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Capacity/Storage Tradeoff in High-Dimensional
Identification Systems
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Abstract—The asymptotic tradeoff between the number of dis-
tinguishable objects and the necessary storage space (or equiva-
lently, the search complexity) in an identification system is investi-
gated. In the discussed scenario, high-dimensional (and noisy) fea-
ture vectors extracted from objects are first compressed and then
enrolled in the database. When the user submits a random query
object, the extracted noisy feature vector is compared against the
compressed entries, one of which is output as the identified object.
The first result this paper presents is a complete single-letter char-
acterization of achievable storage and identification rates (mea-
sured in bits per feature dimension) subject to vanishing proba-
bility of identification error as the dimensionality of feature vectors
becomes very large. This single-letter characterization is then ex-
tended for a multistage system whereby depending on the number
of entries, the identification is performed by utilizing part or all of
the recorded bits in the database. Finally, it is shown that a nec-
essary and sufficient condition for a two-stage system to achieve
single-stage capacities at each stage is Markovity of the optimal
test channels.

Index Terms—Capacity, databases, identification systems, suc-
cessive refinement.

I. INTRODUCTION

I N [14], Willems et al. investigated the capacity of an iden-
tification system, i.e., the maximum achievable exponen-

tial rate of the number of distinguishable objects in a database,
where the feature vectors extracted from objects have constant
and known statistics. They showed that objects can be
distinguished from each other if and only if as , the di-
mensionality of the feature space, becomes very large, and pre-
sented a single-letter characterization for the capacity .

It was assumed in [14] that the feature vectors (corrupted
by observation noise) are stored in the database as is, i.e.,
without any preprocessing. In that setting, however, a major
bottleneck in high-dimensional retrieval systems, namely,
search complexity, is not considered. Since the required storage
space for feature vectors grows without bound with ,
it is impractical to store all the database in a random access
memory, and using a hard storage medium becomes inevitable.
This, in turn, impedes the identification process as hard storage
devices are notoriously slow.
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As a remedy to this bottleneck, one must employ either an
indexing scheme, where clever pruning methods eliminate most
of the data before retrieval, or a compression-based scheme,
where only partial information is retrieved from each data entry.
It is noted in the database literature that compression-based
schemes outperform indexing schemes for high-dimensional
applications (e.g., see [11].) Motivated by this fact, we discuss
here the performance of identification systems where feature
vectors are compressed before storage, and the entire database
is retrieved in the compressed form, thereby expediting the
identification process.

Of course, the price to be paid is the inevitable degradation
in the identification performance, as some objects distinguish-
able in the original scenario of [14] will now be mapped to
the same quantization index. This creates a tradeoff between
the achieved compression rate and the identification rate
both of which are measured in bits per feature dimension. In
other words, objects are reliably identified if and only if

, where is the storage-constrained capacity
of the system. We derive a single-letter information-theoretic
characterization of all achievable rate pairs subject to
vanishing probability of identification error as the dimension-
ality of feature vectors grows without bound.1 As expected, this
characterization reduces to that in [14] when the feature vectors
are compressed losslessly.

We then extend our single-letter characterization to identifica-
tion systems based on multistage compression. The motivation
for a multistage system is that the number of entries, , may
not be known beforehand, or may even be dynamically changing
as new entries are made and some obsolete entries are deleted.
During identification, if is lower than the system capacity,
the amount of bits read from disk will be unnecessarily large
in a single-stage system described above. Conversely, if is
above the capacity, identification cannot be successful with high
probability. A multistage system, on the other hand, can par-
tially solve this problem by adapting to the number (or expo-
nential rate, to be precise) of entries. Specifically, depending on
the actual number of entries, the system can utilize part or all of
the recorded bits, thereby processing the query in a reliable and
more time-efficient manner.

A naturally arising question is whether and under what condi-
tions a performance loss is not incurred on a multistage identifi-
cation system compared with its single-stage counterpart. More
formally, with two stages of compression operating at cumula-
tive rates and , the question is for which system statis-

1After the submission of this manuscript, the author was informed that the
characterization of a similar problem in the context of sensory pattern recogni-
tion was independently given in [7], [12], [13].
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Fig. 1. The enrollment and the identification phases depicted together.

tics can we reach the identification rates and si-
multaneously? The usual Markovity condition in rate-distortion
theory regarding distributions attaining optimum performance
in various levels (c.f [3]–[5]) also becomes a necessary and suf-
ficient condition in our scenario.

