UNIVERSITY OF CALIFORNIA, RIVERSIDE

Concurrency and Synchronization

CS 202: Advanced Operating Systems

R (some slides credit to Christo Wilson)

UNIVERSITY OF CALIFORNIA, RIVERSIDE

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Classic Example

e Consider a bank application with a withdrawal function:

withdraw (account, amount) {
local var = get_balance(account);
var = var —amount;
put_balance(account, var);

return var,;

}

— Multi-threaded; each customer request is handled in a separate thread

e What happen if two people try to withdraw money from the
same shared account at the same time?

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Interleaved Schedules

e The problem is that the execution of the two threads can be

interleaved:
Thread A
Execution
sequence
Thread A

Account balance = $100
Amount to withdraw = S50

local var = get_balance(account);
var = var — amount;

local var = get_balance(account);
var = var — amount;
put_balance(account, var);

put_balance(account, var);

e \What is the balance of the account now?

Thread B

> Context switch

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Race Conditions

e The previous example shows a race condition

— Two threads “race” to execute code and update shared
(dependent) data

— Errors emerge based on the ordering of operations, and the
scheduling of threads

— Thus, errors are nondeterministic

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

e What happens if Thread 1 (pop) Thread 2 (push)
1. tmp = 1list
one thread calls > elem—Snext —
pop(), and another list
calls push() at the 3. list = list-
>next
same time? 4. list = elem

5. tmp->next = NULL

|ist—>1——>2—>3—'>®

R (slides credit to Christo Wilson) 5

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

e What happens if Thread 1 (pop) Thread 2 (push)
1. tmp = 1list
one thread calls > elem—Snext —
pop(), and another list
calls push() at the 3. list = list-
>next
same time? 4. list = elem

tmp->next = NULL

tmp \5\

|ist—>1——>2—>3—'>®

R (slides credit to Christo Wilson) 5

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

e What happens if Thread 1 (pop) Thread 2 (push)
1. tmp = 1list
one thread calls > elem—Snext —
pop(), and another list
calls push() at the 3. list = list-
>next
same time? 4. list = elem

tmp->next = NULL

tmp \5\

list 1——>2—>3—'>®

elem —>| 4

R (slides credit to Christo Wilson) 5

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

e What happens if Thread 1 (pop) Thread 2 (push)
1. tmp = 1list
one thread calls > elem—Snext —
pop(), and another list
calls push() at the 3. list = list-
>next
same time? 4. list = elem

>next = NULL

e e B ey BN,

elem —>| 4

R (slides credit to Christo Wilson) 5

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

« What happens if Thread 1 (pop) Thread 2 (push)
th d I 1. tmp = list

one read calls 2. elem->next =
pop(), and another list

calls push() at the 3. list = list-

] >next
same time? 4. list = elem
Unp\\:i;&tmp—>next = NULL
ist 1 g LS 2

elem —>| 4

R (slides credit to Christo Wilson) 5

Example: Linked List

elem pop(&list) : push (&list, elem):
tmp = list elem->next = list
list = list->next list = elem

tmp->next = NULL
return tmp

e What happens if Thread 1 (pop) Thread 2 (push)
1. tmp = 1list
one thread calls > elem—Snext —
pop(), and another list
calls push() at the 3. list = list-
>next
same time? 4. list = elem

tmp->next = NULL

tmp \5\
list 1 2 | 38 9
\ N %)

elem —>| 4

R (slides credit to Christo Wilson) 5

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Atomicity

e Race conditions lead to
errors when sections of
code are interleaved

Interleaved Execution

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Atomicity

« Race conditions lead to e These errors can be
errors when sections of prevented by ensuring
code are interleaved code executes atomically

(a)

Store |
| Read |

Read

v
Interleaved Execution Non-Interleaved (Atomic) Execution

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Atomicity

« Race conditions lead to e These errors can be
errors when sections of prevented by ensuring
code are interleaved code executes atomically

(@ i (b)

Store |
| Read |

Read

v
Interleaved Execution Non-Interleaved (Atomic) Execution

v

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Discussion Questions

Which of the following best describes the root cause of a race condition?

A. Insufficient CPU scheduling priority for threads
B. Too many threads reading a variable simultaneously

C. Interleaving of thread operations modifying shared data without proper
synchronization

D. Overuse of locking mechanisms reducing performance

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Locks

¢ Locks: enforces atomicity in code
— Used to synchronize access to shared resources

UNIVERSITY OF CALIFORNIA, RIVERSIDE

¢ Locks: enforces atomicity in code
— Used to synchronize access to shared resources

e Critical section: code block that requires mutual exclusion
— Only one thread at a time can execute in the critical section
— All other threads are forced to wait on entry
— When a thread leaves a critical section, another can enter
— Example: Banking application

UNIVERSITY OF CALIFORNIA, RIVERSIDE

¢ Locks: enforces atomicity in code
— Used to synchronize access to shared resources

e Critical section: code block that requires mutual exclusion
— Only one thread at a time can execute in the critical section
— All other threads are forced to wait on entry
— When a thread leaves a critical section, another can enter
— Example: Banking application

e What requirements would you place on locks?

