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Identification and Lossy Reconstruction
in Noisy Databases

Ertem Tuncel, Member, IEEE and Deniz Gündüz

Abstract— A high-dimensional database system is studied
where the noisy versions of the underlying feature vectors
are observed in both the enrollment and query phases. The
noisy observations are compressed before being stored in the
database, and the user wishes to both identify the correct
entry corresponding to the noisy query vector and reconstruct
the original feature vector within a desired distortion level.
A fundamental capacity-storage-distortion tradeoff is identified
for this system in the form of single-letter information theoretic
expressions. The relation of this problem to the classical
Wyner–Ziv rate-distortion problem is shown, where the noisy
query vector acts as the correlated side information available
only in the lossy reconstruction of the feature vector.

Index Terms— High dimensional databases, identification
systems, Wyner–Ziv coding.

I. INTRODUCTION

H IGH-DIMENSIONAL data, e.g., biometric features such
as fingerprints and iris scans, or behavioral patterns such

as gait and keystrokes, are replacing classical identification
documents for increased security. However, efficient use of
such data for sensitive security applications requires building
a large database and fast search algorithms for reliable iden-
tification of the entries in the database. On top of the storage
constraints and search speed requirements, another difficulty
arises due to the noisiness of the observation of features in
both the enrollment and the identification stages. This might
be either due to the random noise in the scanning device as
in the case of fingerprinting or iris scanning, or due to the
temporal changes in the expression of the underlying feature
as in the case of behavioral patterns such as keystrokes.

The first attempts in understanding the fundamental per-
formance limits of retrieval from high-dimensional databases
were made in [4] and [10], which characterize the identifica-
tion capacity, i.e., the maximum exponential rate of entries
that can be reliably identified in a database. In their model,
which all the subsequent work (including this paper) is based
upon, the data management system operates in two phases:

1) Enrollment Phase: Noisy vectors Y n(m), m =
1, 2, . . . , M , are observed and recorded in the database.
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Fig. 1. The block diagram of the data management system of [4] and [10].

It is assumed that the underlying feature vectors Xn(m)
are independent and identically distributed (i.i.d.) with a
known distribution PX , and pass through a memoryless
channel PY |X to produce Y n(m).

2) Identification Phase: Nature chooses W uniformly from
1, 2, . . . , M , and the corresponding Xn(W ) passes
through another memoryless channel PZ |X , producing
the query vector Zn . The goal is then to identify W
with high probability by using only the query Zn and
the enrolled noisy vectors Y n(1), . . . , Y n(M).

Figure 1 shows these two stages in one diagram. It was shown
in [4] and [10] that for large n, M ≈ 2nRi

objects can be
reliably identified if and only if Ri < C , where C has a
single-letter characterization given by

C = I (Y ; Z).
To reduce the storage space (thereby speeding up the

identification process), it may be desirable to store only a
compressed version of the observed feature vectors rather
than the whole noisy observation, as shown in Figure 3.
Obviously, this enhancement is not free, but rather comes at a
cost of reduced identification capability. That is because some
feature vectors distinguishable in the uncompressed database
scenario would now be mapped to the same quantization
index J , and cannot be disambiguated. In other words, the
compression at the enrollment stage introduces a tradeoff
between the identification capacity and the compression rate.
This tradeoff was independently characterized in [9] and [6]1:

1We note here that, in [9], in addition to the enrolled vectors, noisy queries
are also subject to finite-rate compression, which adds another dimension to
the tradeoff.
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Fig. 2. Illustration of a typical capacity-storage tradeoff in a noisy
database system. Here Rc denotes that compression rate while Ri denotes
the identification rate, whose values are bounded by the entropy of the
noisy enrollment distribution, and the mutual information between the noisy
query and enrollment distributions, respectively. Since the optimal tradeoff is
concave with slope < 1, the point (Rc − �R, Ri − �R) always lands on the
interior of the achievability region.

A compression/identification rate pair (Rc, Ri ) is achievable
if and only if there exists an auxiliary random variable U such
that Z − X − Y − U forms a Markov chain and

I (Y ; U) ≤ Rc

I (Z; U) ≥ Ri ,

where U is distributed over some discrete alphabet U satisfy-
ing |U | ≤ |Y|+1. Equivalently, M ≈ 2nRi

objects are reliably
identified if and only if Ri < C(Rc), where C(Rc) is the
storage-constrained capacity of the system given by

C(Rc) = max
Z − X − Y − U
I (Y ; U) ≤ Rc

I (Z; U).

