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Slepian–Wolf Coding Over Broadcast Channels
Ertem Tuncel, Member, IEEE

Abstract—We discuss reliable transmission of a discrete memo-
ryless source over a discrete memoryless broadcast channel, where
each receiver has side information (of arbitrary quality) about the
source unknown to the sender. When there are = 2 receivers,
the optimum coding strategy using separate and stand-alone
source and channel codes is to build two independent binning
structures and send bin indices using degraded message sets
through the channel, yielding a full characterization of achievable
rates. However, as we show with an example, generalization of
this technique to multiple binning schemes does not fully resolve
the 2 case. Joint source–channel coding, on the other hand,
allows for a much simpler strategy (i.e., with no explicit binning)
yielding a successful single-letter characterization of achievable
rates for any 2. This characterization, which utilizes a
trivial outer bound to the capacity region of general broadcast
channels, is in terms of marginal source and channel distributions
rather than a joint source–channel distribution. This contrasts
with existing results for other multiterminal scenarios and implies
that optimal schemes achieve “operational separation.” On the
other hand, it is shown with an example that an optimal joint
source–channel coding strategy is strictly advantageous over the
combination of stand-alone source and channel codes, and thus
“informational separation” does not hold.

Index Terms—Broadcast channels, common information, de-
graded message sets, joint source–channel coding, multiterminal,
separation theorem, Slepian–Wolf.

I. INTRODUCTION

CONSIDER a group of sensors, each one measuring the
same type of environmental data, e.g., temperature, pres-

sure, or humidity, as a function of time. In addition to their own
measurements, the sensors may need the help of a global ob-
servation in order to make reliable decisions and/or take nec-
essary actions. This global information may be obtained by a
more powerful “lead” sensor or by a satellite above. In either
case, assume that a broadcast channel is available for conveying
this information to the sensors. Since the global observation is
in general correlated to the local observations, the latter should
be treated as side information unavailable to the lead sensor. In
this communication scenario, which we refer to as Slepian–Wolf
coding over broadcast channels, we pursue the characteriza-
tion of the achievable rates in terms of channel uses per source
symbol.

A formal definition of the problem is as follows. Let
be a discrete memoryless sequence

generated according to the joint probability density function
(pdf) over the alphabet . Here,
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Fig. 1. Slepian–Wolf coding over broadcast channels. The achieved rate is� =
channel uses per symbol.

is the source (global observation) sequence available at the lead
sensor and through are the local side-information se-
quences correlated with . Denote by
a length- block from this sequence. The encoder is required to
convey losslessly (in the Shannon sense) to all the decoders.
For the transmission, a discrete memoryless broadcast channel

with input alphabet and output
alphabets is available. We say that rate (channel
uses per symbol) is achievable if there exist a sequence of
encoders

and sequences of decoders

such that the probability of error

vanishes uniformly for as while is
fixed at . Here, denotes the channel-corrupted version of

available at the th sensor node. See Fig. 1
for a pictorial description of the system.

We first analyze the achievable rates for separate source–
channel coding in the following classical sense [21].

i) The source coder achieves perfect reconstruction of at
every receiver with probability approaching one as

, assuming that each message at the source encoder
output is transmitted without error to all the source de-
coders it is intended for.

ii) The channel coder ensures, with probability approaching
one as , that each message at the channel encoder
input is reconstructed without error at the output of all the
channel decoders it is intended for.

0018-9448/$20.00 © 2006 IEEE
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Fig. 2. Separation with stand-alone source and channel coders forK = 3. At the output of the source encoder f (�), there are seven distinct messages intended
for different sets of decoders. For example, messageW is for receivers 1 and 3 only, and Ŵ and Ŵ are its reconstructed versions at channel decoders
g (�) and g (�), respectively.

That is, the source and channel coders are stand-alone and they
operate separately. This separation is exemplified in Fig. 2 for

. As usual, the source and channel coders must be de-
signed using only and , respectively.

In this paradigm, it turns out that the optimum coding strategy
for is to use two independent binning schemes for
and convey the bin indices through the channel as degraded
messages, i.e., one bin index as a common message to
both receivers and the other as a private message to the
receiver whose side information is of lower quality. Since the
necessary and sufficient rates for these messages are easily de-
termined, and the capacity region for any broadcast channel with
degraded message sets is known (cf. [14], at least for ),
this observation immediately reveals a single-letter character-
ization of achievable rates. On the other hand, complications
arise when . More specifically, as we show by an ex-
ample for , sending multiple bin indices as degraded
messages is not necessarily optimal, and thus, the problem re-
mains unresolved.