The scenario considered in this paper is not the same as, or a
special case of, the author’s previous work in [10], similarities
notwithstanding. In particular, [10] discussed the fundamental
performance of content-based retrieval in a noise-free envi-
ronment in terms of search complexity, storage space, search
quality, and reconstruction quality. In contrast, we assume
perfect search quality with high probability where both the data
and the query are noisy, and are not interested in reconstructing
the data objects themselves. Our concern is the size of the
database, whereas in [10], the database was considered to be of
infinite size.

The rest of this paper is organized as follows. We begin by a
formal definition of the problem in the next section. Section III
presents a complete single-letter characterization of the com-
pression/identification tradeoff. This characterization is then ex-
tended to multiple stages in Section IV. We present a summary
and a few concluding remarks in Section V.

II. NOTATION AND FORMAL PROBLEM DEFINITIONS

We first discuss details of both the enrollment (i.e., storage)
and the identification (i.e., query) phases in an information-the-
oretic framework, and then present the formal definition of the
problem.

Assume that the feature vectors are generated
independently and according to

where the feature alphabet is finite. In the enrollment phase,
noisy versions of , denoted by , are observed
and recorded. Let be modeled as the output of a dis-
crete memoryless channel (DMC) governed by with finite
output alphabet . That is

for . Unlike the original work of Willems et al. [14],
we consider the scenario where are compressed
before storage. For this purpose, a deterministic function

is applied on each . We use the notation
for the compression indices of entries.

Let be independent from , uni-
formly distributed in , and unknown to
the user of the database. In the identification phase, the user
observes , which is a noisy version of corrupted by
the DMC with finite output alphabet , i.e.,

with forming a Markov chain, and
desires to identify using and . A sequence
of identification functions

for is to be designed for this purpose. Let

be the estimate of . The identification process is considered
successful with entries if as .
The enrollment and the identification phases are illustrated to-
gether in Fig. 1.

Two conflicting qualities of this system are the compression
rate and the identification rate .2 It is imme-
diate that for arbitrarily small

, because one cannot distinguish exponentially more entries
than while keeping the probability error arbitrarily small. Al-
though it should also be clear that it is not possible to achieve

due to both the enrollment noise and the
identification noise, the precise relation between the two rates
is not obvious. In this paper, we derive a single-letter character-
ization of all achievable rate pairs, where achievability is defined
as follows.

2All logarithms in this paper are base �.
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Definition 1: is an achievable compression/identifi-
cation rate pair if for any and large enough , there exist
a deterministic function and a sequence of deterministic func-
tions such that

(1)

and for all satisfying

(2)

Remark 1: In the achievability definitions of capacity prob-
lems, one always encounters

instead of (2). The difference here is that our goal is not to design
a code for the largest possible only. In particular, we need a
proper decoder for any below capacity.

We denote by the closure of all achievable . We
also define the capacity of the system for a fixed compression
rate as

Consider next an -stage system, where multiresolution
compression is performed on each feature vector, i.e., using
separate stage encoders

for , and sequences of identification functions

for and . We use the notation
for the th-stage compression indices. We also de-

note by

the th-stage estimates of .

Definition 2: A -tuple with
and is

a successively achievable -stage compression/identification
rate vector if for any and large enough , there exist
deterministic functions for such
that

(3)

and for all satisfying

(4)

for .

We denote by the closure of all successively achievable
, and also derive a single-letter

characterization of .
In proving the direct parts of our results, we employ strong

typicality and use the notation of Csiszár and Körner [2]. More
specifically, is said to be strongly -typical with if

and implies for all , where
denotes the number of occurrences of in . The set

of all strongly -typical with is denoted by . This
concept is easily generalized to collections of vectors and joint
distributions. We refer the reader to [2] for a detailed discussion
on strong typicality.

III. CHARACTERIZATION OF SINGLE-STAGE IDENTIFICATION

PERFORMANCE

Definition 3: Let be the set of all such that there
exists a joint distribution

i.e., a Markov chain , satisfying

where is distributed over some discrete alphabet .

