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Dynamic Systems and Optimization:
e Autonomous & Connected Vehicles

* Precise and Reliable
Mapping & Positioning

* Project: Results and Applications
* Interesting Directions




Intelligence & Autonomy

Increasingly capable autonomous
vehicles: a worthy challenge
necessitating increased ability along
various dimensions of intelligence
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Safety of Life Applications:
e Performance

e Reliability
 Robustness




Autonomous Vehicle Examples

Titan Solara 50
Atmospheric Satellite

DARPA Grand
Challenge
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Human Driving Performance

Fatalities and Fatality Rate per 100 Million Vehicle Miles Traveled by Year
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Number of Crashes, by Crash Type

FARS 1975-2013 (Final), 2014 Annual Report File (ARF); Vehicle Miles Traveled (VMT): Federal Highway Administra Crash T}'DE 2013 2014 Cha"ge % C|IHIIgE
S S Fatal Crashes 30,203 29,989 214 | -0.7%
Non-Fatal Crashes 5,657,000 (6,034,000 +377,000 | +6.7%
. _ - . ) Injury Crashes 1,591,000| 1,648,000f +57,000 | +3.6%
People Injured and Injury Rate per 100 Million Vehicle Miles Traveled by Year Property Damage Only | 4,066,000 | 4,387,000| +321,000 | +7.9%
4,000,000 151 Total Crashes 5,687,000 | 6,064,000 +377,000 | +6.6%
3,500,000 | Source: FARS 2013 [Final], 2014 [ARF], NASS GES 2013, 2014
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The Survey Says ....
Consumers Desire More Automated Automobiles

Consumers Trust Driverless Cars

O/ of consumers, globally, trust
57 /0 driverless cars—even more

SO in emerging markets

O o B Would Ride Driveriess

B Would Let Kids Ride Driverless
. 95% e 52%
Brazi g2y,  Canada | — 36%
- 86% . ) 45%
Ndia | D 69% rance | 37%
| 70% (S 45%
China | p—— 53% UK | 39%
_— 60% —_— 37%
USA | oo gy, CerMany | 31%
Russia | 57% J — 28%
oo | 36% PAN | — 27%

Source: Cisco Systems, 2013



Reliable Precise Positioning: AV & CV

Autonomous & Connected Vehicles are in our future.

 Early Phase: Commercial

e Later: Consumer

Vehicle Position

e Control

e Coordination
 Infrastructure
e Other vehicles

e Sensor Fusion

Accuracy: 10m, 1Im, 0.1m

Reliability = Trust




Establishing Trust ?

Tesla Model S (Beta): “Autopilot comprises multiple systems ... that use cameras, radar,
ultrasonic sensors and data to ... automatically steer down the highway, change lanes, and
adjust speed in response to traffic.” (Consumer Reports)

Radar: (Tesla Press Release, Sept. 11, 2016)
e Radar added in October 2014 as a supplementary system
e Radar (10 Hz) now can be used as primary sensor without confirmation by vision system.
e The big problem is avoiding false alarms (e.g., soda cans). ...
e Comparing several contiguous frames ...
* Fleet learning of overhead sign locations ....

Design the Co-Pilot




Autonomous Driving to Expo 2010

U. of Parma (Alberto Broggi)
13000 km, 3 months

Leader (human/autonomous)-
follower (autonomous)
Vision, navigation, control,
planning, sensor fusion, ...




Partially Autonomous Driving
(Commercially Available)

e Cruise control
e Parallel parking

e Blind spot and lane departure warning

* Intelligent cruise control w/ crash avoidance



Control is not the Limitation

Parallel Parking Demonstrations: First IEEE research papers appear in 1989

e |. E. Paromtchik, C. Laugier, “Autonomous parallel parking of a nonholonomic vehicle,” IEEE Intelligent
Vehicles Symposium, 1996.

e |.E. Paromtchik, C. Laugier, “Automatic parallel parking and returning to traffic manoeuvres” IEEE IROS,
1997.

e S.Patwardhan; Han-Shue Tan; J. Guldner; M. Tomizuka, “Lane following during backward driving for front
wheel steered vehicles,” American Control Conference, pp. 3348 — 3353, 1997.

Platooning Demonstrations: First IEEE research papers appear in 1994

* U. Franke, F. Bottiger, Z. Zomotor, D. Seeberger, “Truck platooning in mixed traffic,” IEEE Intelligent Vehicles
Symposium, 1995.

e 0. Gehring, H. Fritz, Practical results of a longitudinal control concept for truck platooning with vehicle to
vehicle communication, IEEE Intelligent Transportation System, pp. 117 — 122, 1997.

US National Automated Highway System Consortium proof of technical feasibility demonstration 1997

e C.Thorpe, T. Jochem, D. Pomerleau, “The 1997 automated highway free agent demonstration,” IEEE
Conference on Intelligent Transportation System, pp. 496 - 501, 1997.

e R.Sebastian, T. Kaufmann, F. Bolourchi, Han-Shue Tan, "Design of an automated highway systems steering
actuator control system,” IEEE Conference on Intelligent Transportation System, pp. 254 — 259, 1997.

e D. Farkas, J. Young, B. Baertlein, U. Ozguner, Forward-looking radar navigation system for 1997 AHS
demonstration, IEEE Conference on Intelligent Transportation System, pp. 672 — 675, 1997.



Autonomy: Not there yet.

— Key Insight:
“A good state estimate, in the form of a map, is the most critical piece
of information for a team of robots — and the most difficult to obtain.”