In this work, we consider another dimension of the problem.
Suppose that in the identification stage, we require not only
a reliable identification of the index W , but also a lossy
reconstruction of the underlying feature vector Xn(W ). In
a sense, this general problem combines the capacity-storage
tradeoff problem studied in [9] and [6] with the classical
Wyner-Ziv rate-distortion problem in [11]. That is because
the noisy query vector serves as correlated side information
available only at the identification/reconstruction stage.

Interestingly, the behavior of optimal schemes significantly
differ in the two problems we combine. More specifically,
while binning is an essential component of optimal Wyner-Ziv
coding, it is not utilized at all in order to achieve the optimal
capacity-storage tradeoff in biometric databases. So, how can
we unify the two coding approaches and obtain a general
scheme that always achieves the capacity-storage-distortion
tradeoff?

The answer lies in understanding what binning brings about
in the capacity-storage tradeoff for a fixed reconstruction
distortion: While it reduces the compression rate, say by �R,
it compromises the identification rate also by �R. That is
because having access to only the bin indices of the entries
in the identification phase, the system has no choice but to

check the query vector Zn against every possible codevector
in the encoded bin for a “match” (which comes in the form of
joint typicality). Since there are ≈ 2n�R randomly created
codevectors in each bin, that increases the likelihood of a
mismatch by the same factor. Using this and the fact that the
(Rc, Ri ) tradeoff is always concave with a slope less than
unity2, one can observe that if we start at the boundary of
the achievable capacity-storage region and perform binning,
we always land on the interior of that region. See Figure 2
for an illustration of this observation on a typical capacity-
storage tradeoff region in a high-dimensional data management
system. This, in turn, explains why binning need not (and must
not) be used for achieving optimal capacity-storage tradeoff.
On the other hand, when a distortion constraint is imposed,
compression rate cannot be reduced further than a certain rate
without recourse to binning, implying that binning is necessary
to characterize the entire tradeoff.

In light of these observations, we derive a single-letter infor-
mation theoretic expression for the set of achievable capacity-
storage-distortion triplets. We also compute the tradeoff for
two examples. Although these examples are simple, they are
instrumental in understanding the behavior of optimal codes
with respect to binning.

The rest of the paper is organized as follows. We introduce
the system model and the necessary definitions in Section II.
The main result of the paper is presented in Section III, and
Sections IV and V are dedicated to its proof. In Section VI
we study a binary symmetric feature vector and identify the
capacity-storage-distortion tradeoff assuming noiseless obser-
vation in the enrollment phase and an erasure channel in the
query phase. Section VII concludes the paper.

II. SYSTEM MODEL

Our system model is depicted in Figure 3. We assume that
the feature vectors {Xn(m)}M

m=1 are generated independently
with the identical distribution of

P[Xn(m) = xn] =
n∏

i=1

PX (xi )

over the finite feature alphabet X .
The database is formed by an enrollment phase, in which

the noisy versions of the feature vectors of individuals are
observed and recorded to the database. We denote the observed
noisy feature vector of individual m by Y n(m), m ∈ M =
{1, . . . , M}, which are assumed to be the output of a discrete
memoryless channel (DMC) characterized by PY |X , where Y
is the finite observation alphabet. We have

P[Y n(m) = yn|Xn(m) = xn] =
n∏

i=1

PY |X (yi |xi )

for m ∈ M.
In the enrollment phase, each entry is compressed before

it is recorded to the database, and only the compressed

2The only exception is when there is no noise, in which case Ri = Rc is
the tradeoff.
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Fig. 3. The diagram of the proposed data management system with the added reconstruction phase.

descriptions of the observed feature vectors are stored in the
database. We consider a deterministic compression function

f : Yn → L = {1, . . . , L} ,

where L denotes the index set for the compressed observation
vectors. We denote the index for entry m ∈ M as J (m) =
f (Y n(m)), and define J � J (1), . . . , J (M). These indices
refer to length-n codewords from the compression codebook
of size L.

In the identification phase, an index W is chosen uniformly
from M and is independent of the database entries. The user of
the database observes Xn(W ) through a memoryless channel
characterized by PZ |X with finite output alphabet Z , i.e.,

P[Zn = zn|Xn(W ) = xn] =
n∏

i=1

PZ |X (zi |xi), (1)

where Zn is the output of the channel. Note that due to
the independence of the noisy observation channels in the
enrollment and the identification phases, Y n(W )−Xn(W )−Zn

forms a Markov chain.
The user has two goals. The first goal is to identify W in

the database by using the noisy observation vector Zn and the
entries of the database {J (m)}M

m=1. In addition, he/she also
wants to reconstruct an estimate of the original feature vector
Xn(W ) within a desired average distortion requirement.

We define two separate functions for the identification and
the reconstruction processes. The identification function is
defined as

g : LM × Zn → M

and the corresponding estimate is denoted by

Ŵ = g(J, Zn).