We then turn to joint source–channel coding and show that a
coding strategy with no explicit binning at the encoder, along
with a converse result, yields for all channels a complete single-
letter characterization of achievable rates. Specifically, as the
main result of this paper, we prove that is an achievable rate
if and only if there exists such that

(1)

for all . This result is exciting because, to the best of our
knowledge, it constitutes the first example in the literature
where a complete single-letter characterization of achievable
rates in joint source–channel coding is successfully derived
even though that for separate coding is unknown (i.e., for

). Also, the characterization is not in terms of a joint
distribution of . Rather, its

conditions are based on and
separately. This contrasts with some existing multiterminal
joint source–channel coding results. For example, [4] derived
single-letter sufficient conditions for achievability of rate
when correlated sources are transmitted over multiple-access
channels. The characterization therein uses joint distributions
of source and channel variables. A similar interplay between
source and channel variables arises in [12] which treats coding
of a pair of correlated sources, both available at the encoder,
over broadcast channels. The characterization (1) is also in-
teresting in the sense that it shows a trivial outer bound to the
capacity region derived in [3] to be the effective capacity region
when the channel is used in our Slepian–Wolf setting.

The separation of source and channel variables in (1) is due
to the “operational separation” exhibited by the optimal joint
source–channel coding strategy. That is, the optimal strategy
can be separated into source and channel components that op-
erate independently. However, neither of these components are
stand-alone in the sense mentioned above, i.e., as in Fig. 2. In
other words, this observation does not imply “informational sep-
aration,” i.e., separation in the classical sense.

So when do we have informational separation? By com-
paring the performances of joint and separate (stand-alone)
coding strategies for several well-known broadcast channels,
we attempt to answer this question. For degraded broadcast
channels, this analysis yields an example where joint coding is
strictly advantageous, thereby leading to the conclusion that in-
formational separation does not hold in general.1 We also prove
for a subclass of deterministic channels that separate coding
is optimal. Finally, for bottleneck, orthogonal, switch-to-talk,
and incompatible channels, all of which were introduced in

1Although the breakdown of separation for lossy source coding over broad-
cast channels is well known (see, for example, [10]), to the best of our knowl-
edge, there is no result in the literature for the special case of lossless coding
with side information at the receivers.
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[3], it is straightforward to show, using our main result (1), that
informational separation always holds.

A scenario related to ours was recently tackled by Wolf
in [24], wherein i) the side information is assumed to
be of the same quality at all receivers, i.e., with equal

, ii) the encoder has access to the whole data
, and iii) the broadcast channel is

noiseless, i.e., for all . An interesting observation
presented in [24] was that even though the source encoder has
full access to the side information, it is not clear how it should
use it. Specifically, completely ignoring the side information
and implementing a traditional binning scheme seems to be
the only option for the encoder. In contrast, in our scenario, no
binning at the encoder is required even though the side informa-
tion is not available. Instead, the optimal joint source–channel
coding scheme employs “virtual binning,” i.e., binning is per-
formed in effect at the decoding stage. More specifically, each
local receiver first creates a list of possible , and then treats
this list as an effective bin and resolves the actual using
its local side information. On the other hand, virtual binning
cannot be an alternative solution to Wolf’s problem because it
reduces to traditional binning when the channel is noiseless.

The rest of this paper is organized as follows. We begin with
the preliminaries in the next section. We then discuss in Sec-
tion III the minimum achievable rate when separate coding is
adopted. In Section IV, we turn to joint source–channel coding
and prove our main result (1). Section V compares the perfor-
mances of separate and joint coding for several types of broad-
cast channels. Finally, in Section VI, we discuss the results and
point to future directions.

II. PRELIMINARIES

A. Types and Typical Sequences

We heavily use the method of types and strong typicality, and
follow the definitions and the notation provided in [6]. The type

of a vector is the empirical distribution given by

where denotes the number of occurrences of in .
We denote by the type class , i.e., the set of all sequences

having type , and by the set of all types for sequences
of length . A well-known crucial fact is that
(cf. [6, Lemma 1.2.2]). If

for all , and also if whenever ,
is said to be strongly -typical with . The set of all strongly-

typical sequences is denoted by . A notable property of
typical sets is that2

2All logarithms in this paper are base 2.

for large enough , i.e., when (cf. [6, Lem-
ma 1.2.13]). The type and typicality concepts can be general-
ized to pairs of random variables in a straightforward manner.
We refer the reader to [6] for a thorough discussion, and make
specific references to lemmas and theorems in [6] whenever
necessary in our proofs.

B. The Slepian–Wolf Result and Multiple Binning

The exposition in Section III relies on the extension of
the Slepian–Wolf result to multiple binning. The original
Slepian–Wolf theorem [22] characterizes the minimum achiev-
able rate in a point-to-point lossless communication system
where the decoder has side information unknown to the encoder.
Observe that this scenario corresponds to ,
(so that the rate is in bits per symbol), and a noiseless
channel in our setting. We first repeat the Slepian–Wolf
result and sketch its proof for convenience.