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Required Properties

1. Mutual exclusion

— No two tasks may be simultaneously in critical sections accessing the same
shared resource

2. Progress

— If there is at least one process in a trying state, then eventually some
process enters the critical section

3. Bounded waiting (no starvation)

— Waiting time for a task to enter its critical section should be bounded

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Using Locks

withdraw (account, amount) {
acquire(lock);
local var = get_balance(account); Critical section
var = var — amount;
put_balance(account, var);

release(lock); _
return var: acquire(lock); Thread A

) local var = get_balance(account);
balance = var — amount;

acquire(lock); Thread B: wait for lock

put_balance(account, var);
release(lock);

local var = get_balance(account);
var = var — amount;
put_balance(account, var);
release(lock);

10

Implementing Locks

e Typically, developers don’t write their own locking-
primitives

— You use an API from the OS or a library

e Why don’t people write their own locks?
— Much more complicated than they at-first appear
— Very, very difficult to get correct
— May require access to privileged instructions
— May require specific assembly instructions

e |nstruction architecture dependent

11

Lock-based synchronization

e Low-level synchronization primitives
— Primitive, minimal semantics, used to build others
1. Disabling interrupts
e Prevent context switches in single-core systems
2. Hardware atomic instructions (spinlock)
e Using test-and-set, compare-and-swap instructions
3. Software-only solutions (spinlock)

e Dekker’s algorithm, Peterson’s algorithm, ...
e High-level synchronization methods

— Operation System (& Programming Language) solutions
e Sleeping & queues to avoid starvation, priority inheritance, etc.
— Provide some functions and data structures to the programmer

e Semaphore, monitor, ...

12

Disabling Interrupts

e Enabling mutual exclusion by disabling interrupts

— Prevent preemption/context switching
— Example: implemented by cli or sti instruction (in x86)

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;

}

13

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Disabling Interrupts

e Enabling mutual exclusion by disabling interrupts

— Prevent preemption/context switching
— Example: implemented by cli or sti instruction (in x86)

e Problems

— Only available to kernel (why?)

— What if the critical section is long?
e Mutual exclusion is preserved but efficiency of execution is degraded
e Can miss or delay important events

— Works only on a single processor (how about multi-core?)

— Not a general solution to use

e Used to implement higher-level synchronization primitives as with spinlocks

13

Instruction-level Atomicity

e Modern CPUs have atomic instruction(s)

— Enable you to build high-level synchronized objects

e Example: test-and-set instruction

— Write (set) 1 to a memory location and return its old value as
a single atomic (i.e., non-interruptible) operation

— The caller can then "test" the result to see if the state was
changed by the call

14

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Using Test-And-Set

e Spin lock implementation with test-and-set:

struct lock { Write 1 to the memory
int held = 0; location and return its
) old value atomically

void acquire (lock) {
while (test-and-set(&lock->held) == 1);

}

void release (lock) {
lock->held = 0;

}

e When will the while return? What is the value of ‘held’?

15

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Using Test-And-Set

e Spin lock implementation with test-and-set:

struct lock { Write 1 to the memory
int held = 0; location and return its
old value atomically

}

void acquire (lock) {
while (test-and-set(&lock->held) == 1);
}

void release (lock) { No bounded waiting

lock->held = 0; (potential starvation)

}

e When will the while return? What is the value of ‘held’?

15

Notes on spin-based locks

e Good for short critical sections

e Potentially, waste of resources
— Spinning wastes processor cycles and can increase contention for the lock
— The longer the critical section, the longer the spin

e Used as building block

— Use spinlock as primitives to build high-level synchronization constructs
— Mutex, semaphore: suspension-based (blocking) locks

e Overhead can be larger than spinlocks. Why?
— Monitor, conditional variables, etc.