The average error probability in the identification process is
defined as

Pn
e � 1

M

∑

w∈M
Pr[Ŵ �= W |W = w] .

The lossy reconstruction function is defined as

h : L × Zn → X̂ n,

where X̂ is the finite reconstruction alphabet. The correspond-
ing reconstruction is denoted by

X̂n = h(J (Ŵ ), Zn)

and the distortion it incurs is measured by the single-letter
measure

d(xn, x̂ n) = 1

n

n∑

i=1

d(xi , x̂i ),

where d : X × X̂ → [0, dmax]. Though the reconstruction
function outputs a legitimate X̂n even when Ŵ �= W , we are
only interested in upper-bounding the distortion conditioned
on Ŵ = W .

Definition 1: (Rc, Ri , D) is an achievable compression
rate, identification rate, and distortion tuple if, for any ε > 0
and sufficiently large n, there exist a deterministic enrollment
function f and deterministic identification and reconstruction
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functions g and h, respectively, such that

1

n
log L ≤ Rc (2)

1

n
log M ≥ Ri (3)

while

Pn
e ≤ ε (4)

E[d(Xn(W ), X̂n )|Ŵ = W ] ≤ D + ε . (5)

We also denote by R the set of all achievable (Rc, Ri , D)
triplets.

Remark 1: We would like to point out that the compression
rate here, similar to the data compression rate in source coding,
quantifies the amount of data that needs to be stored per
database entry, rather than trying to reduce the total amount
of stored data for the whole database. Compression reduces
the size of the data that needs to be stored for each entry
from n log |X | to n Rc, ignoring the sublinear terms. On the
other hand, the total amount of stored data depends also on
the number of entries M . In the case of a discrete feature
alphabet, X , compression reduces the total amount of stored
data by a factor of log |X |

Rc , while the same reduction can be
obtained by enrolling Rc

log |X | M entries, rather than M , which
would still correspond to the same identification rate. However,
compression will still be useful when the identification rate is
fixed and the user has no control on the number of individuals
enrolled in the database, and the memory space is allocated for
the maximum number of users corresponding to the specified
identification rate. Moreover, in the case of continuous feature
alphabets, compression is the only way to store the feature
vectors in a finite memory.

III. CAPACITY-STORAGE-DISTORTION TRADEOFF

The main result of the paper is stated in the following
theorem.

Theorem 1: Define R∗ as the region of triplets (Rc, Ri , D)
for which there exist an auxiliary random variable U ∈ U with
joint distribution pUY X Z and a function φ : U ×Z → X̂ such
that U − Y − X − Z forms a Markov chain and

Ri ≤ I (U ; Z)

Rc − Ri ≥ I (U ; Y |Z)

D ≥ E[d(X, φ(U, Z))].
Then R = R∗.

Remark 2: Using arguments that have become folklore, it
is straightforward to show that R∗ is convex and it suffices
to consider auxiliary alphabets U with |U | ≤ |Y| + 2.
Comparing this cardinality bound with the one in Lemma 1
of [6], we observe that the reconstruction requirement of the
original feature vector, which introduces the average distortion
constraint in Theorem 1, increases the cardinality bound on the
auxiliary random variable by one.

If there is no reconstruction requirement, we obtain the
following capacity-storage tradeoff by letting D = dmax.

Corollary 1: A compression-identification rate pair
(Rc, Ri ) is achievable if and only if there exist a random

variable U ∈ U with joint distribution pUY X Z such that
U − Y − X − Z forms a Markov chain and

Ri ≤ I (U ; Z) (6)

Rc − Ri ≥ I (U ; Y |Z), (7)

where |U | ≤ |Y| + 1.
The equivalence of (6) and (7) to

Ri ≤ I (U ; Z) (8)

Rc ≥ I (U ; Y ), (9)

which characterize the original region derived in [9] and [6],
follows from the rate transfer analysis in [7, Theorem 1]. We
discuss this subtlety in Appendix A.

Another special case of this setup is obtained if we ignore
the identification requirement of the user, i.e., by letting
Ri = 0. It is not hard to see that the model then reduces to
the classical Wyner-Ziv problem of lossy source compression
in the presence of receiver side information with the slight
difference that the receiver wants to reconstruct the original
source vector Xn rather than the noisy vector Y n that is
available at the encoder (cf. coding of remote sources [12]).
We obtain the following rate-distortion region.

Corollary 2: A compression-distortion pair (Rc, D) is
achievable if and only if there exist a random variable U ∈ U
with joint distribution pUY X Z such that U − Y − X − Z forms
a Markov chain and

Rc ≥ I (U ; Y |Z)

D ≥ E[d(X, X̂)]
with |U | ≤ |Y| + 1.