Theorem 1: Rate is achievable if and only if .
Proof: The “only if” part is obvious from the fact that the

rate cannot fall below even when the encoder also has
access to .

For the “if” part, apply randomized binning: For an arbitrarily
small , create bins by randomly picking for each bin

source vectors from according to uniform
distribution. Inform the encoder and the decoder about the con-
tents of the bins. The encoder then transmits the index of the first
bin in which , the actual source vector, appears. If does
not appear in any bin, it sends an arbitrary bin index, say . This
communication requires bits per source symbol. Having re-
ceived only the bin index, the decoder estimates as the first
vector in that bin which is jointly typical with the side-infor-
mation vector . If there is no such source vector in the bin,
then the decoder outputs an arbitrary .

There are three sources of error in this strategy. First, may
not appear in any bin. The probability of this event vanishes,
because i) vanishes (cf. [6, Lemma 1.2.12])
and ii) during the random binning phase we have generated a
total of source vectors, and the probability that
none of these match is bounded as

for large enough . The second error event occurs when
is not typical with . The probability of this also vanishes
exponentially fast (cf. [6, Lemma 1.2.12]). Finally, some

in the selected bin might also be typical with . Using the
union bound , the probability of this
event can be upper-bounded by

which can be brought to zero as if .

We next describe Slepian–Wolf coding with multiple binning.
Consider independent binning schemes, each having



1472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

bins formed by independent and uniform draw-
ings from . Let . For each binning scheme,
the encoder searches for a bin that contains , and transmits
its index, thereby expending total rate . The decoder then out-
puts a source vector that appears in all selected bins and is
jointly typical with . The next lemma shows that this multiple
binning scheme enjoys the same rates as regular Slepian–Wolf
coding.

Lemma 1: Rate is achievable with multiple binning if and
only if .

Proof: As in the proof of Theorem 1, it suffices to show the
“if” part. It is clear that with probability approaching one,
appears in at least one bin in each scheme, and is typical with

. The only remaining source of error is then the existence of
, where is a vector in the bin

selected by the encoder from the th scheme and is typical with
. Defining , this is possible if

and only if is jointly typical according to
. In a single trial, where are independently

drawn from , the probability of this joint typicality event
cannot be larger than

or equivalently

Thus, for the whole set of trials forming the bins, the union
bound yields

as an upper bound to the probability of error, which vanishes as
if .

C. Broadcast Channels and Capacity

In the most general broadcast channel scenario,
independent messages are to be conveyed through the channel,
each one intended for a distinct nonempty subset of all
receivers . Denote by the message targeting receivers in

, where notation indicates a concatenated list of elements of
and serves as a mnemonic. For example, when ,

, and the message for receivers in is denoted by
. Similarly, denote by the cardinality of the

message set for , i.e., . Also, let

be the decoded version of at receiver . The
reader is referred to the channel in Fig. 2 as an example for

.

Definition 1: The rate vector is achievable if
there exists a sequence of channel encoders

and sequences of channel decoders

such that for any and arbitrarily large

and

for all . Here, denotes the Cartesian product, and
is a shorthand notation for “all such that .”

Definition 2: The capacity region is the closure of all
achievable .

Denoting by the total rate delivered to receiver , i.e.,

define the region as

with

In [3], the following trivial outer bound on was derived.

Lemma 2: If , then .

As a matter of fact, it was the convex closure of that was
proven to be an outer bound to the total rates in [3]. However,
as we show next, is already a convex region.

Lemma 3: is convex.
Proof: For for , let and

, respectively, achieve and
for each . From concavity of as a function of ,

the distribution

satisfies

for each , proving the lemma.

Thanks to its convexity, the region is in principle easy to
compute via the Lagrangian optimization

which is a convex optimization problem. It is well known that
is in the normal direction to the boundary of

at the point

where is the random variable that achieves the above
maximum.

As pointed out in [3], the bound in Lemma 2 is generally
loose, for it is not always possible to convey a total of
messages to receiver simultaneously for all . In this paper, we
attach a different meaning to this outer bound. Specifically, as
we discuss in Section V, tightness of the outer bound implies
the separability of the source and the channel coding problems
in our scenario for all sources.
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A single-letter characterization to the capacity region
is not known, even for the simplest case . The best
achievable rate region known to date is derived by Marton
[15] (whose proof is later on simplified in [8]). On the
other hand, some special cases are well understood. One
such case of interest to us is when the message sets are de-
graded, i.e., for all other than those of the
form with . This implies a hi-
erarchy of messages , and
thus, of decoders. In particular, the th decoder resolves
the first messages in the hierarchy. Note that one can al-
ways transfer rate from lower levels to higher levels. For
example, for , if is achievable, so is

, , or
, provided .