— Multi-Autonomous Ground robot International Challenge (MAGIC), November
2010 in Adelaide, Australia

— Cover Story: “Exploration and Mapping with Autonomous Robot Teams” By E.
Olson, J. Strom, R. Goeddel, R. Morton, P. Ranganathan, A. Richardson

Vol. 56 No. 3, Pages 62-70,

Communications of the ACM,

0.1145/2428556.2428574




Connected Vehicles

Enhanced Throughput, enhanced safety,
decreased emissions.

e \V2V: Vehicle to vehicle
e V2I: Vehicle to Infrastructure

#’ Decitiches Dantaum
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Feature Accuracy Requirements

e Required quantities: d, S, Si
e Consider d=N-(P,—-P,) where N is the normal to the stop bar
e Uncertainty in d affected by uncertamty in both P, and P, : o‘?i — g%,v + ‘7123,5
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Accurate estimation is required for both:

* Map feature locations
e Real-time vehicle location




CV Positioning Specifications

 No Positioning: No knowledge of position is required.

e Coarse Absolute Positioning (Which Road): O(10 m)
e Achieved by standard GPS with sufficient satellite reception

e Possibly achievable by feature sensors with Enhanced Digital Map (EDM)
e Lane-Level Absolute Positioning (Which Lane): O(1m)

e Differentially corrected GPS with sufficient satellite reception

e Possibly achievable by feature sensors with EDM
 Where-in-Lane Positioning: 0(0.1m)

e Real Time Kinematic and/or carrier phase differentially corrected GPS with
sufficient satellite reception

e Already achievable in relative sense by feature sensors under suitable
conditions

EDM'’s (containing features) provide the means to interconnect data between:
e vehicles and infrastructure

e feature sensors and IMU & GNSS/GPS

14



World Model & Sensing: Scale & Complexity

 Enhanced digital map — stores roadway features (fixed
in global frame for large time-scales)
— Facilitates feature processing
— Knowledge of global vehicle state enables V2V and V2I
sharing
* Short-range relative sensing — detects features &

unmapped objects near vehicle
Commercial success requires EDM

Forward Vision System
-A"'-M e — Lapsetrakng on a global scale
Elind-Spot — Object detection
~ Sensors _ —Far IR capability A
) — - In US alone:
e 300,000 Signalized Intersections

. Range

Senso 0 |
Long- Jl
Range * ‘-’-;_
Sensors . \

Scannlng
Sensor

6,000,000 miles of multilane roads

e Manual mapping is impractical.

* Independent SLAM processing
by millions of vehicles on a daily
basis inefficient and inconsistent

Rear Vision System Enhanced
- Object detection Digital Map
— Far IR capability System




Precision Roadway Map: Data Acquisition

S ol A
Panoramic
Camera
Sensor Bytes/Msg. Msgs./sec Bytes/Sec GB/Hr GB/Hr (with
timestamp overhead)
IMU 19 200 3800 0.013 0.232
LIDAR 1206 3473 4,188,438 15.08 15.278
Camera 35,836,416 7.5 268,773,120 967.583232 967.583
GPS measurement 612 1 612 0.002 0.0374
data
GPS Ephemeris data 256 .002 512 1.8432e-6 3.13344e-5
DGPS data 1071 1 1071 0.0038 0.0039
Total: 273 MB /sec 982 GB/Hr 983 GB/Hr
Hrs. of collection per TB: =1 Hr.
Miles of coverage per TB (assuming a speed of 30 mph): =30 miles




Sensor Type: Comparison

Relative: where-in-lane currently feasible; which-lane & which-road are not

— Sensors: Camera, Radar, Ultrasound; Lidar (currently expensive)

— Pros: Does not require map. Directly senses road relative position (locally).
Many urban features. Also detects obstacles.

— Cons: Vision can be occluded. Light sensitive performance.
Instantaneous degradation with loss of vision.

— Currently: Used for land departure warning, adaptive cruise control

Absolute: which-lane and course positioning are currently feasible; where-in-lane is not
currently reliably feasible

— Sensors: GNSS (absolute position), IMU (high rate and bandwidth), Map

— Pros: High sample rate, high bandwidth, graceful degradation to loss of GNSS

— Cons: GPS can be occluded, challenged in urban canyons

— Currently: Used for routing, (hon-roadway) vehicle control

Relative and Absolute Integrated with Inertial Sensors
— Higher reliability
e Sensor failure modes are independent
e Abs. position & roadway feature map facilitates real time image processing
— High rate & bandwidth
— Graceful degradation

Relative and Absolute Integrated with EDM

— Facilitates data fusion
— Facilitates collaboration: V2V and V2I



Reliable Precise Positioning: Background

Relative: obstacles & features
e Camera, Lidar, Radar, ...

Absolute: Earth rel. Differential Carrier Phase GNSS:

e GNSS Attains 0.01m accuracy

e |Inertial Measurements Used in surveying 1990’s-present

e EDM & Camera, Lidar, .... Too fragile for real-time (RT) human
safety applications

Reliability by redundancy through am Forward Vision sysem
Bl — Object detection

sensor fusion - s _ Far IR capabiilty

Rear Vision System Enhanced
— Object detection Digital Map
— Far IR capability System



Overall Process Block Diagram

Mapping Data
Accumulation

Vision GPS/INS Lidar

4§ 4 3

Raw Data

l Offline Processing

Smoothing/

Feature
Extraction

l Feature Data
Database

Mapping DataBase
Development

Database

Management
Tool

I

Database

Export

Application

Application
Software:
Navigation +
Feature
Detection

I

> Database




LIDAR Operation

Both size and cost are
rapidly decreasing.

