible ellipse

• Utilizes unimodual Z: 



UCR Implementation Trajectory
• 3.6 km campus ring
• Significant tree cover
• Buildings and terrain shading



Trajectory Estimation Results

Pseudorange Carrier Phase



Trajectory Estimation Results: Residuals

Process 1:
• Code, Doppler, IMU
• Bayesian Smoothing

Process 2:
• Integer Estimation
• Bayesian Smoothing

• Integer-resolved 
phase and IMU 
when available

• Code, Doppler, IMU 
otherwise



LIDAR Intensity Point Cloud…






Bing Map with TFHRC aerial image overlay



Georectified LIDAR-based intensity image



Bing Map, Aerial Image, LIDAR image overlay



LIDAR Traffic Sign Extraction…

Detection & mapping:
• High intensity Lidar return, due to high reflectivity
• Cluster diameter of approximately one meter
• Initialization: Cluster defines plane with horizontal normal 

vector (minumum eigenvalue problem)
• Refinement: Bayesian nonlinear estimation problem

Each sign detected from multiple angles has an observable location.



Estimated Plane Position vs. 
Surveyed Plane Position

Sign Post 
#

Survey North 
(m)

Survey East 
(m)

Max Survey 
ECEF Std (m)

Computed 
North (m)

Computed 
East (m)

Abs. Horiz. 
Error (m)

1 -41.192 -87.313 0.042 -41.133 -87.345 0.067
2 -55.321 -62.332 0.126 -55.271 -62.328 0.050
3 -89.666 -36.001 0.159 -89.656 -36.112 0.111
4 -142.194 80.051 0.057 -142.244 80.054 0.050
5 -139.078 146.342 0.047 -139.101 146.358 0.028
6 -115.571 144.863 0.009 -115.658 144.923 0.106
7 -85.860 141.540 0.031 -85.882 141.543 0.022
8 -47.903 122.360 0.025 -47.952 122.415 0.073
9 -35.369 99.666 0.045 -35.381 99.686 0.023

10 -44.498 101.259 0.024 -44.433 101.281 0.068
11 -62.597 125.258 0.04 -62.555 125.306 0.063
12 -134.138 76.493 0.025 -134.073 76.519 0.069
13 -104.598 -4.185 0.061 -104.569 -4.152 0.044
16 -118.704 133.631 0.015 -118.618 133.724 0.126

Sub-decimeter accuracy is achieved.



Real-time Navigation

1. High rate sensors
o Encoder or IMU

2. Aiding measurements
o GPS, image features

3. CRLB

See J.A. Farrell, Aided Navigation, McGraw-Hill, 2008.



Application Graphical User Interface…






Real-Time Traffic Sign Recognition Process



Sign Aiding …
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Reliable Precise Positioning: Sensor Fusion

Multi-epoch sensor fusion: 
Increasing the window size K

• Pro: Increased measurement 
redundancy

• Pro: Increased ability to detect 
and remove anomalies

• Con: Increases computational load

Commercial applications are cost, accuracy, and reliability sensitive.
Decreased computational load enhances commercial feasibility.



Contemplative Real-time Estimation (CRT)

• Real-time computation
• Removal of faulty data within the CRT window
• Correction of linearization point errors
• Yaw & bias initialization



CRT Performance

• 3d position error CDF
• Outliers removed via residual 

analysis
• CDF of other states show similar 

trends

• IMU: Epson M-G320, 250 Hz
• GPS: Ublox 6T (differential)
• CPU: Qualcomm Snapdragon 410c
• OS: Linux Debian 8
• Biases and yaw initialized at zero
• Duration: 495 seconds

Different algorithms. Exactly the same data (INS and L1 pseudorange). 



CRT Performance

• 3d position error CDF
• Outliers removed via residual 

analysis
• CDF of other states show similar 

trends

• Receiver Operating Characteristics
• False alarms and Probability of 

detection evaluated relative to 
“ground truth”

Different algorithms. Exactly the same data (INS and L1 pseudorange). 



Existing Bayesian Carrier Phase/IMU Approach

X.W. Chang and T. Zhou. MILES: MATLAB Package for Solving Mixed Integer LEast Squares Problems. GPS Solution, 11(4):289-294, 2007.