IV. ACHIEVABILITY

We will first prove the achievability of an (Rc, Ri , D) tuple
for which there exist a random variable U ∈ U and a function
φ : U × Z → X̂ satisfying U − Y − X − Z and

Ri + �R ≤ I (U ; Z) (10)

Rc + �R ≥ I (U ; Y ) (11)

D ≥ E[d(X, φ(U, Z))] (12)

for some �R ≥ 0 which will be specified later. This auxiliary
−�R will play the role of rate transferred from the “second-
stage” rate Rc to the “first-stage” rate −Ri of the fictitious
source coder mentioned in Appendix A. In the actual scheme
we next describe, this rate transfer is concretized through the
use of binning, as discussed in the Introduction.

Fix pU |Y and the function φ that satisfy the conditions in
Theorem 1. We first generate a codebook of size 2n(Rc+�R)

that consists of i.i.d. codewords Un . We index the codewords
Un( j, k) for j = 1, . . . , 2nRc

and k = 1, . . . , 2n�R .

A. Enrollment

For any yn ∈ Yn , we define the enrollment function f (yn)
as the smallest index j for which (yn, Un( j, k)) ∈ T n[Y U ]3

3For a probability distribution PX , we denote by T n[X ] the set of all strongly
typical sequences. For more detail on strong typicality see [2].
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for some k = 1, . . . , 2n�R . We set f (yn) = 1 if no such
index can be found. Thus, one can think of the collection of
all codewords Un( j, k) for k = 1, . . . , 2n�R as “bins,” and
f (yn) as a source coder which records only the bin index.

B. Identification

For any noisy observation zn ∈ Zn and the given com-
pression indices j (1), …, j (2nRi

) of the database entries,
the identifier looks for a database entry m ∈ {1, . . . , 2nRi },
such that (zn, Un( j (m), k)) ∈ T n

[ZU ] for some k =
1, . . . , 2n�R . We define the identification function ŵ =
g( j (1), . . . , j (2nRi

), zn) as the smallest such m, and set
g( j (1), . . . , j (2nRi

), zn) = 1 if no such m is found.
So far, the only randomness mentioned above is that of

the codebook Un( j, k). We pause here to emphasize that this
randomization is for the purpose of creating an ensemble of
codebooks over which we compute average probability of error
and average distortion. On the other hand, the database is filled
with random entries also, but this randomness is inherent to
the problem and is independent from codebook generation.

Now for m = 1, . . . , 2nRi
, define J (m) = f (Y n(m)) and

K (m) as the smallest k found in the process of enrolling
Y n(m). If no ( j, k) was found, also set K (m) = 1. Although
K (m) is not recorded, it is useful to define it for analysis
purposes. Finally, let Ŵ = g(J, Zn).

C. Reconstruction

For any noisy observation zn ∈ Zn and a given compression
index j ∈ L, the reconstruction function h( j, zn) is defined as
follows. Find the smallest k such that (zn, Un( j, k)) ∈ T n[ZU ],
and output φ(Ui ( j, k), zi ) for the i th component of h( j, zn).
If no such k is found, then output a random vector from the
reconstruction alphabet.

D. Probability of Error

We define the following events:

E0(m) = {
(Y n(m), Zn) /∈ T n

[Y Z ]
}

E1(m) = {
(Y n(m), Un(J (m), K (m))) /∈ T n

[Y U ]
}

E2(m, k) = {
(Zn, Un(J (m), k)) /∈ T n[ZU ]

}
.

The average probability of error for the identification process
can then be bounded as

Pr{Ŵ �= W |W = w} ≤ Pr{E0(w)}
+Pr{E1(w)|E0(w)c}
+Pr{E2(w, K (w))|E1(w)c}
+

∑

m �=w

∑

k

Pr{E2(m, k)c} (13)

It is straightforward to show that Pr{E0(w)} → 0. We can
also show using standard arguments that Pr{E1(w)|E0(w)c}
vanishes with increasing n if

Rc + �R > I (U ; Y ).

That Pr{E2(w, K (w))|E1(w)c} also vanishes with increasing
n follows from the Markov lemma [1]. In fact, with high
probability,

(Zn, Xn(w), Y n(w), Un(J (w), K (w))) ∈ T n[Z XY U ], (14)

which will be useful in the distortion analysis. Finally,
∑

m �=w

∑

k

Pr{E2(m, k)c} ≤ 2n(Ri+�R)2−nI (U ;Z),

the right-hand side of which vanishes for large enough n if

Ri + �R < I (U ; Z).