That is because a lower level decoder can simply ignore
some received message bits and let a higher level decoder use
them. Therefore, the cross section of the capacity region
corresponding to degraded message sets can be equivalently
characterized by the cumulative3 rates . We
denote by the capacity region with degraded message sets
in terms of cumulative rates. Formally, we define

and are achievable

A single-letter characterization for when is given
by the following theorem from [14].

Theorem 2: for consists of all
for which and there exists a joint distribution

satisfying

Remark 1: The original theorem stated the capacity region in
terms of marginal rates. See [7] for the cumulative rate version.

A very related case regarding the characterization of capacity
is degraded broadcast channels, for which

for some , or in other words, forms a
Markov chain.

Theorem 3: ([1], [9]) For a degraded broadcast channel,
consists of all for which there exists a joint
distribution so that

Without loss of generality, the message sets can also be as-
sumed degraded, since any private message to receiver 1 can

3Note that for the case of degraded message sets

R = r = r :

be reliable decoded by receiver 2 as well. Moreover, bits from
and can always be transferred to . Thus, the

equivalent capacity region in terms of cumulative rates
and is obtained

by replacing the conditions of Theorem 3 with

(2)

(3)

Note that (2) and (3) can also be derived from Theorem 2 using
the Markov relation .

We are also interested in the explicit characterization of
for the deterministic, bottleneck, orthogonal, switch-to-talk, and
incompatible channels. We defer the discussion on these chan-
nels to Section V.

We close this section by discussing another special case
where there is a single message to be conveyed to all receivers.
In other words, for all . This is equivalent to the
compound channel scenario where the sender does not know
which of is the true channel.4 The capacity of this
special case was derived by Wolfowitz [25] and Blackwell et
al. [2] as

(4)

For , this result could also be obtained by setting
in Theorem 2.

III. ACHIEVABLE RATES IN SEPARATE

SOURCE–CHANNEL CODING

In this section, we analyze the performance of separate and
stand-alone source and channel coders. For the source coding
part, the Slepian–Wolf result in Theorem 1 implies that it is
necessary and sufficient to send bits to
source decoder . However, sending these bits (i.e., bin indices)
through the broadcast channel as independent information
would be naive and an inefficient use of the channel. We dis-
cuss in this section more elegant ways of communicating the
bin indices.

Before proceeding further, let us assume without loss of gen-
erality that

This particular order of conditional entropies is adopted
throughout the sequel for the sake of a fair comparison between
achievable rates in separate and joint source–channel coding.

A. Universal Binning and Compound Channels

One way of bringing together separate source and channel
codes is to use as a compound channel, that is,
by sending only a single common message through
the channel. Though suboptimal (as we prove in the next sub-
section), this technique is worth discussing since it sheds some
light on the problem. We first state the achievable set of rates
under this regime.

4Without loss of generality, the receiver may be presumed to know the true
channel. Even if it does not initially, some pre-arranged symbols transmitted
over the channel with negligible rate (e.g.,

p
m symbols in m uses) will reveal

the true channel to the receiver.
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Lemma 4: When is used as a compound
channel, rate is achievable if and only if

Proof: That , which is the largest among
, is a necessary and sufficient source rate for

when the decoders have various levels of side information
easily follows by specializing more general lossy source coding
scenarios with various levels of side information to lossless
coding (see, for example, [13] and [19].) Since the capacity
of the compound channel with uses is , the result
follows.

Remark 2: One can directly prove sufficiency of
using universal binning arguments. If one creates

bins, the number of source vectors in each bin is bounded
as

and thus with probability approaching one as , only the
correct source vector is typical with for any .

Lemma 4 reveals that the minimum in this paradigm is de-
termined by the quality of the worst side information and of the
worst channel in the max-min sense of (4). Intuitively, in the
fortunate situation where the channel quality improves as the
quality of the side information decreases, i.e., if

for some “good” , one must be
able to decrease further using a more efficient coding scheme.
We show in the next subsection that this is indeed possible to
some degree with separate coding. On the other hand, as we dis-
cuss in Section IV, we can exploit this phenomenon fully with
joint coding.

B. Multiple Binning and Degraded Message Sets

The following theorem characterizes the minimum achiev-
able rate in separate source–channel coding in its full generality
assuming that the capacity region is known.

Theorem 4: Rate is achievable using separate source and
channel coders if and only if there exists
such that

(5)

for all .
Proof: It is clear that if the channel cannot deliver in

uses a total rate of to receiver , it is not possible to
have as with .

As for the achievability of satisfying (5), let the encoder
create independent binning schemes, each associ-

ated with a subset of receivers and having bins.
The encoder then sends the bin index associated with to all re-
ceivers in with uses of the channel. Since
these bin indices are decoded reliably at each receiver. Thus,
each receiver has access to multiple bin indices with a total
rate of per source symbol. The proof then follows from
Lemma 1.

Fig. 3. Nested binning for K = 2. One can first create � 2 bins
and group � 2 together to form a coarser binning with
� 2 bins.