Revised Step 2: Common Position Shift  (CPS)
Common Position Shift Definition: 

Main Result: 



Computation Reduction

- # NLS linearized iterations to find float solution
- # ILS linearized iterations
- Measurement window length
- Number of measurements per measurement time
- Dimension of the state vector
- IMU sample rate
- Row dimension of the residual vector:

K
m

f
M



Position Estimation Comparison



CPS, Error Bound, & Error



Aiding Sensor Categories

GNSS: Proven with open skies. Challenging in urban environments.
TRN: Shows great promise as physical layer timing advances
FB: Assessed as viable if precision roadway feature maps are available. Research leading to 

reliable and accurate FB positioning demonstrations was a project focus. 



Visible Light Communication 
LED’s as Active Features

VLC based navigation
• LEDs are known features

– Active and bright
– Known shape & location

• Facilitate data association
– Mahalonobis distance
– Encoded IDs ensure 

correctness
Solution approach: Joint
• LED path recovery 
• Data sequence extraction



LED VLC Navigation Applications
 Outdoor Applications

 Transportation
 Aircraft taxiways

 Indoor Applications
 Hospital patients & equipment
 Retail & tourism assistant

LED vehicular safety 
lighting – each car is 
surrounded by an IR 
sensor bubble



Challenges:
• Multiple LED projections within FOV
• Noise and clutter
• Moving sensor causes moving LED 

projection onto array.
– Is this bit a zero or am I looking at the 

wrong pixel? 

Q-best hypotheses and time window data extraction:
o Motion information can be used to match the 

measurements between frames
o Allows likelihood evaluation per candidate 

sequence
o Challenge is algorithm for finding most likely 

sequences

LED VLC Navigation Solution

Ti
m

e,
 t

Pixel index



Finding & Storing Lanes and Edges



Curve Fitting: Sparse Optimization



Road Design and Spline Fitting

EDMap 2004 concluded that 
curvature computed from spline 
fitting was not appropriate for 

curve warning applications.



Road Design Constraints



Curve Generation via Sparse Optimization

S. Zhao, J. A. Farrell, ''Optimization-based Road Curve Fitting,'' IEEE CDC and ECC, 5293-5298, 2011.

Kinematic function: f



Curve Generation via Sparse Optimization
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• Statistical  relationships between geometric 
uncertainties

• Joint state and map estimation, huge state, 
huge (i.e., O(L2)) computational load.

• No convergence proofs
• Approximate implementations

• Convergence results
• Importance of cross-correlations
• Understanding of the probabilistic problem 

structure
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Comments & Conclusions
• Vehicle autonomy is built upon: 

– Planning and Decision Making
– World Models
– Sensor Processing
– State Estimation and Control

• Feasibility demonstrations abound 
• Reliability enhancements are required to contain risk 

and build confidence
– Multiple sensors provide a wealth of independent information
– Information extraction, fusion, validity checking are critical
– Systems, control, and instrumentation engineers and scientists 

have the knowledge and skills to achieve these advancements

Sensors       Structure       Actuators

Sensor
Processing

Behavior
Controller

DEC

World
Model

Generator
Event     Trajectory
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Levels of Autonomous Vehicles 
(NHTSA 2013)

• Level 1 – Function-specific Automation: Automation of specific control functions, 
such as cruise control, lane guidance and automated parallel parking. Drivers are 
fully engaged and responsible for overall vehicle control (hands on the steering 
wheel and foot on the pedal at all times). 

• Level 2 - Combined Function Automation: Automation of multiple and integrated 
control functions, such as adaptive cruise control with lane centering. Drivers are 
responsible for monitoring the roadway and are expected to be available for 
control at all times, but under certain conditions can disengaged from vehicle 
operation (hands off the steering wheel and foot off pedal simultaneously). 

• Level 3 - Limited Self-Driving Automation: Drivers can cede all safety-critical 
functions under certain conditions and rely on the vehicle to monitor for changes 
in those conditions that will require transition back to driver control. Drivers are 
not expected to constantly monitor the roadway. 

• Level 4 - Full Self-Driving Automation: Vehicles can perform all driving functions 
and monitor roadway conditions for an entire trip, and so may operate with 
occupants who cannot drive and without human occupants. 
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