LIDAR

T

T Spectrum.ieee.org

MIRROR

H

§| OBJECT

Data: R, v, O, |

» 64 samples/vertical slice
ool » 1000 vertical slices/revolution

R & »15 revolutions/second

Clemson



Driving and data collection ...

Scenario:

e Instrumented vehicle driven through
environment

e Recording: IMU, GNSS, LIDAR,
Imagery

)

Velodyne LIDAR:

e 64 vertically aligned
lasers

e Rotate around vertical
axis at 15-20 Hz

e Measure time-of-flight
and reflection intensity







Georectification

Position of feature in LIDAR
frame, measured by LIiDAR

Rp; & TII; 1 - Rotation and Translation
from platform frame to LIiDAR frame,
constant & known from calibration

Ryp & Tl p:  Rotation and
Translation from world frame to

platform frame, measured by GPS and
IMU

Subscript and Superscript Definitions
W — World
P — Platform
F — Feature
L — Lidar




Georectified Point Cloud: Processing

4] tool -

Mapping Tool

Save J2735

Load J2735

2800
™ 2750
1200 2700

Load Pointcloud

— e —— — —

Extract Ground Extract Road Markings

Load J2735

Georectified point cloud prior to processing. Top down image of target intersection.




Road marking extraction

1. Roadway lateral slice

2 meters

)

— 60 meters —

3. Seed point curve fitting

Residual (m) —

YZ

projection

2. YZ Slice projection, with road surface seed points (red),
calculated from the trajectory points (green)

0.1

-0.1

]
Il

——-

60 meters —

4. Residuals 5. Extracted surface



Georectified Point Cloud: Intersection Mapping

] ol

Mapping Tool

09
-

0.8
Save J2735 0.7 §

06

05

0.4
Load J2735

03

Extract Ground Extract Road Markings

Load J2735

Top down view of georectified point cloud processed Top down image of target intersection with
to extract high reflectivity points near the ground. extracted J2735 data structure superimposed.

Feature types: Lane, road, meridian edges; Stop bars; signs, signals, ....




Automated Mapping Work Flow

Sensors (Table 1)

GNSS
Base

Data Acquisition along Roadway

/Data Calibration &
Georectification

Calibrated data
provided by
manufacturer

Calibration

Calibrated point
clouds

Differential
measurement

Geo referenced

Geo referenced

Geo

Smoothing

image Rectification Rectification | point cloud /
Feature Extraction (Table 2)
* Photolog * Pavement markings:
-~ * Animation & 3-D flythrough * stoplines «—
* Roadway signs * lane edges
< Poles Y

Y

Database Features representation
inJ2735 standard




Reliable Precise Positioning: How it Works uUcRIVERSIDE

* Inertial Navigation:
e High bandwidth, sampling rate, reliability
e Slow, but unbounded, error growth
e Used in military & commerce since 1960’s

* GNSS
e Bounded absolute position error
e Bound is dependent on processing
e Reliability is dependent on environment

e Feature sensors (Camera, Radar, Lidar)
e Bounded feature relative accuracy. Abundant in urban areas.

e No absolute accuracy (without EDM).
e Not robust to environmental conditions (e.g. lighting)

Sensor fusion can achieve, high bandwidth, high sample rate, and
accurate positioning, with reliability versus computational load tradeoff.

©University of California — All rights reserved 27



RTK GPS background ucRIVERSIDE

State: x(t) = [p (t)' TT‘ (t)] € R4 ‘ Figure from Swift Navigation

Code meas.: Pi(tk) = hi,.(m(tk)) + nz(tk')a nﬁ, ~ N(Oa UpQ)
Phase meas.: ¢'(tx) = hi(x(ty)) + AN (tx) + nfp(tk), nfp ~ N(0,0,?)
Real Time Kinematic (RTK):

i ST I (p() = o (001125 + 104 (p(10)) + AN = (025 ]

.

7

ol Satelle Differential GPS

Clock Bias

(1) Geometric
Range

(5) Troposphere

(2) Receiver

. RCV
Clock Bias




RTK GPS background ucRIVERSIDE

State: x(t) = [p(t),7,(t)]e R* . T———
Code meas.:  p'(tx) = hj(x(tx)) + n, (L), nj, ~ N(0,0,%)

Phase meas.: ¢ (tx) = hj(x(tx)) + AN"(tx) + nl(tx), nl, ~ N(0,0,7)
Real Time Kinematic (RTK):

iSO I (p(00) ~ 12 + IR (p() + AN~ 1]

.

7

Challenges:

1. Requires 7+ satellites to ensure good constellation geometry

2. Outlier & incorrect integer (i.e., error) detection

3. Frequent loss-of-lock in urban environments, need reliable on-the-fly
integer ambiguity solutions



RTK GPS/INS background ucRIVERSIBE

State: .CC(t) — [pT(t),’UT(t),qT(t),bg(t), b;(t)]T € R", ng= 15
Code meas.:  p'(tx) = hj(z(ty)) + n’ (tx), n’, ~ N(0,0,°)
Phase meas.: @' (tx) = hj,(x(tx)) + AN"(t1) + ni(tx), nl, ~ N(0,0,7)

Prior for the initial state: x(ty) ~ N(x1,Pq),
Rover kinematics: x(t) = f(x(t), u(t)),
IMU meas.: Ug, =t + b, + ng,

u, = w+ by +ny,

Standard (Extended) Kalman Filter:

e Single epoch (K=1), linear, Gaussian
e Redundancy insufficient for required reliability




Bayesian Trajectory Estimation ucRiversibE

Constraints: ot
o IMU:Uy = {u(r,),tr < 7 < tga1} @ @
U= {U k}kK —1 pix(ts)} phx(tz) [ x(ta), ults)}
— - =

x(t) = f(X(t),u(t))
T(hy1) = O(2(7h), w(Tk))
e Standard Measurements: Y ple'(t) e, N}
p'(tr) = hy(x(tr)) + n,(tr)
e Measurements with Unknown Integer: Z
0 (tk) = hi(x(tr)) + AN*(tr) + ng,(tk)

e X o P(@(t)p(Xi (), Up(YIX)p(ZIX, N)

where X is the trajectory over a K second window

Solved using computational methods developed in the SLAM literature,

extended to accommodate integer unknowns.