16

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Semaphores

e Block waiters & leave interrupts enabled inside the critical
section
— Associated with a positive integer N (locked by up to N threads)

e wait(s): block until semaphore s is open; also called P()
e signal(s): allow another to enter; also called V()

semaphore s = 1; // binary semaphore; also called mutex
void wait (s) { // lock
while (s <= 0) sleep;
S--;
}
void signal (s) { // unlock
S++;

’

if (s > 0) wake up a waiter;

}

17

When Can Deadlocks Occur?

e (Classic conditions for deadlock
1. Mutual exclusion: resources can be exclusively held by one
process

2. Hold and wait: A process holding a resource can block,
waiting for another resource

3. No preemption on resource: one process cannot force
another to give up a resource

4. Circular wait: given conditions 1-3, if there is a circular wait
then there is potential for deadlock

e Anotherissue:

5. Buggy programming: programmer forgets to release one or

more resources
18

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Circular Waiting

« Simple example of circular waiting

Thread1 | Thread2 :
— Thread 1 holds lock a, waits on lock b

|oc|5<(A) |oc5k(3) — Thread 2 holds lock b, waits on lock a
lock(B) lock(A)

-
- L 4
.‘ 'y

e Thread 2

IS a,
L 3 L g
0% o7

. o Thread 1

19

Avoiding Deadlock

e |f circular waiting can be prevented, no deadlocks can
occur
e Technique to prevent circles: lock ranking

1. Locate all locks in the program

2. Number the locks in the order (rank) they should be
acquired
3. Add assertions that trigger if a lock is acquired out-of-order

e No automated way of doing this analysis
— Requires careful programming by the developer(s)

20

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Lock Ranking Example

Thread 1 Thread 2

#1: mutex A lock A assert (islocked (A))
#2: mutex B assert (islocked (A)) lock B
lock B lock A

// do something // do something
unlock B unlock A
unlock A unlock B

o Rank the locks
« Add assertions to enforce rank ordering
e |In this case, Thread 2 assertion will fail at runtime

21

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Read Copy Update

22

Review: Lock-based synchronization

e Low-level synchronization primitives
— Primitive, minimal semantics, used to build others
1. Software-only solutions (spinlock)
e Dekker’s algorithm, Peterson’s algorithm, ...
2. Hardware atomic instructions (spinlock)

e Using test-and-set, compare-and-swap instructions

3. Disabling interrupts

e Prevent context switches in single-core systems
e High-level synchronization methods

— Operation System (& Programming Language) solutions
e Sleeping & queues to avoid starvation, priority inheritance, etc.
— Provide some functions and data structures to the programmer

e Semaphore, Monitor, ...

23

Traditional OS locking designs

e Poor concurrency

— Accesses to critical sections are serialized

e Locks have acquire and release cost
— Each uses atomic operations which are expensive
— Can dominate cost for short critical regions
— Locks become the bottleneck
— Other issues: deadlocks and priority inversion

e Common pattern in OS kernel

— Alot of reads
— Writes are rare
— Ok to read a slightly stale copy

e But that can be fixed too

R 24

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Mutex/Semaphore example

e Asingly linked-list

Reader

LIST

Writer

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Mutex/Semaphore example

e Asingly linked-list

Reader

{lJST

Writer

Lock

i

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Mutex/Semaphore example

e Asingly linked-list

Reader

{lJST

Writer

Lock

i

May be inefficient if it is mostly read only...

RW Locks: R/W problem

e Consider a shared database with readers & writers

— Using a single lock is clearly inefficient
— Like to have multiple readers at the same time & only one writer at a time

e First R/W problem (favoring reader):

— No reader will wait even if a writer is waiting

— Writer starvation!

— Solutions: semaphore (mutex used to lock CS for R/W; binary Wrt lock used
to block writers from entering the CS; read count lock used to count # of
readers in CS and permits writer to enter when it becomes 0)

e Second R/W problem (favoring writer):

— No new readers allowed once a writer has asked for access

R 26

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Motivation behind RCU (from Paul
McKenney’s Thesis)

35 I
llidga:"
llgo a"
30 - "globalrw"

Hash Table Searches per Microsecond

of CPUs

Performance of RW
lock only marginally

better than mutex
lock

27

Reader-Writer Locks Limitation

e Locks have an acquire and release cost

— Expensive atomic operations

— May dominate performance, particularly for short critical
sections

e Reader/writer locks may allow critical sections to execute
in parallel

— Still, need to serialize the increment and decrement of the read
count with atomic instructions

— Atomic instructions performance decreases as more CPUs try to
do them at the same time

e The read lock itself becomes a major scalability bottleneck

e R/W lock still requires that writers wait for readers to finish
28

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Lock-free data structures

Do not require locks
Good if contention is rare
But difficult to create and error prone

RCU (Read-Copy Update)

