
xv6 Overview

CS 202: Advanced Operating Systems

xv6

• xv6 is MIT’s re-implementation of Unix v6
– Written in ANSI C
– Runs on RISC-V and x86

• We will use the RISC-V version with the QEMU simulator

– Smaller than v6
– Preserve basic structure (processes, files, pipes. etc.)
– Runs on multicores
– Got paging support in 2011

56

Ken Thompson &
Dennis Ritchie, 1975

xv6

• To understand it, you’ll need to read its source code
– It’s not that hard
– Source code:

• https://github.com/rtenlab/xv6-riscv (for our projects)
– Forked from https://github.com/mit-pdos/xv6-riscv; to avoid unexpected

updates during this course

– Book/commentary
• xv6: a simple, Unix-like teaching operating system
• https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

57

https://github.com/rtenlab/xv6-riscv
https://github.com/mit-pdos/xv6-riscv
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

Why xv6?

• Why study an old OS instead of Linux, Solaris, or Windows?

1. Big enough
– To illustrate basic OS design & implementation

2. Small enough
– To be (relatively) easily understandable

3. Similar enough
– To modern OSes
– Once you’ve explored xv6, you will find your way inside

kernels such as Linux

58

Why RISC-V?

• RISC-V: open standard instruction set architecture (ISA) based on
RISC principles
– High quality, loyalty free, license free
– Multiple proprietary and open-source core implementations
– Supported by growing software ecosystem
– Appropriate for all levels of computing system, from microcontrollers to

supercomputers

• Fun to use toolchains for the new architecture

59

xv6 Structure

• Monolithic kernel
– Provides services to running programs

• Processes uses system calls to access system services

• When a process call a system call
– Execution will enter the kernel space
– Perform the service
– Return to the user space

60

xv6 System Calls

61

xv6 System Calls (2)

62

xv6 kernel
source files
• /kernel directory

63

Setup

• Toolchain
– You need a RISC-V tool chain and QEMU for RISC-V

• Linux (Ubuntu 20.04)

• Windows
– You can use Windows Subsystem for Linux (WSL) with Ubuntu 20.04
– Unsure what version of Ubuntu you have? Open WSL terminal and type

“lsb_release -a”
– Follow the above Linux instruction

for package installation

64

$ sudo apt update
$ sudo apt install git build-essential gdb-multiarch qemu-system-misc gcc-riscv64-linux-gnu binutils-riscv64-linux-gnu

Setup

• Windows (cont’)
– All your WSL Linux files are accessible as \\wsl$ in File Explorer

• Exposed as network shared files
– Your home directory is \\wsl$\home\<username>

65

Setup

• macOS
– Install developer tools:

– Install Homebrew (package manager)

– Install the RISC-V compiler toolchain:

– Update path; open ~/.bashrc and add the following line

– Install QEMU

66

$ xcode-select --install

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

$ brew tap riscv/riscv
$ brew install riscv-tools

PATH=$PATH:/usr/local/opt/riscv-gnu-toolchain/bin

$ brew install qemu

Setup

• Download xv6:
$ git clone https://github.com/rtenlab/xv6-riscv
$ cd xv6-riscv

• Compile and run xv6:
$ make qemu
 (“make” to compile only)

• Exit from QEMU
– Press Ctrl+a and then press c to get the QEMU console
– Then type “quit” to exit

67

(xv6 shell)

What does “hart” mean?
• In RISC-V, hart refers to a hardware thread
• xv6 boots on hard 0 and turns on other harts

Create a System Call

• Goal: create a system call “sys_hello” that call a kernel
function that displays: “Hello from the kernel space!”

• To do that, open the following files and add the lines
with “// hello” comment:

68

Create a System Call (2)

• kernel/syscall.h: define new syscall number

69

Create a System Call (3)

• kernel/syscall.c: update system call table

70

Create a System Call (4)

• kernel/sysproc.c: define syscall function

• kernel/proc.c: new kernel function

71

Create a System Call (5)

• kernel/defs.h

72

Create a System Call (6)

• Update user-space syscall interface
• user/usys.pl

73

• user/user.h

Test a System Call

1. Write a user program: Create “ test.c ” file in the user directory
of “xv6-riscv” (user/test.c)

74

Test a System Call (2)

2. Edit “ Makefile ” and append “$U/_test\” to UPROGS

75

Test a System Call (3)

3. Type:
 $ make qemu
4. After xv6 boots, type:
 $ test

76

How to use GDB

• To run Qemu with GDB, you need to open another terminal at the
same xv6-riscv folder.

• In the first terminal, type:
 $ make qemu-gdb

• In the second second terminal, type:
 $ gdb-multiarch -q -iex "set auto-load safe-path . "

77

Use “ break <address> ” to set a breakpoint
Type “ continue ” to run until breakpoint

MacOS: If gdb-multiarch doesn’t exist, try "riscv64-unknown-elf-gdb"

Change # of CPUs

• By default, xv6 is compiled for three CPUs. To change
the number of CPUs, edit Makefile:

• Unless otherwise mentioned, we will use a single-core
system, so change to “ CPUS := 1 ”

78

No other harts (cores) after this change