Problem Statement ucRIVERSIBE

Given:

« an initial distribution for the state s(tl) N(s1,Py,),
e IMU measurements U = {U}1* !, where Uy, = {@(7,), tr < 7o < tps1},
« DGPS code and carrier phase measurements Y = {Y} £ |, where

Yo = {p"(te) 12 U{9" (tr) 21

Objective:
Estimate the optimal state trajectory X = [zT(¢1),...,27(tx)]T € RE™ and
integers N = [N ... N™|T € Z™ with the given sensor measurements U, Y

and the prior state density ps(s(t1)).

LN (X |z (), U)p(Y[X, N
XE]R*HlKa,}I(QEzmp(S( 1))p( _|_|£I)( 1) )p( | )

X1,P; P MRy = Is(t) - saB,
/ T Z | (x(tr), Uk) — z(tes1) Q.

+ ZZ Ry (z(tk)) — p (tk)H
. -3 I al0) + AN -
ki

CRT Window

—— gg—rif\?f% >
/K




Bayesian Trajectory Estimation

Available Constraints: _Notation:

e U-IMU data

p(t) = R(z(t)) +vp(t)
é(t) = R(z(t)) +vs(t) + AN

* Y- GNSS pseudorange data

e Z— GNSS carrier phase data

2(t) = :r.(tg}—|—ft:f(:r(r).,u{ﬂ—|—ﬂl —I—Mdr

Measured: p(t;), @(t;), u(m),i=1,2,.... M
Estimated: z(73) € R, N e I™ k=0,...,200M

1. IMU Constrained Trajectory Estimate

e X -—state trajectory
Physical ideas:

» v,(f) is accurate to a few meters ¢

 v4(1) is accurate to centimeters  ¢mmmm

« w(7) is very small per step, but
accumulates due to integration ¢===

X = a.l'g}?lax (pg,m (:B(to) — ’JBD)Pwu (X+ - d)(X‘_ U)))

2. Pseudorange Constrained Trajectory Estimate:
X = ag nax (pam (z(t0) — 20) Pw, (Xt — ¢(X,U))pp, (Y — h(X)))

X, N

3. Carrier Phase Constrained Trajectory Estimate:
X, N = arg max (mm (z(to) — x0) puw, (X — @(X, U))pn, (Y — h(X)) pn, (Z — h(X, N)))

A A A A

i ]
Prior Carrier Phase
IMU Kinematic Integration —— Pseudorange



Trajectory Estimation Process

e Joint Estimation: platform trajectory and landmarks

— Bayesia N: X = argmax (pa-m{mlifn"} — T ) Pur, (Xt — &(X,U))pn_(Z - h(XII})

xX

— Equiv: IVIRw = l2(to) —@olleg + D lld((te), U) — @(trs)llas + Y [h(x(t:) — 2(t:) | =,
k i

? ]

Prior

2. Integrated inertial measurements
3. GPS: Code, Phase, Doppler
4. Landmark parameters (not shown) Large set of residual enables
T 150 — —T7b reliable outlier detection
1? B Decompose J = [A, B], where A isffull column rank.
r .
Ep, 0 0 0 0 [ Xp, (£(tg) — =)
i —Eqn 0 0 0 Eqnﬂl
: - . i 5)(1] :
0 0 ‘I*h’_[ —EQK_] 0 5}.’.] EQH—H}H
0 H, ... 0 0 0 ) : . Yr,, (g(&(t1),@(to)) — T(t1))
. ; ; . . ar = 5 h4 r(X) = :
. : : K . XK -1 :
0 0 0 Hy 0 '5)":”\’ Yr,, (g(x(ts), 2(to)) — y(ts))
0 H, ... 0 0 YR, | N | Yr., (h(2(t)) — Z(t))
o| 0o .. o0 Hr |Zgp, | | Sh. (R(#(t)) — Z(tn))




Integer Estimation (by MILES)

Nonlinear constraint equations: Physical ideas:
p(t) = R(z(t)) +v,l(t) e vy(f) is accurate to a few meters
o(t) = R(2(t)) +ve(t) + AN e v4() is accurate to centimeters
(s wlT) i
z(t) = 2(to) + [ £ (2(r), u(r) + w(r) + b(r) ) dr » «(7) is very small per step, but
Jto accumulates due to integration

Measured: p(t;), o(t;), u(te),i=1,2,...,.M

Estimated: z(73) € R*, N e [ k=10,...,200M
Linearized residual equations: MILS Decomposition:

min . lly—A2— BN’ ly—Az—BN|* = |Qiy—QiBN—Raz|*+|Q y—Q BN |*

ZE?HIE‘M. NeJm

* For any N, there exist z to solve first

term exactly

QR factors: E

ILS Solution:  min | Qly—QLBN

* Involves search over integers within
feasible ellipse

e Utilizes unimodual Z:
e [, nonsingular upper triangular Z.7-1 g [mxm |Z| —1

* Qq Q4] orthogonal

X.-W. Chang, T. Zhou, “MILES: MATLAB package for solving Mixed Integer LEast Squares problems,” GPS Solutions, Springer-Verlag, 2007.
P. De Jonge, C. Tiberius, “LAMBDA method for integer ambiguity estimation: implementation aspects,” Delft Geodetic Computing Center LGR-

Series, No. 12.