Next, we consider the average distortion incurred by the
reconstruction. A crucial observation at this point is that with
probability approaching one, when Ŵ = W ,

X̂i = φ(Ui (J (W ), K (W )), Zi ),

that is, the index k found in the reconstruction process for Zn

and j = J (W ) matches K (W ). This follows from (14) and
the fact that

∑

k �=K (W )

Pr{E2(W, k)c} ≤ 2n�R2−nI (U ;Z),

which vanishes since �R < I (U ; Z) is granted. Thus, when
Ŵ = W , with high probability

d(Xn(W ), X̂n)

= 1

n

n∑

i=1

d(Xi (W ), X̂i )

= 1

n

n∑

i=1

d(Xi (W ), φ(Ui (J (W ), K (W )), Zi ))

≤ (1 + ε′)
∑

z′,x ′,y′,u′
PZ XY U (z′, x ′, y ′, u′) d(x ′, φ(u′, z′))

≤ E[d(X, φ(U, Z))] + ε′dmax

≤ D + ε.

Since the ensemble averages satisfy the desired require-
ments, there must exist a deterministic codebook and functions
f , g, and h for which the same requirements are satisfied.

Having shown the sufficiency of the conditions (10)-(12),
we can now choose �R arbitrarily close to I (U ; Z) − Ri to
obtain the achievability of the rate-distortion tuples as given
in the expression of the theorem.

V. CONVERSE

Here we prove the converse part of the theorem, i.e., that
R ⊂ R∗. We assume the achievability of a tuple (Rc, Ri , D),
i.e., for any ε > 0 there exist deterministic functions f, g and h
such that (2)-(5) are satisfied.

We have

log M = H (W )

= H (W |J, Zn) + I (W ; J, Zn)

≤ H (W |Ŵ ) + I (W ; J, Zn) (15)

≤ 1 + Pn
e log M + I (W ; J, Zn), (16)
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where (15) follows since Ŵ is a deterministic function of J
and Zn , and (16) follows from Fano’s inequality. From here
we can obtain

(1 − ε) log M − 1 ≤ I (W ; J, Zn)

= I (W ; Zn |J) (17)

= H (Zn|J) − H (Zn|W, J)

≤ H (Zn) − H (Zn|W, J)

= H (Zn) − H (Zn|J (W )), (18)

where (17) follows since W is independent of the database
entries, and hence of J, and (18) follows since Zn is indepen-
dent of J (m) if m �= W .

Now, we define

Ui � (Zi−1, Zn
i+1, J (W ))

and observe that Zi − Xi (W ) − Yi (W ) − Ui forms a Markov
chain. Using (3), we can write

(1 − ε)n Ri − 1

≤ H (Zn) − H (Zn|J (W )) (19)

=
n∑

i=1

[
H (Zi |Zi−1) − H (Zi |Zi−1, J (W ))

]

≤
n∑

i=1

[
H (Zi |Zi−1) − H (Zi |Zi−1, Zn

i+1, J (W ))
]

=
n∑

i=1

[
H (Zi) − H (Zi |Ui )

]

=
n∑

i=1

I (Zi ; Ui ).

Thus,

(1 − ε)Ri ≤ 1
n

∑n
i=1 I (Zi ; Ui ) + 1

n . (20)

We also have from (2) that

n Rc ≥ log L

≥ H (J (W ))

≥ I (J (W ); Y n(W )).

Combining this with (20), we get

n(Rc − Ri + εRi + 1

n
)

≥ I (J (W ); Y n(W )) − I (J (W ); Zn)

= I (J (W ); Y n(W )|Zn) (21)

=
n∑

i=1

I (J (W ); Yi (W )|Zn, Y i−1(W ))

=
n∑

i=1

[
H (Yi(W )|Zn, Y i−1(W ))

−H (Yi(W )|J (W ), Zn , Y i−1(W ))
]

≥
n∑

i=1

H (Yi(W )|Zi ) − H (Yi(W )|J (W ), Zn)

=
n∑

i=1

H (Yi(W )|Zi ) − H (Yi(W )|Ui , Zi )

=
n∑

i=1

I (Yi (W ); Ui |Zi ),

where (21) follows from the fact that Zn − Y n(W ) − J (W )
forms a Markov chain. Thus,

Rc − Ri + εRi + 1

n
≥ 1

n

n∑
i=1

I (Yi (W ); Ui |Zi). (22)

As for the distortion constraint, first observe that

E[d(Xn(W ), h(J (W ), Zn ))]
= (1 − Pn

e )E[d(Xn(W ), h(J (Ŵ ), Zn))|Ŵ = W ]
+Pn

e E[d(Xn(W ), h(J (W ), Zn))|Ŵ �= W ]
≤ (1 − Pn

e )(D + ε) + Pn
e dmax

≤ D + ε(1 + dmax).

