UNIVERSITY OF CALIFORNIA, RIVERSIDE

xv6 Overview

CS 202: Advanced Operating Systems

R

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Xv6

e xv6 is MIT’s re-implementation of Unix v6

Written in ANSI C |, KenThompson &

Dennis Ritchie, 1975
Runs on RISC-V and x86
e We will use the RISC-V version with the QEMU simulator

Smaller than v6

Preserve basic structure (processes, files, pipes. etc.)
Runs on multicores

Got paging support in 2011

56

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Xv6

e To understand it, you’ll need to read its source code
— It’s not that hard

— Source code:
e https://github.com/rtenlab/xv6-riscv (for our projects)

— Forked from https://github.com/mit-pdos/xv6-riscv; to avoid unexpected
updates during this course

— Book/commentary
e xv6: a simple, Unix-like teaching operating system
e https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

R 57

https://github.com/rtenlab/xv6-riscv
https://github.com/mit-pdos/xv6-riscv
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Why xv6?

e Why study an old OS instead of Linux, Solaris, or Windows?

1. Big enough

— Toillustrate basic OS design & implementation
2. Small enough

— To be (relatively) easily understandable
3. Similar enough

— To modern OSes

— Once you’ve explored xv6, you will find your way inside
kernels such as Linux

R 58

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Why RISC-V? L RISC

e RISC-V: open standard instruction set architecture (ISA) based on
RISC principles

— High quality, loyalty free, license free

®

— Multiple proprietary and open-source core implementations
— Supported by growing software ecosystem

— Appropriate for all levels of computing system, from microcontrollers to
supercomputers

e Fun to use toolchains for the new architecture

Apple shows interest in RISC-V chips,a |ntel Will Offer SiFive RISC-V CPUs on
competitor to iPhones' Arm tech 7nm, Plans Own Dev Platform

RISC-V chip technology could be used for tasks like Al and computer By Joel Hruska on June 24, 20214t 8:36 am

vision.

R 59

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Xv6 Structure

e Monolithic kernel

— Provides services to running programs

e Processes uses system calls to access system services

e When a process call a system call

— Execution will enter the kernel space
— Perform the service
— Return to the user space

R 60

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Xxv6 System Calls

System call Description

fork () Create process

exit () Terminate current process

wait () Wait for a child process to exit

kill (pid) Terminate process pid

getpid() Return current process’s id

sleep (n) Sleep for n seconds

exec (filename, =*argv) | Load a file and execute it

sbrk (n) Grow process’s memory by n
bytes

| open (filename, flags) | Open a file; flags indicate read-

/write

Kk 61

Xxv6 System Calls (2)

System call Description
read (fd, buf, n) Read n bytes from an open file
into buf
write (fd, buf, n) Write n bytes to an open file
close (f£d) Release open file fd
dup (£d) Duplicate fd
pipe (p) Create a pipe and return fd's inp
chdir (dirname) Change the current directory
mkdir (dirname) Create a new directory
mknod (name, major, minor) | Create a device file
1 fstat (£d) Return info about an open file
I ¥ink (£1, £2) Create another name (f2) for the
J file f1
.unlink (filename) Remove a file

\
L~ g

Kk 62

UNIVERSITY OF CALIFORNIA, RIVERSIDE

xv6 kernel

source files
e /kernel directory

bio.c
console.c

entry.S

exec.c
file.c

fs.c

kalloc.c
kernelvec.S
log.c

main.c
pipe.c

plic.c
printf.c
proc.c
sleeplock.c
spinlock.c
start.c
string.c
swtch.S
syscall.c
sysfile.c
Sysproc.c
trampoline.S
trap.c

uart.c
virtio_disk.c
vm.c

Disk block cache for the file system.

Connect to the user keyboard and screen.

Very first boot instructions.

exec() system call.

File descriptor support.

File system.

Physical page allocator.

Handle traps from kernel, and timer interrupts.
File system logging and crash recovery.

Control initialization of other modules during boot.

Pipes.

RISC-V interrupt controller.

Formatted output to the console.

Processes and scheduling.

Locks that yield the CPU.

Locks that don’t yield the CPU.

Early machine-mode boot code.

C string and byte-array library.

Thread switching.

Dispatch system calls to handling function.
File-related system calls.

Process-related system calls.

Assembly code to switch between user and kernel.

C code to handle and return from traps and interrupts.

Serial-port console device driver.
Disk device driver.
Manage page tables and address spaces.