Thus, according to Theorem 4, the achievability of is solely
determined by the total rates deliverable to each receiver. Ex-
ploiting this fact, the next theorem states a major simplification
for . More specifically, it provides a single-letter condi-
tion on the achievability of .

Theorem 5: For , rate is achievable using separate
source and channel coders if and only if

(6)

where .
Proof: The “if” part follows from Theorem 4 and the

definition of . On the other hand, it also follows from
Theorem 4 that if is achievable, there exists a rate vector

satisfying

We handle the two cases and sepa-
rately. If , then by transferring rate from both pri-
vate messages to the common message, we observe

. By definition, this implies

and therefore, . If ,
we similarly observe . It then
follows that

and since

this implies .

Remark 3: It follows from this theorem that the encoder
needs to implement only two binning schemes instead of three
(which was suggested by Theorem 4). Even though the two
transmitted bin indices are independent, the one conveyed to
both receivers serves as coarse information, and the other,
reliably decoded only by receiver 2, as refinement. Thus, one
can alternatively implement a nested binning structure with two
levels, as depicted in Fig. 3.

Remark 4: When , the capacity of the channel , is
larger than the compound channel capacity , sending mul-
tiple bin indices using degraded message sets is superior over
sending a single bin index using the compound channel mode.
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Fig. 4. An example where using the compound channel mode is inferior. The
shaded area represents C and according to Theorem 5, � is an achievable rate
even though H(XjY ) > �C .

Fig. 5. A deterministic broadcast channel with U = f0; 1; 2; 3g, V = V =
f0;1g, V = f0;1; 2; 3g.

For a graphical illustration of this fact, see Fig. 4. In fact, the
gains can be infinite: Consider a degraded broadcast channel
with and . Clearly, channel 2 is noiseless
and channel 1 cannot convey any messages reliably, and thus

and

Now, if and , can never be
conveyed to both receivers under the compound channel mode
no matter how large is, whereas any is achiev-
able under the degraded message set mode.

Inspired by Theorem 5, one may be inclined to pursue a more
general result stating that is achievable with separate coding
if and only if

for any . However, as we now show with an example,
that is not true. Let , ,
and . It follows from Theorem 4 that can be reliably
decoded at all receivers if and only if one can deliver messages
with total rates , to the respective re-
ceivers. For the deterministic channel shown in Fig. 5, this is
indeed possible by setting and
for all other . More specifically, the following channel encoder
achieves these rates with zero error using the channel only once:

However, it is not possible to achieve the same total rates with
degraded message sets. That is, . To see this,
first observe that one has to use almost all channel input se-
quences as codewords to achieve the total rate regard-
less of whether the message sets are degraded. Since a common
message with rate is to be delivered to all receivers,
these codewords must be partitioned into about groups,
with approximately elements in each, so that the group index
determines , and the specific codeword in the group de-
termines the private message . Now, note that for both
channel 1 and channel 2, there are possible output sequences
whose inverse images are of size uniformly. Thus, the code-
word groups must be designed so as to significantly overlap with
the inverse images of channel outputs and simultane-
ously in order to have with high
probability. On the other hand, such a design is impossible since
the intersection of the inverse images for any pair has
exactly one element.

In conclusion, for , a single-letter expression for the
minimum achievable in separate source–channel coding re-
mains elusive. However, the following, implied by Lemma 2 and
Theorem 4, is a single-letter necessary condition for the achiev-
ability of :

(7)

Moreover, (7) is sufficient as well if and only if is a tight
bound on the total rates. In contrast, as we show in the next sec-
tion, (7) is both necessary and sufficient in joint source–channel
coding.

IV. ACHIEVABLE RATES IN JOINT SOURCE–CHANNEL CODING

In this section, we first prove our main result and then discuss
its implications.

A. Main Result

Theorem 6: In joint source–channel coding, reliable commu-
nication is possible with rate if and only if (7) is satisfied.

Proof: We begin with the converse part. Let
for a sequence of encoders and decoders with a
fixed rate . Let .

where follows since each channel is memoryless,
from the fact that forms a Markov chain,
from , and finally, from the fact that

. Using Fano’s inequality [5]
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we further obtain

(8)

for any and large enough . Since is convex, and

for each , we have

(9)

Combining (8) and (9) proves the converse.
For the direct part, we show that for any , if

then there exists a sequence of encoders and decoders
with a fixed rate with for all .

Fix , . Select such that

for all

Generate length- source words and
length- channel words in an independent and identically
distributed (i.i.d.) fashion using and , respectively,
where . Denote these words by and for

, and reveal them to both the encoder and the
decoder.

Encoder: Given , find the smallest such that
, and send through the broadcast channel. If no such

is found, declare an error.
Decoder: At receiver , find the unique that simultaneously

satisfies

and

If is not unique, or if it does not exist, declare an error.
Probability of error: Define the following events:

when i.i.d. and i.i.d.

when i.i.d.

when i.i.d.

when i.i.d. and i.i.d.

when i.i.d. and i.i.d.