UCR Implementation Trajectory -

3.6 km campus ring .
Significant tree cover i

Buildings and terrain shading

100 200 300 400

Time (sec)
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Trajectory Estimation Results
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Trajectory Estimation Results: Residuals

Pseudo-range residuals Res. Distributions

Process 1:
* Code, Doppler, IMU |

100 200 400 500 600

PY Bayes i a n S m Ooth i ng , . Dopplz?fﬂresiduals .s ] o 0.011253,0 ~0.436700
7
1 6
_ - L i, i
E " 'W#Mﬁ‘ g ar
. N
=1 2r
1r .,
-2 100 306 306 00 500 06 ° ; ~0.2 0.0 o

o = 0L000G06. ¢ = 0096721

Pseudo-range residuals Res. Distributions

Process 2: ) Ll

0.4

* Integer Estimation 7 __ S
« Bayesian Smoothing g S s s s s s B i G
e Integer-resolved f
phase and IMU o itk s e
when available S ' ' _
* Code, Doppler, IMU "o F -
otherwise
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LIDAR Intensity Point Cloud...







Bing Map with TFHRC aerial image overlay
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Georectified LIDAR-based intensity image
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Bing Map, Aerial Image, LIDAR image overlay
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LIDAR Traffic Sign Extraction...

Detection & mapping:
High intensity Lidar return, due to high reflectivity
Cluster diameter of approximately one meter
Initialization: Cluster defines plane with horizontal normal
vector (minumum eigenvalue problem)
Refinement: Bayesian nonlinear estimation problem

Each sign detected from multiple angles has an observable location.




Estimated Plane Position vs.
Surveyed Plane Position

Survey North Survey East Max Survey Computed Computed Abs. Horiz.

# (m) (m) ECEF Std (m) North (m) East (m) Error (m)
1 -41.192 -87.313 0.042 -41.133 -87.345 0.067
2 -55.321 -62.332 0.126 -55.271 -62.328 0.050
3 -89.666 -36.001 0.159 -89.656 -36.112 0.111
4 -142.194 80.051 0.057 -142.244 80.054 0.050
5 -139.078 146.342 0.047 -139.101 146.358 0.028
6 -115.571 144.863 0.009 -115.658 144.923 0.106
7 -85.860 141.540 0.031 -85.882 141.543 0.022
8 -47.903 122.360 0.025 -47.952 122.415 0.073
9 -35.369 99.666 0.045 -35.381 99.686 0.023
-44.498 101.259 0.024 -44.433 101.281 0.068
-62.597 125.258 0.04 -62.555 125.306 0.063
-134.138 76.493 0.025 -134.073 76.519 0.069
-104.598 -4.185 0.061 -104.569 -4.152 0.044
-118.704 133.631 0.015 -118.618 133.724 0.126

Sub-decimeter accuracy is achieved.




Real-time Navigation

. X 1l
input Z |« output
_____ -~ _——
. o \
|{ . | — Kinematic Xy N {Xk |
| High rate | | Integration v ’QJ? | T
Sensors ~| +
| u )
| ' -
l - ~
| - oX
| | V ‘
| _
| Aiding Y | + oy Error
‘ Sensors | " Estimator

1. High rate sensors
o Encoder or IMU

2. Aiding measurements
o GPS, image features

3. CRLB

See J.A. Farrell, Aided Navigation, McGraw-Hill, 2008.



Application Graphical User Interface...







Real-Time Traffic Sign Recognition Process




Sign Aiding ...







Reliable Precise Positioning: Sensor Fusion UCRIVERSIDE

X1,P; t* pX,N,Y,U) = p(X,U,N)p(YX,U,N)
\ 7 = p(Xe,x(1). U)p(YIX. N)
6‘_“*‘_“5 Sgﬂ‘“t'_‘b—*—) = p(x(11), U)p(X4|x(11), U) p(Y|X, N)
[ l — p(e() p(Xy x (1), U p(YX, N)
'FI }"2 Y
~ _ = p(s(0)p(Xy |x(11), U)p(YIX, N).
| P - 2
CRT Window (XN = aremin (X, NI,
. . where r is the vector:
Multi-epoch sensor fusion: : Se., (s(t1) — s1)
Increasing the window size K Sq, (6(=(t), U1) —x(t2))
 Pro:Increased measurement Sau . (@(altx) Uxr) = a(tx))
redundancy HXN) = ot (B (x(t1) — oM (1))
* Pro: Increased ability to detect 1 :
: _o, " (hg (x(tx)) = p" (1))
and remove anomalies 7, (hi(e(0) + AN~ ¢ (110)
e Con: Increases computational load :
(b (x(tk)) + AN ™ (tx))

Commercial applications are cost, accuracy, and reliability sensitive.
Decreased computational load enhances commercial feasibility.

s(t) = [v7(¢),q7 (1), bE (), b7 (1)) T € R~

©University of California — All rights reserved



Contemplative Real-time Estimation (CRT)