63

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Setup

e Toolchain
— You need a RISC-V tool chain and QEMU for RISC-V

e Linux (Ubuntu 20.04)

S sudo apt update
S sudo apt install git build-essential gdb-multiarch gemu-system-misc gcc-riscv64-linux-gnu binutils-riscv64-linux-gnu

e Windows
— You can use Windows Subsystem for Linux (WSL) with Ubuntu 20.04

— Unsure what version of Ubuntu you have? Open WSL terminal and type
“Isb_release -a” ~$ 1sb_release -a

No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 20.04 LTS

— Follow the above Linux instruction
for package installation

Release: 20.04
Codename: focal

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Setup

e Windows (cont’)

— All your WSL Linux files are accessible as \\wslS in File Explorer
e Exposed as network shared files

— Your home directory is \\wsIS\home\<username>

W | s | wsl$ - O X

Home Share View : o

« = v 1 | =BNEN v O L Search wsl$

Ubuntu

-

R 65

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Setup

¢ macOS

— Install developer tools:

S xcode-select --install

— Install Homebrew (package manager)

S Jusr/bin/ruby -e "S(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

— Install the RISC-V compiler toolchain:

S brew tap riscv/riscv
S brew install riscv-tools

— Update path; open ~/.bashrc and add the following line
PATH=SPATH:/usr/local/opt/riscv-gnu-toolchain/bin

— Install QEMU

S brew install gemu

R 66

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Setup

e Download xvé6:

S git clone https://github.com/rtenlab/xv6-riscv

S cd xv6-riscv xv6 kernel 1s booting

e Compile and run xv6: hart 2 starting

hart 1 starting

S make gemu ;nit: starting sh (xv6 shell)

What does “hart” mean?
e In RISC-V, hart refers to a hardware thread

° EXit from QEMU e« xvb6 boots on hard 0 and turns on other harts

— Press Ctrl+a and then press c to get the QEMU console

(“make” to compile only)

— Then type “quit” to exit

R 67

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Create a System Call

e Goal: create a system call “sys hello” that call a kernel
function that displays: “Hello from the kernel space!”

e To do that, open the following files and add the lines
with “// hello” comment:

Create a System Call (2)

e kernel/syscall.h: define new syscall number

16 #define SYS open 15

17 #define SYS write 16
18 #define SYS mknod 17
19 #define SYS unlink 18
20 #define SYS link 19
21 #define SYS mkdir 20
22 #define SYS close 21

23 #define SYS hello 22 // hello

R 69

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Create a System Call (3)

e kernel/syscall.c: update system call table

105 extern uinté4 sys write(void);

106 extern uinté4 sys uptime(void);

107 extern uint64 sys hello(void); // hello: declaration
108

109 [Hstatic uintéd (*syscalls[]) (void) = {
110 [SYS fork] sys_fork,

111 [SYS exit] sys_exit,

112 [SYS wait] sys_wait,

113 [SYS _pipe] Sys_pipe,

114 [SYS read] sys_read,

115 [SYS kill] sys kill,

116 [SYS exec] Sys_exec,

117 [SYS fstat] sys_fstat,

118 [SYS_chdir] sys_chdir,

119 [SYS dup] sys_dup,

120 [SYS getpid] sys getpid,

121 [SYS sbrk] sys_sbrk,

122 [SYS sleepl] sys_sleep,

123 [SYS uptime] sys uptime,

124 [SYS open] Sys_open,

125 [SYS write] Sys_write,

126 [SYS mknod] sys_mknod,

127 [SYS unlink] sys unlink,

128 [SYS_1link] sys_link,

129 [SYS mkdir] sys mkdir,

130 [SYS close] sys_close,

131 [SYS hello] sys _hello, // hello: syscall entry

132
133

-},

70

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Create a System Call (4)

e kernel/sysproc.c: define syscall function

93
94
95
96
97
98
99

uint64 sys hello(void) // hello syscall definition
=i
int n;
argint (0, &n);
print hello(n);
return 0;

4

e kernel/proc.c: new kernel function

(@)

oY Y
O O O
~J Oy O

Oy Y
O OO

O

// hello: printing hello msg
void print hello(int n)

{
[ﬁ printf ("Hello from the kernel space %d\n", n);
}

71

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Create a System Call (5)

e kernel/defs.h

84 // proc.c

85 int cpuid(void) ;

86 void exit (int) ;

87 int fork(void) ;

88 int growproc (int) ;