Basically, is the event that the encoder fails to find a single
in the randomly generated source codebook that matches

with the current source block . Given that at least one such
exists, i.e., has occured, corresponds to the event

that and the side information are not jointly typical.

Conversely, represents the event that a source word ,
with , is jointly typical with . and are
similarly defined for the transmitted and received channel words

and .
Taking into account the joint randomness of , , and the

codebooks , , we can bound the proba-
bility of error as

where the last term follows from the union bound on probabil-
ities and the observation that for an error to occur, it suffices to
have at least one and with which are sepa-
rately typical with the actual side-information block and the
actual received channel word .

Now, for any and , we have

where follows from [6, Lemma 1.2.6], from [6, Lem-
ma 1.2.3], by choosing a single type in the summation that
simultaneously satisfies and

, and finally from the well-known inequality

for and . Choosing , the right-hand
side vanishes as . That and as

and can be also shown in a standard fashion
(cf. [6, Lemma 1.2.12]). Now, it is also a matter of folklore to
show

and

for any , , and . Therefore,
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Fig. 6. The virtual binning at the kth receiver. Dots inside the channel codebook and the typical source set represent codewords typical with V and the
corresponding source words, respectively. With high probability, only one source word is jointly typical with Y .

Choosing

this last error term also vanishes.

B. Discussion

A useful interpretation of our main result is that , a trivial
outer bound on the total rates a general broadcast channel can
achieve, turns out to be the effective capacity region for joint
source–channel coding in our Slepian–Wolf setup. The achiev-
ability part of the proof of Theorem 6 also reveals other inter-
esting phenomena, which we discuss next.

Our first observation is that even though what is described in
the proof is a “joint” coding scheme, the source and the channel
variables (and hence words) are statistically independent. That
is, because the joint mechanism can be separated into source
and channel components which operate independently. More
specifically, on the encoder side, the source is directly mapped
into a message set of size , and the resultant mes-
sage is mapped to a random channel word generated according
to . On the decoder side, even though the local channel de-
coders cannot resolve the message, each one can be thought of as
providing an exponentially large list of possible channel code-
word indices, and hence, a list of possible . Then each local
source decoder uses this list and the local side information to re-
solve the actual . This is still a joint source–channel coding
scheme, because neither the source nor the channel components
are stand-alone, and only when they are used together in the de-
scribed manner is reliable transmission possible. Thus, we have
operational separation, but not necessarily informational sepa-
ration. Indeed, as we show in the next section, informational
separation does not hold in general.

Even though there is no explicit binning in the described joint
coding system, an implicit one is performed by the received
channel words.5 In fact, what we refer to as lists above can be
thought of as “virtual bins.” More specifically, for each typical

5We exclusively discuss here the interesting case H(X) � �I(U ;V ). Oth-
erwise, with high probability, there is only one channel word jointly typical with
V , and thus X can be decoded even without the help of Y .

, the list comprises of channel words
jointly typical with . Since the mapping between source
words and channel words is arbitrary, one can think of the in-
duced source words (i.e., the inverse image of the list) as a ran-
domly created bin. Because ,
it follows that with probability approaching one, only the cor-
rect source word falls into the intersection of this bin and the
set of jointly typical with . Fig. 6 provides an illustra-
tion of this phenomenon. Note that we are fully exploiting the
fact that the channel quality increases as the quality of the side
information decreases. (In Fig. 6, this corresponds to a larger
image of on the typical source vectors and a smaller image
of on the channel codebook.) Note also that there is sig-
nificant overlap between the virtual bins when

. To see this, observe that there are bins and
source vectors in each bin, but

Since joint source–channel coding performs no explicit bin-
ning at the encoder, can we utilize it as an alternative to the tra-
ditional binning solution in the Wolf setup [24] mentioned in
Section I? The answer is negative, because when the channel is
noiseless, the elements of the codeword list generated at a re-
ceiver will be identical (equal to ), resulting in a fixed parti-
tioning on the source domain. Alternatively, since

, there is almost no overlap between bins and thus virtual bin-
ning reduces to traditional binning for noiseless channels.

V. COMPARISON OF ACHIEVABLE RATES IN SEPARATE VERSUS

JOINT SOURCE–CHANNEL CODING

For , our setup reduces to a regular point-to-point
scenario for which informational source–channel separation is
known [20]. In this section, we investigate whether such separa-
tion holds in some well-studied broadcast channels for . It
follows from Theorems 5 and 6 that it suffices to check whether

where
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Fig. 7. Examples of common parts of V and V . Lines indicate v ; v pairs with P (v ; v ) > 0. Any connected component of the graph constitutes
h = h = j.

or, equivalently, whether all total rate pairs are
achievable for the broadcast channel.

