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Abstract

In many real-time and embedded systems, suspension de-
lays may occur when tasks block to access shared resources
or interact with external devices. Unfortunately, prior anal-
ysis methods for dealing with suspensions are quite pes-
simistic. In this paper, a novel technique is presented for an-
alyzing soft real-time sporadic self-suspending task systems,
for which bounded deadline tardiness is required, scheduled
under global schedulers such as global EDF on multiproces-
sors (or EDF on uniprocessors). This technique is used to
derive a new schedulability test that results in only O(m)
suspension-related utilization loss, where m is the number of
processors. The derived test theoretically dominates prior
tests with respect to schedulability. Furthermore, experi-
ments presented herein show that the improvement over prior
tests is often quite significant.

1 Introduction
In many real-time and embedded systems, suspension delays
may occur when tasks block to access shared resources or
interact with external devices such as I/O devices and net-
work cards. For example, delays introduced by disk I/O
range from 15µs (for NAND flash) to 15ms (for magnetic
disks) per read [4]. Even longer delays are possible when
accessing special-purpose devices such as digital signal pro-
cessors or graphics processing units. Unfortunately, such
delays cause intractabilities in schedulability analysis, even
on uniprocessors [8]. Such negative results may explain the
limited attention the general problem of analyzing real-time
self-suspending task systems has received during the past 20
years. In this paper, we consider this problem in the context
of analyzing globally scheduled soft real-time (SRT) spo-
radic self-suspending (SSS) multiprocessor task systems; un-
der the definition of SRT considered in this paper, bounded
deadline tardiness is required.

Perhaps the most commonly used approach for dealing
with suspensions is suspension-oblivious analysis [7], which
simply integrates suspensions into per-task worst-case execu-
tion time requirements. However, this approach yields Ω(n)
utilization loss where n is the number of self-suspending
tasks in the system. Unless the number of tasks is small
and suspension delays are short, this approach may sacrifice
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significant system capacity. The alternative is to explicitly
consider suspensions in the task model and resulting schedu-
lability analysis; this is known as suspension-aware analysis.
In prior work [6], we presented multiprocessor suspension-
aware analysis for globally scheduled SRT SSS task systems.
This analysis is an improvement over suspension-oblivious
analysis for many task systems, but does not fully address
the root cause of pessimism due to suspensions, and thus may
still cause significant utilization loss.
The cause of pessimism in prior analysis. A key step in
prior suspension-aware analysis [6] involves bounding the
number of tasks that have enabled jobs (i.e., eligible for exe-
cuting or suspending) at a specifically defined non-busy time
instant t (i.e., at least one processor is idle at t). For ordinary
task systems without suspensions, this number of tasks can
be safely upper-bounded by m − 1, where m is the number
of processors, for otherwise, t would be busy. For SSS task
systems, however, idle instants can exist due to suspensions
even if m or more tasks have enabled jobs. The worst-case
scenario that serves as the root source of pessimism in prior
analysis is the following: all n self-suspending tasks have
jobs that suspend at some time t simultaneously, thus caus-
ing t to be non-busy.
Key observation that motivates this research. Interest-
ingly, the suspension-oblivious approach eliminates the
worst-case scenario just discussed, albeit at the expense of
pessimism elsewhere in the analysis. That is, by converting
all n tasks’ suspensions into computation, the worst-case sce-
nario is avoided because then at mostm−1 tasks can have en-
abled jobs at any non-busy time instant. However, converting
all n tasks’ suspensions into computation is clearly overkill
when attempting to avoid the worst-case scenario; rather,
converting at most m tasks’ suspensions into computation
should suffice. This observation motivates the new analy-
sis technique we propose, which yields a much improved
schedulability test with only O(m) suspension-related uti-
lization loss. Recent experimental results suggest that global
algorithms should be limited to (sub-)systems with modest
core counts (e.g., up to eight cores) [1]. Thus, m is likely to
be small and much less than n in many settings.
Overview of related work. An overview of work on
scheduling SSS task systems on uniprocessors (which we
omit here due to space constraints) can be found in [6].
Such analysis (although pessimistic) can be applied on a per-
processor basis to deal with suspensions under partitioning
approaches. On globally scheduled multiprocessors, other
than the suspension-oblivious approach, the only existing



suspension-aware approach known to us is that mentioned
earlier [6], which is applicable to SRT systems. Unfortu-
nately, as discussed earlier, utilization loss under these ap-
proaches can be significant.