Thus, denoting by hi the i th component of h, we have

D + ε(1 + dmax)

≥ 1

n

n∑

i=1

E[d(Xi (W ), hi (J (W ), Zn))]

= 1

n

n∑

i=1

E[d(Xi (W ), hi (Ui , Zi ))]. (23)

From (20), (22), (23), and convexity of R∗, R ⊂ R∗
follows.

VI. COMPUTATION OF R FOR TWO SIMPLE EXAMPLES

As was discussed in [6] and [11] for the respective special
cases, one way of computing the tradeoff is to rewrite the
triplet (

I (Y ; U), I (Z; U), E[d(X, φ(U, Z))])

as a convex combination of
(
�c(PY |U (·|u)), �i (PY |U (·|u)),�(PY |U (·|u))

)

with coefficients λu = PU (u), where for any distribution Q
on Y ,

�c(Q) = H (Y ) +
∑

y∈Y
Q(y) log Q(y)

�i (Q) = H (Z)

+
∑

y∈Y,z∈Z
PZ |Y (z|y)Q(y) log

(∑

y′
PZ |Y (z|y ′)Q(y ′)

)

�(Q) =
∑

z∈Z
min
x̂∈X̂

∑

x∈X ,y∈Y
Q(y)PX |Y (x |y)PZ |X (z|x)d(x, x̂)

assuming that the function φ(·, ·) is chosen optimally. Of
course, the coefficients λu and vectors PY |U (·|u) should satisfy

∑

u

λu PY |U (·|u) = PY (·).
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Fig. 4. The solid curve depicts all (�c(Q), �i (Q),�(Q)), whereas the dashed curves represent the respective projections on the (�c,�) and (�c, �i )
planes. Also shown is the fact that α0 and 1 − α0 correspond to the same point for all 0 ≤ α0 ≤ 1/2.

In other words, to characterize R, it suffices to consider convex
combinations of all ⎡

⎢⎢⎣

Q(·)
�c(Q)

�i (Q)
�(Q)

⎤

⎥⎥⎦

such that the first |Y| components of any combination agree
with PY (·).4 Note that for simplicity, we focus on �c(Q), not
�c(Q) − �i (Q), thus the complete region R will be obtained
only after applying rate transfer through binning.

A. Noiseless Enrollment, Erasure Queries, and Hamming
Distortion Measure

Consider binary feature vectors with PX (x) = 1
2 for x ∈

X = {0, 1}. Let the enrollment channel PY |X be noiseless
(thus Y = X ), and PZ |X be a symmetric erasure channel with
Z = {0, ?, 1} and erasure probability ε. Also let X̂ = X and
d(·, ·) be the Hamming distortion measure.

This example (without the distortion constraint) was ana-
lyzed in [6] and it was shown that (Rc, Ri ,∞) ∈ R if and
only if

Rc ≥ Ri

1 − ε
(24)

for 0 ≤ Ri ≤ 1−ε. Similarly, the Wyner-Ziv problem with era-
sure side information was solved before (see [8, Theorem 18]
and [5, Theorem 1]), and it was shown that (Rc, 0, D) ∈ R if
and only if

Rc ≥ ε�ε(D) (25)

4In fact, one could drop the first components of both Q and PY as both
vectors lie in a |Y |−1 dimensional space. This, together with Carathéodory’s
theorem [3], guarantees that |U | = |Y | + 2 is sufficient.

Fig. 5. The behavior of R for fixed D = 0.005. Binning is needed only if
Rc < �ε(D). The dashed line corresponds to the (Rc, Ri ) tradeoff without
the distortion constraint.

for 0 ≤ D ≤ ε
2 with

�ε(D) = 1 − H
(

D

ε

)
,

where H(·) is the binary entropy function.
Now, letting Q = [1 − α α]T , we have

�c(Q) = �ε(α)

�i (Q) = (1 − ε)�ε(α)

�(Q) = ε min{α, 1 − α}.
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Fig. 6. The solid curve depicts all (�c(Q), �i (Q),�(Q)), whereas the dashed curves represent the respective projections on the (�c,�) and (�c, �i )
planes.