Lemma 1: is convex. Moreover, in determining , it
suffices to focus on with .

Proof: The proof is very similar to that of Theorem A2 in
[16], which became folklore thereafter. We nevertheless include
a sketch here for completeness. Note that , , and
are fixed source statistics. Thus, and are solely
determined by the choice of the test channel , or equiva-
lently, by and subject to

(5)

In light of this, define as the set of all possible values the pair

can assume as changes. To prove convexity of , it suf-
fices to prove that of . Towards that end, define for a generic
distribution over

for , where it is assumed without loss of
generality that . Also define
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Now, the key observation is that for any and satisfying
(5), it is true that

(6)

(7)

In other words, coincides with the cross section of all convex
combinations

corresponding to for . Thus,
is convex by construction. Moreover, from the well-known

Caratheodory’s theorem [1], any point in the convex hull of a
connected set in a -dimensional Euclidean space can be ex-
pressed as the convex combination of at most vectors in that
set. Thus, is sufficient in characterizing (and
therefore ).

We are now ready to prove the main result of this paper.

Theorem 1: .
Proof: We begin by proving . Assume that

. Then, for any and large enough , there
exist deterministic functions such that (1) is
satisfied, and for all satisfying (2). For
any such system and

and thus

where follows because is a function of ,
and , follows from Fano’s inequality, is due to the fact
that is independent of , and holds because

is independent of all with . Defining

and considering the largest satisfying (2), we then have

(8)

where as and .
Regarding the compression rate the system achieves, we have

the following chain of inequalities:

(9)

where and , respectively, follow from the fact that
forms a Markov chain

and because conditioning reduces entropy. This Markov chain
is implied by

for any , because

We next show that also forms a
Markov chain. This will finish the converse part of the theorem,
because then

for . Since is convex, this, in turn, implies
for any and large enough . Towards that
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end, it suffices to show , because
and are obvious,

and , , and implies
. Now, observe

and thus

To prove the direct part, we use standard random coding
techniques. Assume , and generate codevec-
tors independent and identically distributed (i.i.d.)

, where is to be determined later, and is the marginal
distribution of satisfying , ,
and . Also fix .

Enrollment: For arbitrary , define as the
smallest such that , and if no such is
found, let . Set .

Identification: For arbitrary and ,
let be defined as the smallest
such that . If no such is found, let

. Set

Probability of Error: Define the following events:

The probability of error computed over the ensemble of code-
books can then be bounded as

It can be shown using standard techniques that
for large enough if

It also follows from the well-known Markov lemma [1] and
that . Finally

for large enough whenever

and therefore, whenever

In summary, we created a random codebook satisfying
and averaged over the

whole ensemble whenever . There must then
exist a deterministic codebook satisfying the same
properties. Thus, , and therefore .

Corollary 1: The identification capacity subject to a storage
constraint is given by

(10)

We denote by the test channel that achieves the
point .

A. Computation of

As was observed in [8], (10) coincides exactly with the infor-
mation bottleneck function introduced in [9], thereby providing
an operational meaning to it. When , the constraint

in (10) becomes vacuous, and we have

where the maximum is achieved by . This is the same
result derived by Willems et al. [14]. At the other extreme, when

, implies independence of and and
thus of and . Therefore, , as expected.

In principle, the intermediate values of can be calcu-
lated using the Lagrangian maximization

and the dual minimization

since by Lemma 1, is concave in . However,
is in general neither convex nor concave

in .3 In that sense, the Lagrangian approach proves dif-
ficult even with small alphabets. Although the treatment of
the problem in [9] provides a solution in terms of necessary
conditions, the nonconvexity of the problem was not addressed,
and in general more than one can satisfy the conditions.

As an alternative, we next adopt the convex combination ap-
proach of the proof of Lemma 1 for two examples with .
The first example was also treated in [15] in a different context
and using a different technique.