A. Degraded Broadcast Channels

We analyze here the case where the same choice of ,
denoted , simultaneously achieves the maximum of both

and , which we assume to be nonzero to
eliminate uninteresting cases. This is indeed possible, for
example, when we have a binary symmetric broadcast channel,
i.e., when and both and
are binary-symmetric channels with respective crossover prob-
abilities and satisfying . In particular,

achieves both and
, where is the binary entropy

function

and denotes the ordinary capacity of channel . When
such exists, we have

We derive in the next lemma a key condition on .

Lemma 5: When some achieves both
and simultaneously, if and only if
there exists with satisfying

(10)

(11)

Proof: Let . Then there exists and
with such that (2) and (3) are satisfied.
From data processing inequality, we have .
It also follows from that

Since and , it follows that
, as expected. On the other hand, this analysis also implies

that if and only if there exists with
satisfying

(12)

which can easily be reformulated as (10) and (11).

Corollary 1: for all degraded channels with de-
terministic components and if some achieves
both and simultaneously.

Proof: It suffices to find with
satisfying (10) and (11). Create such that those with

yielding the same under are
grouped together and deterministically mapped to the same .
This implies without loss of generality, and both (10)
and (11) are immediately satisfied.

We next introduce a mechanism to create examples of
using the concept of common part of two random variables.

For induced by , let be the largest integer for which
there exists deterministic functions

with and for
, such that with probability . The

common part of and is then defined as
. We say that and has no common part if .

This concept is illustrated in Fig. 7.

Lemma 6: For induced by , if and have no
common part, .

Remark 5: It immediately follows that for binary-
symmetric broadcast channels, as pointed out in [3].

Proof: Assume . Then, from Lemma 5, there
exists with satisfying (10) and (11).
But (11) implies that as well. This, in turn, yields

for all such that . Therefore, for any
with , all satisfying must

exhibit the same . In other words, must
be constant for , , where defines
the common part of . But since there is no common
part, i.e., , this implies the independence of and ,
or , which conflicts with (12) since .

We close this section with an investigation of how large
the gain in minimum achievable can be when a joint
source–channel code is used instead of separate source and
channel codes for a binary-symmetric broadcast channel. We
define the gain as

where and , respectively, refer to the minimum rates in
separate and joint source–channel coding. To evaluate the gain,
we use the characterization of given in [5]

(13)

(14)
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Fig. 8. The scaled version of the capacity region, � C , for a binary-
symmetric broadcast channel is shown as the shaded region. It is assumed that
H(XjY ) = � C and H(XjY ) = � C , which implies � is indeed the
minimum rate in joint source–channel coding. On the other hand, for separate
source–channel coding to be possible, the capacity region must be scaled by a
larger constant, namely, � .

where . Here, controls the tradeoff
between the two constraints. More specifically, when ,
right-hand sides of (13) and (14) both achieve , and when

, they become 0 and , respectively. Fig. 8 shows the
capacity region scaled by and , where and are
determined for a source that satisfies

It can easily be deduced from Theorem 6 that

(15)

In fact, the same minimum rate would occur if we relax
one (and only one) of the equalities in (15) to an inequality
of direction . However, it can be rigorously shown that this
particular source is the most difficult to encode for a separate
source–channel coding system. For an informal proof of this
claim, the reader is referred to Fig. 8. When we increase fur-
ther than , the point is the last to be included in

among all with , and among all
with .

To find , it then suffices to find the point on the
boundary of satisfying

(16)

and use

Unfortunately, solving (16) analytically proves to be a te-
dious task. Resorting to numerical solution of (16), we obtain

as shown in Fig. 9, and observe that reaches
its maximum value of when and .

B. Deterministic Broadcast Channels

In this subsection, we extend Corollary 1 to all determin-
istic channels. A broadcast channel is called deterministic if

only assumes or , which implies that
and are deterministic functions of , denoted by and

. Similar to the case in the previous subsection, we con-
sider the cases where the same , denoted by , maximizes
both and simultaneously. This implies

One such example is known as the Blackwell channel, where
,

or

and

or .

For this channel, satisfies
and .

As for , we utilize the following theorem which special-
izes the full characterization of derived in [11] to the case of
degraded message sets.

Theorem 7: For deterministic broadcast channels with
, is the closure of all for which

and there exists a distribution satisfying

(17)

(18)

(19)

From data processing inequality, we have
, and from the fact that , we observe

. This verifies, as a sanity check,
. On the other hand, the next theorem proves that
.

Theorem 8: If achieves

and

simultaneously, then .
Proof: We prove for the cases of and

separately.
For , reduces to the collection of such

that . Therefore, it suffices to show
. Using (17) and (18) with yields

the desired result. The Blackwell channel is an example for this
case, as it satisfies .