Fig. 4 depicts the set of all triplets

L =
⋃

Q

(
�c(Q), �i (Q),�(Q)

)

for ε = 0.1. Since the curve L lies on the plane �i = (1−ε)�c

and its projection on the (�c,�)-plane is convex, one can
conclude that convex combinations of points on L cannot yield
“better” points, in the sense that for any (�c, �i ,�) obtained
by some convex combination, there exists (�c, �i ,�′) already
on L with �′ ≤ �. In other words, when we take convex
combinations of |Y| + 2 = 4 points on L corresponding to
α = α1, . . . , α4 such that

4∑

u=1

λuαu = PY (1) = 1

2
,

we can only hope to achieve the points already on L. But this is
possible by combining just two points, Q1 = [1−α α]T and
Q2 = [α 1−α]T , with weights λ1 = λ2 = 1

2 , simply because
(�c(Q1), �

i (Q1),�(Q1)) = (�c(Q2), �
i (Q2),�(Q2)).

What all this means is that it suffices to constrain PU |Y to be
a binary symmetric channel (BSC) with crossover probability
α ≤ 1

2 , and

φ(u, z) =
{

z z �=?
u z =?.

With this choice, we obtain the characterization

Rc ≥ Ri

1 − ε

for any 0 ≤ D ≤ ε
2 and (1 − ε)�ε(D) ≤ Ri ≤ 1 − ε.

As we mentioned in the Introduction, Rc cannot be reduced
further than �ε(D) unless we perform binning and reduce both

rates Ri and Rc by the same amount. But since the slope of the
(Rc, Ri ) tradeoff can never be greater than one (e.g., it is 1−ε
here), the minimum Rc when 0 ≤ Ri ≤ (1 − ε)�ε(D) will
be obtained by applying binning only to the extreme point
Ri = (1 − ε)�ε(D), Rc = �ε(D), yielding the complete
characterization

Rc ≥
{

Ri + ε�ε(D) 0 ≤ Ri ≤ (1 − ε)�ε(D)
Ri

1−ε (1 − ε)�ε(D) ≤ Ri ≤ 1 − ε
(26)

for 0 ≤ D ≤ ε
2 . See Fig. 5 for the behavior of (26) on the

(Ri , Rc)-plane for fixed D.
With the maximum possible distortion D = ε

2 , (26) reduces
to (24), as expected. Similarly, substituting Ri = 0 in (26)
yields (25).

B. Enrollment and Queries Subject to BSC Noise,
With Hamming Distortion Measure

This time, PX (x) = 1
2 for x ∈ X = {0, 1}, and PY |X

and PZ |X are both binary symmetric channels with crossover
probabilities p and q , respectively (implying Y = Z = X ).
Also X̂ = X and d(·, ·) is the Hamming distortion measure.
This example was also considered in [6], and it was shown
that (Rc, Ri ,∞) ∈ R if and only if

Ri ≤ 1 − H(p 	 q 	 H−1(1 − Rc))

for all 0 ≤ Rc ≤ 1, where a 	 b = a(1 − b) + b(1 − a) and
H−1 returns values between 0 and 1

2 .
Letting Q = [1 − α α]T , we have

�c(Q) = 1 − H(α)

�i (Q) = 1 − H(p 	 q 	 α)
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Fig. 7. The optimal test channel PU |Y .

Fig. 8. The behavior of R for fixed D = 0.18. The dashed curve corresponds
to the (Rc, Ri ) tradeoff without the distortion constraint.

together with

�(Q) = q

if p ≥ q , and

�(Q) =

⎧
⎪⎪⎨

⎪⎪⎩

p + (1 − 2 p)α 0 ≤ α ≤ q−p
1−2p

q q−p
1−2p ≤ α ≤ 1−p−q

1−2p

1 − p − (1 − 2 p)α 1−p−q
1−2p ≤ α ≤ 1

if p < q . Obviously, p < q is the interesting case here because
otherwise the tradeoff is the same as that in [6].

In Fig. 6, the set of all triplets is shown for p = 0.15,
q = 0.2. In contrast with the previous example, convex
combinations do generate better (�c, �i ,�), as can be seen
from the figure. However, similar to that example, it can be
seen by close inspection that for every convex combination
of |Y| + 2 = 4 points achieving (�c, �i ,�), one can find
just 2 points Q1 = [1 − α α]T and Q2 = [1 − β β]T with

0 ≤ α ≤ q−p
1−2p ≤ β ≤ 1

2 , some convex combination of which5

achieves (�c, �i ′,�′) with �′ ≤ � and �i ′ ≥ �i . To be
consistent with PY (y), these two points can then be paired up
with Q3 = [α 1 − α]T and Q4 = [β 1 − β]T to form the
most general convex combination with weights λ1 = λ3 = r

2
and λ2 = λ4 = r̄

2 with r̄ = 1 − r . Translating these, we obtain
the optimal forward test channel PU |Y as shown in Fig. 7.
As in the previous example, the reconstruction function φ is
simple:

φ(u, z) =
⎧
⎨

⎩

z u = 2, 4
0 u = 1
1 u = 3.