A

X = argxmax (png (x(to) — XO)PwU (X4 — &(X. U))Pnp (Y — h(X)))

e Real-time computation
e Removal of faulty data within the CRT window
e Correction of linearization point errors

yaw, deg

* Yaw & bias initialization X0, Po CRT window tx L
( ;
f UO Ul
*— ——————
|
Y2 V-1 Yo Yk
200 T
= ; . ; ey : . '
- S f il | T CRT _
180 . . . . . = = = Ground true !
S T S SO SRS USROS SO VTN PO s CRT dd-code
f f f f . . . S5 EKF dd-code
GO oot L T | ERRREER SR A L 1 o al [——= _EKEF phase
[]_"""_";';"_"'_";"—"'—"_’"—'"—";"‘;" g 3_
: : : : : : 1 %’_ 2r
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Cumulative sum of the probability (%)

CRT Performance

Different algorithms. Exactly the same data (INS and L1 pseudorange)

Position Error vs. Cumulative sum of the probability
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Vehicle trajectory vs. number of available GPS satellites
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e |MU: Epson M-G320, 250 Hz

e GPS: Ublox 6T (differential)

e CPU: Qualcomm Snapdragon 410c
e OS: Linux Debian 8

e Biases and yaw initialized at zero

e Duration: 495 seconds



Cumulative sum of the probability (%)

CRT Performance

Different algorithms. Exactly the same data (INS and L1 pseudorange).

Position Error vs. Cumulative sum of the probability Receiver Operating Characteristics
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Existing Bayesian Carrier Phase/IMU Approach

1) Obtain the float solution by neglecting the integral nature of the ambiguity N

X,N) = argmin (X, N)|.
(X,N)€eRns K+m

with standard outlier rejection.
2) Starting from (X, N), solve the NMILS problem in eqn. (11) to obtain the
optimal solution (X*, N*):

(X*\N*) = argmin_|lr(X,N)]?,
XeRns & NeZm

3) Check the validity of integer estimates with integer validation techniques.

X.W. Chang and T. Zhou. MILES: MATLAB Package for Solving Mixed Integer LEast Squares Problems. GPS Solution, 11(4):289-294, 2007.



Revised Step 2: Common Position Shift (CPS)

Common Position Shift Definition:

/ A 59~
X' =X®Ap = [z7(t1)DAP, ..., 2T (tx)DAP]"
58.5. s
Main Result: [r(X,N)|> = [ro(X)|?+ |ro(Ap,N|X)> £ ®*7 7 4 &
where
o Insensitive to CPS: ||, (X)|]? = ||r.(XDAp)|? i |
« Equality holds in the time-invariant, linear case. ‘ e 2E
¢ Error is bonded in time-varying, nonlinear case: 915 ~~2820
E{|r(X@Ap*, N*)?} < (1 + C3) E{|[r(X*,N*)|?} Fastm) 90 B0 Norn (m)

Float Solution:

(X,N)=  argmin ||r(X,N)|?%

(XN)eRu\ K4m

Integer-free Solution

X® = argmin ||r,(X)||%.
XER“" K

Propositign 1. lf the variable NN is treated as a real vector,
then for X and N as defined in eqn. (12)

and X® = X.

(X, N)|? = [|ra (X)||?

New Algorithm.
1) Find either the float solution X or the integer-free solution X®,
2) Find (Ap*,IN*) that is the optimal NMILS solution of

Tz’)(Ap: N‘X)”Qﬁ

min |
ApeR3,NezZm

where X is fixed when evaluating [|7]|%.

3) Check the validity of the integer estimates.
The trajectory-integer CPS estimate is (X@Ap*, N*).

Km (40,? +30,7) [Bi(Af,0))?

B 2K—-1)ym-3

o For K =10, Ay = 1.5, m =7, 0, = 1.0 meters and o, = 0.020: C3 = 0.04

« For NMILS with residuals at the cm level; perturbations are expected to be less than
0.4mm.

3




Computation Reduction

Table 1: Computation Comparison

Step | Process Original Method New Method
1) Float solution | O((n,K)3) x J; | O((nsK)?) x J;
2a) Integrate INS fKng x Jo 0
2b) | QR of 4 IM(n K)? x Ty | 202m)(3)% x Js
T 2 ~ 2 ~
2c) | QRZ of QLB | 2(2Km)m* x Ja | 2(2m)m* x Jq
2d) | Integer Search (%) x T () x Jo
3) Integer Valid. Km Km
TABLE I
EXAMPLE COMPARISON {_]'F COMPUTATIONAL LOATD: f = 200, K = 10, jl - # NLS linearized iterations to find float solution
ng =16, Ns = 160, M =297 ANDm =7 Ja - #ILS linearized iterations
K - Measurement window length
Step | Direct MILS CPS MILS m - Number of measurements per measurement time
2a) | 3.20 x 10% x 72 0 n. - Dimension of the state vector
2b) | 1.52 x 107 x Ty | 2.52 x 102 x Jg f - IMUsample rate
- M - Row dimension of the residual vector:
2c) | 1.37 x 10* x Ja | 1.37 x 10% x Ja

MEnK+2mK —3



% of total 38167 trials.

% of total 2735258 meas.

Position Estimation Comparison
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CPS, Error Bound, & Error
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Aiding Sensor Categories

Technology Principle Veh. Cost Rdwy. Cost Req'd Advances

GPS TOA 10m Low Bases, comms Modernization
DGPS 1m Low Bases, comms Modernization
CPDGPS 0.01m High Bases, comms Modernization
Pseudolites TOA, TDOA 0.01m Med High > First generation
o -- Cell Phone RSSI km's Low Existing
E S iu Cell Phone TOA, TDOA 100°s m Low Existing Physicallayertiming
= -l --TV- digital TOA 10'sm ?? Bases, comms 2P
:'-E E’ -- Radio AM Analog TOA 10'sm Low Existing ?7?
E 2‘ -- Radio FM Analog TOA T Low Existing 77
= -- Radio Digital TOA e Low Existing 77
-- Packet Radios TOA, TDOA km's Low High Physicallayertiming
® o Vision AOA Low-Med Feature Mapping Feature Robustness
'E' E Radar AOQCA, RTOA 0.1m Low-Med Feature Mapping Feature Robustness
w @ Liclar AOA,RTOA 0.01m High Feature Mapping Feature Robustness

GNSS: Proven with open skies. Challenging in urban environments.