89 void proc _mapstacks (pagetable t);

90 pagetable t proc pagetable(struct proc ¥*);

91 void proc_ freepagetable(pagetable t, uint6d);
92 int kill (int) ;

93 int killed(struct proc¥*);

94 void setkilled(struct proc¥);

95 struct cpu* mycpu (void) ;

96 struct cpu* getmycpu (void) ;

97 struct proc¥* myproc () ;

98 void procinit (void) ;

99 void scheduler(void) _ attribute_ ((noreturn));
100 void sched (void) ;
101 void sleep(void*, struct spinlock¥);
102 void userinit (void) ;
103 int wait (uinted) ;
104 void wakeup (void¥*) ;
105 void yield(void) ;
106 int either copyout (int user dst, uint64 dst, void *src, uint64 len);
107 int either copyin(void *dst, int user src, uint64 src, uint64 len);
108 void procdump (void) ;
109 void print hello(int); // hello

72

Create a System Call (6)

e Update user-space syscall interface
e user/usys.pl e user/user.h

4 // system calls
36 entry("sbrk") ; 5 int fork(void);
37 entry("sleep") ; 6 ::Lnt ex%t(::Lnt) __attribute ((noreturn));
38 entry("uptime") ; i }nt wélt(?nt*);
. S ! 8 int pipe(int¥*);
39 # hello syscall for user 9 int write(int, const void*, int);
4 entry("hello"™); 10 int read(int, void*, int);
41 11 int close(int) ;
12 int kill(int) ;
13 int exec(char*, char*¥*);
14 int open(const char*, int);
15 int mknod(const char*, short, short);
16 int unlink(const char¥);
17 int fstat(int fd, struct stat*);
18 int link(const char*, const char¥);
19 int mkdir(const char¥*) ;
20 int chdir(const char¥*);

21 int dup(int);
22 int getpid(void) ;
23 char* sbrk(int);
24 int sleep(int);
25 int uptime (void) ;
R 26 int hello(int); // hello 3

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Test a System Call

1. Write a user program: Create “ test.c ” file in the user directory
of “xv6-riscv” (user/test.c)

1 #include "kernel/types.h"

2 #include "kernel/stat.h"

3 #include "user/user.h"

4

5 int main(int argc, char *argv[])

6 H{

7 int n = 0;

8 if (argc >= 2) n = atoi(argv[.]);
9

10 printf("Say hello to kernel %d\n", n);
11 hello(n) ;

12 exit () ;

13 L}

R 74

Test a System Call (2)

2. Edit “ Makefile ” and append “SU/ test\” to UPROGS

118 UPROGS=\

119 $U/ cat\

120 $U/ _echo\

121 $U/ forktest\
122 $U/ _grep\

123 SU/_init\

124 SU/ _kill\

125 $U/_1n\

126 $U/_1s\

127 $U/ mkdir\
128 $U/_rm\

129 $U/_sh\

130 $U/ stressfs\
131 $U/ usertests\
132 $U/_grind\
133 sU/_wc\

134 $U/ zombie\
135 $U/ test\

[i 75

Test a System Call (3)

3. Type:
S make gemu

4. After xv6 boots, type:
S test

xv6 kernel is booting

hart 1 starting
hart 2 starting

init: starting sh

$ test 123

Say hello to kernel 123

Hello from the kernel space 123

5 o

R 76

How to use GDB

e To run Qemu with GDB, you need to open another terminal at the
same xvb6-riscv folder.

e |n the first terminal, type:

S make gemu-gdb
e |n the second second terminal, type:

S gdb-multiarch -q -iex "set auto-load safe-path . "

~/xv6-riscv$ gdb-multiarch -q -iex "set auto-load safe-path . "

The target architecture is assumed to be riscv:rv6d

varning: No executable has been specified and target does not support
determining executable automatically. Try using the "file"™ command.

in ?? ()

(gdb) continue

Use “ break <address> " to set a breakpoint
Type “ continue ” to run until breakpoint

MacOS: If gdb-multiarch doesn’t exist, try "riscv64-unknown-elf-gdb"

R 77

Change # of CPUs

e By default, xv6 is compiled for three CPUs. To change
the number of CPUs, edit Makefile:

156 1ifndef CPUS
157 # CPUS := 3
158 CPUS := 1
159 endif

e Unless otherwise mentioned, we will use a single-core
system, so change to “CPUS :=1"

xv6 kernel is booting

;niti starting sh No other harts (cores) after this change

R 78