1) Enrollment and Identification Subject to Binary Symmetric
Channel Noise: Let for , and
let and be binary symmetric channels (BSC) with
crossover probabilities and , respectively. This implies that

3Observe that both ��� ��� and ������ are convex in � .
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for and is a BSC with crossover
probability , where

We determine through computing the set . To that
end, let for some fixed , and note that is the
cross section of the convex hull of all

corresponding to uniform , where , and denotes
the binary entropy function. Since both and
are symmetric around , the set coincides with the
convex hull of

(11)

for . That is, because given and
, the point

can be obtained by setting

and

On the other hand, as we prove in the Appendix, (11) yields a
concave curve on the -plane for all . This,
in turn, implies that itself is parametrically characterized
by (11). Alternatively

for all , where returns values between and
. Also, the optimum and corresponding to points

on are given by

and . In other words, is a binary
symmetric channel with crossover probability . Fig. 2 depicts
the behavior of when .

2) Noiseless Enrollment and Identification Subject to Era-
sure Noise: This example is motivated by the scenario where
enrollment is offline (and thus very reliable), whereas identifi-
cation must be performed in real time, and therefore is prone to
erasure (some feature points may not be obtained).

For for , let , and let
be the erasure channel with erasure probability . We use

the same technique as in the previous example. Observe that for

Fig. 2. ��� � for an identification system with BSC noise when � � � �
���.

and

where denotes the binary entropy as well as, with an abuse
of notation, the entropy of an arbitrary distribution. Thus, is
parameterized by

for . In other words

for all . Also, as in the previous example,
is a binary symmetric channel with crossover probability .

IV. THE MULTISTAGE EXTENSION

A. Achievability Region for Two Stages

Definition 4: Let be the set of all such
that there exists a joint distribution

i.e., a Markov chain , satisfying

where and are auxiliary random variables distributed over
discrete alphabets and , respectively.
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Lemma 2: is convex. Moreover, in determining , it
suffices to focus on and with

Proof: In proving convexity of and that is
sufficient, we use the same approach as in the proof of Lemma 1.
Define as the set of all possible values the quadruple

can assume as changes. To prove convexity of , it
suffices to prove that is convex. Towards that end, we first
define continuous functionals of a generic distribution

over . Let

for , and

Now, consider the cross section of all convex combinations

corresponding to for . This set,
by construction, is convex and coincides with where
plays the role of . Moreover, from the Caratheodory’s the-
orem, for any fixed discrete alphabet , is suffi-
cient in characterizing (and therefore ).

We now follow the methodology in [6, Sec. VI-A] and limit
the size of . Another interpretation of what we showed so far
is that given arbitrarily large discrete alphabets and and a
distribution attaining the point , there exists
a distribution also attaining , where and
the new is confined to a reduced alphabet with

. To limit , we iterate this idea one step further. More
specifically, rewriting as , one can con-
struct another distribution also attaining , where

and the new is confined to an alphabet with
. To see this, define for any

for , where with abuse of notation,
indicates the probability of the th element of with respect
to some arbitrary order, and

Similarly to the previous construction, the set of all possible
coincides with the cross section of

convex combinations of corresponding to a fixed
. This completes the proof.

We next extend Theorem 1 to two-stage systems.

Theorem 2: .
Proof: We begin by proving . Assume that

. Then, for any and large
enough , there exist deterministic functions
and such that (3) holds for , and

for all satisfying (4) for .
It can be shown by following the exact same steps as in (8)

that

(12)

where

and as and . Similarly, following the steps
in (9), one can show

(13)

Further, replacing and in the derivation
of (8) with and ,
respectively, it immediately follows that

(14)

where for . Finally, we also have
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(15)

where follows from the fact that
forms a Markov

chain. Observe that also forms
a Markov chain. The converse part is therefore complete since
the convexity of implies

for any and large enough .
The proof of the direct part, i.e., that of , is

also very similar to its single-stage counterpart. Assume
. Then there exist auxiliary random vari-

ables and satisfying , ,
, , and .

Generate codevectors i.i.d. , and for each ,
generate according to

where and are to be determined later. Also fix .
Enrollment: For arbitrary , define as the

smallest such that , and if no such is
found, let . Similarly, define as the smallest

such that , and
if no such is found, let . Set
and .