TRN: Shows great promise as physical layer timing advances

FB: Assessed as viable if precision roadway feature maps are available. Research leading to
reliable and accurate FB positioning demonstrations was a project focus.



Visible Light Communication
LED’s as Actlve Features

VLC based navigation

LEDs are known features
— Active and bright
— Known shape & location

Facilitate data association

— Mahalonobis distance

— Encoded IDs ensure
correctness

Luminous efficacy (Im/W)

300
200

100
70

40
30

20

10
7

4
3
2
1

L . (“ Cinear flucres] |
cent lamp

- [Edison’s light bulb i_..- ' i’ f

B (C filament) i |

-
-
s

‘ & Light-emitting |
diode (LED
- Compact fluores-|— .
H cent lamp =
- Incandescent Iamp
(W f|Iament)
1880 Tlme and Technology i 2015

frrr

data:1 data:0 data:1  data:0 data:1

Solution approach: Joint
* LED path recovery
* Data sequence extraction

data:0



LED VLC Navigation Applications

e Qutdoor Applications
e Transportation
» Aircraft taxiways
* Indoor Applications
* Hospital patients & equipment

e Retail & tourism assistant

LED vehicular safety
lighting—each caris
surrounded by an IR
sensor bubble




LED VLC Navigation Solution

Challenges:
*  Multiple LED projections within FOV
*  Noise and clutter

* Moving sensor causes moving LED
projection onto array.

— Is this bit a zero or am | looking at the
wrong pixel?

Time, t

Pixel index

Q-best hypotheses and time window data extraction:

O Motion information can be used to match the

measurements between frames

0 Allows likelihood evaluation per candidate

sequence

0 Challenge is algorithm for finding most likely

sequences



Finding & Storing Lanes and Edges




Curve Fitting: Sparse Optimization

y)

N

W

Given a set of position data D = {Ny. Ek}i_‘r:o representative of a lane
centerline, fit a piecewise C? curve, with piecewise constant curvature
to the data.




Road Design and Spline Fitting
Given {P;}Y |, find the parameter vector @, such that the road curve
v(s) = @' (5)®, where ®(s) is the basis vector.
Solution:

(1) T

L v(sNn)

®

N Yo S ISRy USRI SN SO SO S— |
E . i i
g i i
EDMap 2004 concluded that 5 : i
. [V SEEE R b T e e B .
curvature computed from spline | 3 : :
fitting was not appropriate for ; § : : : : :
curve warning applications. o . I e I A A e T
; - : : - Spline
20 i | | | | i' |
0 30 100 1350 200 250 300 350

Arc length, 3, m

4010



Road Design Constraints

Given a set of position data D = { Ny, Ek}ﬁ';o representative of a lane
centerline, fit a piecewise C? curve, with piecewise constant curvature
to the data.

FLh
¥

< ﬂ(i‘1} 1I‘...

Cii<1)
B(1+1)

A(i+1)



Curve Generation via Sparse Optimization

Given a set of position data D = { Ny, E’;f}ff:o representative of a lane
centerline, fit a piecewise C? curve, with piecewise constant curvature
to the data.

oy min ST (k) = WIS + Al

st. x(k+1)=f(x(k),As(k),B(k))
—As(k) <0, k=0,...N—1

Kinematic function: f

px(k+1) = p.(k)+ As(k)cosi(k) y(k) = [px(k), py (k)]
py(k+1) = py(k)+ As(k)sin (k) b =[58(0),.... 8(N —1)]
k+1) = p(k)+ r(k)As(k) O
s(k+1) = s(k)+ As(k) f(k) [pm’py’ﬁ - hlﬁk)
k(k+1) = r(k)+ B(k) W (k) cD= {iz\"kz Ek‘}k_:(}

S. Zhao, J. A. Farrell, "Optimization-based Road Curve Fitting," IEEE CDC and ECC, 5293-5298, 2011.



Curve Generation via Sparse Optimization

Given a set of position data D = { Ny, Ek}ﬁ';o representative of a lane

centerline, fit a piecewise C? curve, with piecewise constant curvature
to the data.

min y(k) — Wik +\|lb
LB(O)‘_JB(M!ASWle (k) = W(HE)5 + Allbll

st. x(k+1)=f(x(k),As(k),3(k))
—As(k)<0.k=0....N —1

x 107
5

Curvature, (s), 1/m

® Spline
®  Our method
0 50 100 150 200 250 300 350 400
Arc length, s, m




Literature: SLAM

At RSE RIS E SRR «  Statistical relationships between geometric

1987
H.F. Durrant-Whyte, “Uncertain geometry in robotic: uncertainties

R.C. Smith, P. Cheeseman, "Estimating uncertain spa Joint state and map estimation huge state
Vehicles, I.J. Cox and G.T. Wilfon, Eds., Springer-Verla ! !