Contributions. In this paper, we derive a schedulability test
that shows that any given SSS task system is schedulable
under global earliest-deadline-first (GEDF) scheduling with
bounded tardiness if Usum +

∑m
i=1 v

j ≤ m holds, where
Usum is the total system utilization and vj is the jth max-
imum suspension ratio, where a task’s suspension ratio is
given by the ratio of its suspension time over its period. We
show that our derived schedulability test theoretically domi-
nates prior approaches [6,7]. Moreover, we show via a coun-
terexample that task systems that violate our utilization con-
straint may have unbounded tardiness. As demonstrated by
experiments, our proposed test significantly improves upon
prior methods with respect to schedulability, and is often able
to guarantee schedulability with little or no utilization loss
while providing low predicted tardiness.

For readability and conciseness, we have chosen to focus
upon a specific global scheduling algorithm: GEDF. How-
ever, our suspension-analysis technique can also be applied
to any window-constrained [5] global scheduling algorithm
with minor modifications. Moreover, recent work [3] pro-
posed a slightly different analysis framework, compliant vec-
tor analysis, which enables tighter tardiness bounds for ordi-
nary sporadic task systems scheduled under GEDF compared
to the framework we employ. This new analysis framework,
along with the proposed technique in this paper, can be ap-
plied to provide tighter tardiness bounds for scheduling SSS
task systems as well.

The rest of this paper is organized as follows. In Sec.
2, we present the SSS task model. Then, in Sec. 3, we
present our O(m) analysis technique and the corresponding
SRT schedulability test. In Sec. 4, we show that our derived
test theoretically dominates prior tests. In Sec. 5, we present
experimental results. We conclude in Sec. 6.

2 System Model

We consider the problem of scheduling a set τ = {τ1, ..., τn}
of n independent SSS tasks on m ≥ 1 identical processors
M1,M2, ...,Mm. Each task is released repeatedly, with each
such invocation called a job. Jobs alternate between compu-
tation and suspension phases. We assume that each job of τi
executes for at most ei time units (across all of its execution
phases) and suspends for at most si time units (across all of
its suspension phases). We place no restrictions on how these
phases interleave (a job can even begin or end with a suspen-
sion phase). The jth job of τi, denoted τi,j , is released at
time ri,j and has a deadline at time di,j . Associated with
each task τi are a period pi, which specifies the minimum
time between two consecutive job releases of τi, and a dead-
line di, which specifies the relative deadline of each such job,
i.e., di,j = ri,j + di. The utilization of a task τi is defined

as ui = ei/pi, and the utilization of the task system τ as
Usum =

∑
τi∈τ ui. An SSS task system τ is said to be an

implicit-deadline system if di = pi holds for each τi. Due to
space constraints, we limit attention to implicit-deadline SSS
task systems in this paper.

Successive jobs of the same task are required to execute in
sequence. If a job τi,j completes at time t, then its tardiness is
max(0, t−di,j). A task’s tardiness is the maximum tardiness
of any of its jobs. Note that, when a job of a task misses its
deadline, the release time of the next job of that task is not
altered. We require ei + si ≤ pi, ui ≤ 1, and Usum ≤ m;
otherwise, tardiness can grow unboundedly.

For simplicity, we henceforth assume that each job of any
task τi executes for exactly ei time units. As shown in [6],
any tardiness bound derived for an SSS task system by con-
sidering only schedules meeting this assumption applies to
other schedules as well.

Throughout the paper, we assume that time is integral, and
for any task τi ∈ τ , each of ei ≥ 1, si ≥ 0, pi ≥ 1, and
di ≥ 1 is a non-negative integer. Thus, a job that executes
or suspends at time instant t executes or suspends during the
entire time interval [t, t+ 1).

Under GEDF, released jobs are prioritized by their abso-
lute deadlines. We assume that ties are broken by task ID
(lower IDs are favored).

3 Schedulability Analysis
We now present our proposed new schedulability analysis for
SRT SSS task systems. Our analysis draws inspiration from
the seminal work of Devi [2], and follows the same general
framework. We first describe the proof setup, then present
our new O(m) analysis technique, and finally derive a re-
sulting schedulability test.

We focus on a given SSS task system τ . Let τl,j be a job
of task τl in τ , td = dl,j , and S be a GEDF schedule for τ
with the following property.

(P) The tardiness of every job τi,k, where τi,k has higher
priority than τl,j , is at most x+ ei + si in S, where x ≥ 0.

Our objective is to determine the smallest x such that the
tardiness of τl,j is at most x+el+sl. This would by induction
imply a tardiness of at most x+ ei + si for all jobs of every
task τi, where τi ∈ τ . We assume that τl,j finishes after
td, for otherwise, its tardiness is trivially zero. The steps for
determining the value for x are as follows.

1. Determine a lower bound on the amount of work pend-
ing for tasks in τ that can compete with τl,j after td,
required for the tardiness of τl,j to exceed x + el + sl.
This is dealt with in Lemma 2 in Sec. 3.2.

2. Determine an upper bound on the work pending for
tasks in τ that can compete with τl,j after td. This is
dealt with in Lemmas 3 and 4 in Sec. 3.3.