Identification: For arbitrary and
, let

be defined as the smallest such that
. If no such is found, set to

. Similarly, let
be defined as the smallest such that

If no such is found, set to . Set

and

Probability of Error: It is clear that since the first-stage
system is the same as in the direct part of the proof of Theorem 1,
we have for large enough whenever

and

Recall that with such choice of , we also have

(16)

for and large enough . Set

so that can be chosen to satisfy

For the second stage, define the error events

The probability of error computed over the ensemble of code-
books can then be bounded as

Using standard techniques together with (16), it can be shown
that for large enough if

In particular, can be chosen so that

and thus

It also follows from that
. Finally

for large enough whenever
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and thus whenever

Using the same arguments as in the end of the proof of The-
orem 1 regarding deterministic codebooks, achievability of

follows. But since , this
implies achievability of and thus .
To see this, we follow the argument in [5, Lemma 4] pointing
to the fact that one can always transfer compressed bits from
the second stage to the first one without changing the system
performance except for increased first-stage compression rate.
The transferred bits can be simply ignored at the first stage.

B. Achievability Region for Stages

We next present a single-letter characterization of the
-stage successive achievability region . We omit the

proofs because they are straightforward extensions of their
two-stage counterparts.

Definition 5: Let be the set of all
such that there exists auxiliary random variables

taking values in alphabets
satisfying

and

for all .

Lemma 3: is convex. Moreover, in determining , it
suffices to focus on with

and

Theorem 3: .

C. Two-Stage Systems Without Capacity Loss

Paralleling the notion of successive refinability without rate
loss in the classical rate–distortion sense [3]–[5], we introduce
here successive refinability without capacity loss.

Definition 6: A source with statistics
is said to be successively refinable without ca-

pacity loss if

(17)

The next lemma presents necessary and sufficient conditions
for (17) to hold.

Lemma 4: Successive refinement without capacity loss is
possible at if and only if there exists optimal test chan-
nels and achieving and , respec-
tively, such that forms a Markov chain.

Proof: It is immediate from Theorems 1 and 2 that a source
is successively refinable without capacity loss if and only if there
exist such that

(18)

(19)

(20)

(21)

Now, if there exist optimal test channels satisfying
, then (18)–(21) are automatically satisfied by and

, thus proving the sufficiency of Markovity.
On the other hand, if (18)–(21) are satisfied by some ,

then letting

we not only obtain a Markov chain , but it fol-
lows from (19) and (21) that is an optimal test channel.
Similarly, (18) and (20) imply optimality of . This proves
necessity of Markovity.

Remark 2: The necessity part of the proof shows us that,
to form the Markov chain, one may have to use a test channel

with an alphabet of size much larger than .
More specifically, in the worst case, it follows from Lemma 2
that may have to be as large as .

Let us reconsider the examples in Section III-A, and show
that in both cases, no capacity loss is incurred on the multistage
system. Recall that in both examples, for
are binary symmetric test channels with crossover probabilities

, where is determined as the solution of

Now, implies . Thus, it is possible to find
such that

This, in turn, implies that is satisfied.

V. CONCLUSION

In this paper, extending the work in [14], we investigated
the fundamental tradeoff between the rate of the number of
data entries that can reliably be identified and the rate of re-
quired storage (or equivalently, search complexity). We then
introduced a further extension, whereby data is compressed in
multiple stages before enrollment, and during identification, the
compressed bits are retrieved up to the stage where the achieved
capacity is larger than the rate of the number of entries. In both
cases, a single-letter characterization for the whole rate region
is provided. Paralleling the phenomenon in multiresolution
rate–distortion theory known as successive refinement without
rate loss, we also introduced the notion of successive refinement
without capacity loss, and proved that Markovity of optimal
test channels achieving individual capacity/storage tradeoffs is
a necessary and sufficient condition.
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APPENDIX

Lemma 5: The curve on the -plane parameterized
by

for is concave.
Proof: We will show for .

Concavity will then follow from the continuity of both
and at and . Define

and observe

and thus

Since is monotonically decreasing in within the interval
, it suffices to show that everywhere in the

same interval.
Now

and hence

(22)

In other words, is monotonically decreasing in an open
interval if and only if for all .
On the other hand

(23)

and, therefore, is monotonically nondecreasing in
. We next combine these observations, and

show that negativity of at any point results in a con-
tradiction. Towards that end, assume that for
some . Let be the largest open interval
containing such that for all . From
(22) and (23), we have

(24)

Now, if , (24) immediately creates a contradiction
because . On the other hand, if

, (24) is also contradictory since we must then have
, and therefore according to (22).
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