Despite the fact that we know the optimal PU |Y and φ(·, ·),
it proved very difficult to optimally choose the parameters
(α, β, r). Therefore, for any fixed D, we numerically com-
puted the (Ri , Rc, D)-tradeoff for the same instance p = 0.15,
q = 0.2, as shown in Fig. 8. Although as shown in Fig.7 we
need an alphabet U of size 4 in general, |U | could be taken
smaller in two distinct regimes, as indicated in Fig. 8:

1) Up to a certain value of α (or above a certain Rc), the
optimal r = 1, so |U | could be limited to 2.

2) In the binning regime, where all the (Rc, Ri ) pairs
are obtained by rate transfer applied to the minimum
achievable (Rc, Ri ) without binning, optimal β = 1

2 .
Therefore the symbols u = 2 and u = 4 can be collapsed
together without changing anything.

VII. CONCLUSION

We have studied a noisy database system where both the
enrollment and the query vectors are noisy versions of the
underlying feature vectors. The noisy enrollment vectors are
compressed before being stored in the database to reduce the
storage requirement and increase the search speed. The user
of the database wishes not only to identify the correct entry
corresponding to a noisy query vector, but also to reconstruct
the original feature vector of the queried entry within a desired
distortion requirement. This problem combines and generalizes
the previously studied capacity/storage tradeoff in databases
and the Wyner-Ziv rate distortion function for lossy source
compression in the presence of decoder side information.

We have characterized the set of achievable compression
rate, identification rate, and distortion tuples in a single-letter
form. As examples, we have studied two simple scenarios, and
analyzed the behavior of optimal codes with respect to binning.
We have demonstrated that there are two regimes, with and
without binning. For high compression and identification rates,
binning is not needed, whereas the low rate tradeoff is achieved
by binning the codewords.

5Intuitively, if there are more than one point in either interval 0 ≤ α ≤ q−p
1−2p

or q−p
1−2p ≤ β ≤ 1

2 , one can first take the average of those multiple points with
weights proportional to those in the original convex combination. From the
concavity of the (�c, �i ) tradeoff everywhere and convexity of the (�c,�)
tradeoff for 0 ≤ α ≤ q−p

1−2p , it follows that for the �c’s this new pair of

points achieves, the original curve has points with better (�i ,�) values. So,
we might as well choose the pair of points on the curve.
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APPENDIX A
DISCUSSION OF COROLLARY 1 USING RATE

TRANSFER ANALYSIS

In [7], the author discussed under what conditions rate
regions described in terms of marginal rates are equivalent to
those described in terms of cumulative rates in a general class
of source and channel coding problems. More specifically, the
marginal and the cumulative rate regions were respectively
defined as

Rmar = {
(R1, R2) : ∃X ∈ D s.t. I1(X) ≤ R1, I2(X) ≤ R2

}

and

Rcum = {
(R1, R2) : ∃X ∈ D

s.t. I1(X) ≤ R1, I1(X) + I2(X) ≤ R1 + R2
}
,

where X is a random vector, D is a region in the probability
simplex of X, and I1 and I2 are information measures intrinsic
to the problem. It was shown in [7, Theorem 1] that if Rmar
is a convex region, then

Rmar = Rcum ⇐⇒ (Rmin, 0) ∈ Rmar, (27)

where
Rmin = min

X∈D
[
I1(X) + I2(X)

]
. (28)

We now use (27) to show that the region in Corollary 1 is
in fact the same as the original capacity-storage region given
by (8) and (9).

First observe that there is no non-negativity restriction on
either the rates R1 and R2, or the information measures I1(X)
and I2(X). Therefore, rewriting (8) as

−Ri ≥ −I (U ; Z), (29)

we can map our problem to a fictitious two-stage source coding
problem using the following:

R1 = −Ri

R2 = Rc

X = (U, Y, X, Z)

I1(X) = −I (U ; Z)

I2(X) = I (U ; Y )

D = {(U, Y, X, Z) : U − Y − X − Z}.
The minimum cumulative rate in (28) then becomes

Rmin = min
U :U−X−Y−Z

[
I (U ; Y ) − I (U ; Z)

]
.

Since I (U ; Y ) ≥ I (U ; Z) due to the data processing inequal-
ity, Rmin ≥ 0. But it is easy to see that Rmin = 0 with
the simple choice of U = ∅. Thus, using (27), whether the
characterization in Corollary 1 is identical to (8) and (9) comes
down to whether (0, 0) ∈ Rmar, i.e., whether there exists U
such that

−I (U ; Z) = 0

I (U ; Y ) = 0.

But this is readily achieved also by U = ∅.
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