— Useful for read-mostly data structures (rare writes)
— Read is what readers do & Copy update is what writers do
— Replace locking in time vs. locking in space
e Writer creates a copy (new version) of data structure offline
e Then swaps in the new version atomically
— RCU serializes writers using locks

e Win if most of our accesses are reads

29

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU is not a lock

e Readers read latest published data

— Readers are block-free
— No deadlock

e Writers update on a copied data and publish the new version

— Update without blocking (if there is one writer at a time)
— Existing readers can continue with older version

e Need garbage collection for old versions of data
e Represents a way of thinking more than a specific algorithm

30

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

LIST

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

LIST

Thread 1 wants to modify B

R 32

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

LIST

Copy and update the copy

R 33

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

LIST

R 34

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

LIST '

Thread 0 looses reference to B.
B can be safely removed (garbage
collected)

R 35

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU Example

e Asingly linked-list

%B"

LIST

Challenges under lock-free algorithms

e One of the hardest parts of lock-free algorithms,
including RCU, is concurrent changes to pointers

— So just use locks and make writers go one at a time

e But, make writers be a bit careful so readers see a
consistent view of the data structures

— Readers never see a half-modified or partially updated data structure,
should see either before or after the write

— Readers traverse valid memory and pointers

— All invariants of the data structure hold during a read

— 1f 99% of accesses are readers, avoid performance-killing read lock in the
common case

R 37

RCU Example

e Key idea: Carefully update the data structure so that a reader can
never follow a bad pointer

Thread 0 looses reference to B.
B can be safely removed (garbage
collected)

R 38

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Garbage Collection

e Part of what makes this safe is that we don’t
immediately free node B

— A reader could be looking at this node
— If we free/overwrite the node, the reader tries to follow the ‘next’ pointer!

e How do we know when all readers are finished using it?

— Hint: No new readers can access this node: it is now unreachable

R 39

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Grace Period

Pre—existing reads

rcu_dereference()
rcu_read_lock() M rcu_read_unlock()

|
|
Reader 1 reads reglds : reads
|
2 Reader 2 read reads '
g - =
g Reader 3 reads 7 reads
l
—~ Reader 4 ¢ reads . reads
I
Updater removal grace period reclamation
Time // { I
| |
rcu_assign_pointer() / Grace period
synchronize_rcu() waits for completion

of pre—existing reads

R 40

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Grace Period

e Reference counting:

— RCU employs reference counting to track how many readers are currently in their read-side
critical sections

e Grace Period:

— After a writer thread updates the shared data structure, it initiates a "grace period.”

— The grace period is a period of time or a specific event during which RCU ensures that no
new readers enter their read-side critical sections

— The writer waits until the grace period is over.

e Reference Count Decrement:

— After the grace period has passed, no new readers are allowed to enter their critical sections

— The reference counter is decremented as readers exit their critical sections

e Reclamation of Old Version:

— Safe when the reference counter associated with the old version of the data structure drops
to zero

R 41

RCU Applicability

e Only a few RCU data structures in existence
— Can RCU handle a doubly-linked list?

e Works well for singly-linked lists

— Linked lists are the workhorse of the Linux kernel

R 42

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU performance

e Significantly better performance in settings with many
readers and few writers

e Performance highly depending on specific use cases and
implementation details

— E.g., R/W locks performs better when there are many writers

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RCU usage in Linux ((from Paul McKenney)

7000
5000

3000
2000

1000 -
0 | | | |
2004 2006 2008 2010 2012

RCU API calls

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Discussion Questions

Why is RCU able to provide excellent scalability for read-mostly
workloads without using traditional mutual exclusion?

A. It relies on speculative reads that are validated later

B. It uses per-CPU reader queues and global reader clocks

C. Readers access data directly without acquiring locks, while writers defer
deletion and publish updates using pointer replacement

D. Writers block until all readers complete

R 45

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Discussion Questions

Why can applying RCU to complex data structures like trees or hash
tables be significantly harder than applying it to simple linked lists?

A. RCU only works when data is accessed sequentially

B. Trees and hash tables cannot be copied atomically

C. Maintaining consistency and traversability for readers becomes non-
trivial when writers update or restructure internal nodes

D. RCU cannot manage memory in multi-level structures

R 46

RCU Pros and Cons

* Pros

— Readers never block

— Updates never block

— Extremely scalable for large number of cores
— No deadlocks

e Widely used in Linux kernel for scalability

R 47

RCU Pros and Cons

e Cons
— Still need to synchronize multiple concurrent writers
— Need to maintain multiple versions — can get complex
— A lot of implementations do not support multiple writers, even if those
writers work on different parts of data without blocking each other

e Research built upon RCU

— RCU is just the beginning

— RLU: read log update allows multiple changes to a data to be combined into
a transaction which is not seen by any reader until completion

— Transactional memory

e Transparently support regions of code marked as transactions by enforcing
atomicity, consistency, and isolation

R 48