. 2 .
J.J. Leonard, H.F. Durrant-Whyte, "Simultaneous mag hUge (|'e" O(L )) CompUtatlonal load.

robot," IEEE/RSJ IROS, pp. 1442-1447, 1991. No convergence proofs

J.J. Leonard, H.F. Durrant-Whyte, “Mobile robot loca Approximate implementations
June 1991.
H. Durrant-Whyte, D. Rye, and E. Nebot, “Localisatio

Research , Springer Verlag, pp. 613—-625, 1996. Convergence results

M. Csorba, “Simultaneous Localisation and Map Buil | " f lati
S. Thrun, D. Fox, and W. Burgard, “A probabilistic app MR ITEE QI e =eeilrslzl e s

mobile robots,” Mach. Learning, 31, (1), pp. 29-53, 1 Understanding of the probabilistic problem
M. W. M. Gamini Dissanayake, P. Newman, S. Clark, t structure

simultaneous localization and map building (SLAM) ¢
R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Bal
information filters,” Robotics: Science and Systems. MIT Press 2005

H. F. Durrant-Whyte, T. Bailey, “Simultaneous Localization and Mapping: Part 1,” IEEE R&A Magazine, p.99 —
108, June 2006.

R. M. Eustice, H. Singh, J. J. Leonard, “Exactly sparse delayed-state filters for view-based SLAM,” IEEE T.-Rob.,
22 (6), pp. 1100 — 1114, 2006.

F. Dellaert, M. Kaess, “Square Root SAM: Simultaneous Localization and Mapping via square root
information smoothing,” Int. J. Rob. Res., pp. 1181 - 1203, Dec. 2006.

M. Kaess, A. Ranganathan, F. Dellaert, “iSAM: Incremental Smoothing and Mapping,” IEEE T.-Rob., 24 (6), pp.
1365 — 1378, 2008.

K. Konolige; M. Agrawal, “FrameSLAM: From bundle adjustment to real-time visual mapping,” IEEE T.- Rob.,
24 (5), pp. 1066 — 1077, 2008.




Literature: Receding/Moving Horizon Estimation

A.H. Jazwinski, “Limited memory optimal filtering,” IEEE TAC, 13 (5), pp. 558-563, 1968.
K. R. Muske, J. B. Rawlings, J. H. Lee, “Receding horizon recursive state estimation,” ACC, pp. 900-904, 1993.

D. Q. Mayne, H. Michalska, “Adaptive receding horizon control for constrained nonlinear systems,” IEEE CDC,
pp. 1286-1291, December 1993.

G. Zimmer, “State observation by on-line minimization,” Int. J. Control, 60 (4), pp. 595-606, 1994.

P. E. Moraal, J. W. Grizzle, “Observer design for nonlinear systems with discrete—time measurements,” IEEE
TAC, vol. 40, no. 3, pp. 395-404, 1995.

D.G. Robertson, J. H. Lee, and J. B. Rawlings, “A moving horizon-based approach for least-squares
estimation,” AIChE Journal, 42 (8), pp. 2209-2224, August 1996.

M. Alamir, “Optimization based non-linear observers revisited,” Int. J. Control, 72 (13), pp. 1204-1217, 1999.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model predictive control: Stability
and optimality,” Automatica, 36(6), pp. 789-814, 2000.

C. V. Rao, J. B. Rawlings, “Constrained process monitoring: moving-horizon approach,” AIChE Journal, 48 (1),
pp. 97- 109, January 2002.

C. V. Rao, J. B. Rawlings, D. Q. Mayne, “Constrained state estimation for nonlinear discrete-time systems:
stability and moving horizon approximations,” IEEE TAC, 48 (2), pp. 246-258, February 2003.

E. L. Haseltine, J. B. Rawlings, “A critical evaluation of extended Kalman filtering and moving horizon
estimation,” Technical Report 202-03, March 12, 2003.

A. Alessandri, M. Baglietto, G. Battistelli, V. Zavala, “Advances in moving horizon estimation for nonlinear
systems,” IEEE CDC, pp. 5681 - 5688, December 2010.

D. A. Copp, J. P. Hespanha, “Nonlinear output-feedback model predictive control with moving horizon
estimation,” IEEE CDC, pp. 3511-3517, December 2014.



Comments & Conclusions

* Vehicle autonomy is built upon:

— Planning and Decision Making

Generator
Event Trajectory

World

— World Models Model |
Sensor Behavior
— Sensor Processing Processing Controller
— State Estimation and Control / sensors__Stucture  Actuators_ \

* Feasibility demonstrations abound

* Reliability enhancements are required to contain risk
and build confidence
— Multiple sensors provide a wealth of independent information
— Information extraction, fusion, validity checking are critical

— Systems, control, and instrumentation engineers and scientists
have the knowledge and skills to achieve these advancements
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Levels of Autonomous Vehicles
(NHTSA 2013)

Level 1 — Function-specific Automation: Automation of specific control functions,
such as cruise control, lane guidance and automated parallel parking. Drivers are
fully engaged and responsible for overall vehicle control (hands on the steering
wheel and foot on the pedal at all times).

Level 2 - Combined Function Automation: Automation of multiple and integrated
control functions, such as adaptive cruise control with lane centering. Drivers are
responsible for monitoring the roadway and are expected to be available for
control at all times, but under certain conditions can disengaged from vehicle
operation (hands off the steering wheel and foot off pedal simultaneously).

Level 3 - Limited Self-Driving Automation: Drivers can cede all safety-critical
functions under certain conditions and rely on the vehicle to monitor for changes
in those conditions that will require transition back to driver control. Drivers are
not expected to constantly monitor the roadway.

Level 4 - Full Self-Driving Automation: Vehicles can perform all driving functions
and monitor roadway conditions for an entire trip, and so may operate with
occupants who cannot drive and without human occupants.
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