For , we shall show . This, ac-
cording to (17) and (18), is possible if and only if there exists
with satisfying

(20)

(21)

simultaneously. Equivalently, we must have

(22)

(23)
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Fig. 9. G(p ; p ) obtained by numerical solution of (16).

Here, (22) follows directly from (20) and (21), and (23) follows
because and

, and hence,

Now, implies that , and
therefore,

where the former and the latter inequalities are tight when
and when , respectively. Moreover, can be prop-

erly chosen so that takes any desired value between
and . The proof of this claim will essentially finish

the proof of the theorem, for

where immediately follows from
.

Toward the goal of proving that can take any value
between and with an appropriate choice of , we
first observe that is automatically satisfied for
any due to the deterministic nature of the channel. Thus, we
can solely focus on the condition when
choosing . Second, and can take ar-
bitrary values, provided they form legitimate probability distri-
butions and satisfy

(24)

In other words, for each , the (known) vector
must be in the convex closure of the (chosen)

vectors , where plays the role of convex
combination coefficients. Two possible extreme choices men-
tioned before are i) to use a single for each , i.e., create a de-
terministic , and let whenever

, thus yielding , and ii)
to use as many as different values for each , and
let be deterministic, so that
whenever , resulting in . See
Fig. 10(a) and (b) for an illustration of this discussion for
the Blackwell channel. Fig. 10(c) shows a general choice of

and . Since this general choice affects
continuously, we conclude that there must exist some choice
so that attains the desired value in between and

.

C. Other Channels Where Separation Holds

In [3], it was shown that for some classes of channels is a
tight outer bound on the total rates. In this section, we discuss
these channels briefly.

The Bottleneck Channel: The bottleneck channel satisfies

for all and . Thus, both receivers “see” the
same channel, and are able to reliably decode the same message
set with rate , where is the point-to-point capacity
of . Based on this observation, it follows that
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Fig. 10. Possible ways to satisfy (24) for the Blackwell channel. (a) P = P and deterministic P , (b) deterministic P and P = P ,
and (c) more general choice of P .

Orthogonal Channels: Let ,
, and

Since maximizes both and si-
multaneously, we have that

where and are the ordinary
capacities of and , respectively. From the discussion
in [3], it also follows that

Optimality of separate coding is then obvious when
. When , the conditions and

for and , respectively, become
vacuous, and

Switch-to-Talk Channel: Let

...
...

. . .
...

...

...
...

. . .
...

...

and

...
...

. . .
...

...

...
...

. . .
...

...

Equivalently, there are two separate channels, with capacities
and , between the sender and each of the receivers, and

both receivers have indicators that signal when the sender is
communicating with the other receiver. It was shown in [3] that

is an achievable total rate pair if and only if there exists
satisfying

It is also straightforward to show consists of the same rate
pairs, as pointed out in [3].

Incompatible Channels: Let

which implies that if the sender wishes to communicate with
one particular receiver, all the other receiver sees is pure noise.
In this case, by simple time sharing arguments one can show the
achievability of a pair of total rates when .
In [3], it was shown that

Therefore, follows.

VI. CONCLUSION AND FUTURE DIRECTIONS

We considered the problem of Slepian–Wolf coding over
broadcast channels, where each decoder at the receiving end
of the channel has access to side information (possibly of
different quality) about the source. For both separate and
joint source–channel coding strategies, we characterized the
minimum achievable rate in terms of channel uses per source
symbol. The characterization for joint source–channel coding
is particularly powerful, because it is not only of single-letter
nature, but also easy to compute. On the contrary, the minimum
separate coding rate is computable only if the region of achiev-
able total message rates at each receiver is known. For ,
this is the same as the capacity region with degraded message
sets. However, as we have shown with an example, for ,
the capacity region with degraded message sets does not fully
characterize the whole set of achievable total rates.

We discussed whether separate coding with stand-alone
source and channel coders is optimal for some well-studied
channels with . Since there exists at least one case where
it is not, the general conclusion is that this communication
scenario is not separable.

The main strength of the simple joint source–channel coding
approach of Theorem 6 is that it employs independent (albeit not
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stand-alone) source and channel components leading to statisti-
cally unrelated source and channel variables in the characteriza-
tion of achievable rates. It would certainly be interesting to find
other multiterminal communication scenarios in which the sep-
aration of variables could be repeated. We shall note here that
our first candidate, lossless coding of correlated sources over
multiple-access channels as in [4], turned out not to be such a
scenario, because the simple approach of Theorem 6 results in
the same minimum rate as in separate source–channel coding.

Another future research goal is to generalize our result to
lossy coding with a fidelity criterion. Of special interest would
be when side information is absent at the decoders. Even in that
simplified case, the minimum achievable rate in channel uses
per symbol is not known despite increased activity in the last
decade [16]–[18], [23].
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