3. Determine the smallest x such that the tardiness of τl,j
is at most x+ el + sl, using the above lower and upper



bounds. This is dealt with in Theorem 1 in Sec. 3.4.

Definition 1. A task τi is active at time t if there exists a job
τi,v such that ri,v ≤ t < di,v .

Definition 2. A job is considered to be completed if it has
finished its last phase (be it suspension or computation). We
let fi,v denote the completion time of job τi,v . Job τi,v is
tardy if it completes after its deadline.

Definition 3. Job τi,v is pending at time t if ri,v ≤ t < fi,v .
Job τi,v is enabled at t if ri,v ≤ t < fi,v , and its predecessor
(if any) has completed by t.

Definition 4. If job τi,v is enabled and not suspended at time
t but does not execute at t, then it is preempted at t.

Definition 5. We categorize jobs based on the relationship
between their priorities and those of τl,j :

d = {τi,v : (di,v < td) ∨ (di,v = td ∧ i ≤ l)}.

Definition 6. For any given SSS task system τ , a processor
share (PS) schedule is an ideal schedule where each task τi
executes with a rate equal to ui when it is active (which en-
sures that each of its jobs completes exactly at its deadline).
Note that suspensions are not considered in the PS schedule.
A valid PS schedule exists for τ if Usum ≤ m holds.

By Def. 5, d is the set of jobs with deadlines at most td
with priority at least that of τl,j . These jobs do not execute
beyond td in the PS schedule. Note that τl,j is in d. Also note
that jobs not in d have lower priority than those in d and thus
do not affect the scheduling of jobs in d. For simplicity, we
will henceforth assume that jobs not in d do not execute in ei-
ther the GEDF schedule S or the corresponding PS schedule.
To avoid distracting “boundary cases,” we also assume that
the schedule being analyzed is prepended with a schedule in
which no deadlines are missed that is long enough to ensure
that all previously released jobs referenced in the proof exist.

Our schedulability test is obtained by comparing the allo-
cations to d in the GEDF schedule S and the corresponding
PS schedule, both on m processors, and quantifying the dif-
ference between the two. We analyze task allocations on a
per-task basis. Let A(τi,v, t1, t2, S) denote the total alloca-
tion to job τi,v in S in [t1, t2). Then, the total time allocated
to all jobs of τi in [t1, t2) in S is given by

A(τi, t1, t2, S) =
∑
v≥1

A(τi,v, t1, t2, S).

Let PS denote the PS schedule that corresponds to the
GEDF schedule S (i.e., the total allocation to any job of any
task in PS is identical to the total allocation of the job in S).

The difference between the allocation to a job τi,v up to
time t in PS and S, denoted the lag of job τi,v at time t in
schedule S, is defined by

lag(τi,v, t, S) = A(τi,v, 0, t, PS)−A(τi,v, 0, t, S).

Similarly, the difference between the allocation to a task τi
up to time t in PS and S, denoted the lag of task τi at time t
in schedule S, is defined by

lag(τi, t, S) =
∑
v≥1

lag(τi,v, t, S)

=
∑
v≥1

(A(τi,v, 0, t, PS)−A(τi,v, 0, t, S)). (1)

The concept of lag is important because, if lags remain
bounded, then tardiness is bounded as well. The LAG for d
at time t in schedule S is defined as

LAG(d, t, S) =
∑

τi:τi,v∈d

lag(τi, t, S). (2)

Definition 7. A time instant t is busy (resp. non-busy) for a
job set J if all (resp. not all) m processors execute jobs in
J at t. A time interval is busy (resp. non-busy) for J if each
instant within it is busy (resp. non-busy) for J . A time instant
t is busy on processor Mk (resp. non-busy on processor Mk)
for J if Mk executes (resp. does not execute) a job in J at t.
A time interval is busy on processor Mk (resp. non-busy on
processor Mk) for J if each instant within it is busy (resp.,
non-busy) on Mk for J .

The following claim follows from the definition of LAG.

Claim 1. If LAG(d, t2, S) > LAG(d, t1, S), where t2 > t1,
then [t1, t2) is non-busy for d. In other words, LAG for d can
increase only throughout a non-busy interval for d .

3.1 New O(m) Analysis Technique

By Claim 1 and the discussion in Sec. 1, the pessimism of
analyzing SSS task systems is due to the worst-case scenario
where all SSS tasks might have enabled jobs that suspend at
a time instant t, making t non-busy; this can result in non-
busy intervals in which LAG for d increases. Specifically,
the worst-case scenario happens when at least m suspending
tasks have enabled tardy jobs with deadlines at or before a
non-busy time instant t where such jobs suspend at t. (As
seen in the analysis in Secs. 3.2 and 3.3, suspensions of non-
tardy jobs are not problematic.)

Thus, our goal is to avoid such a worst case. The key idea
behind our new technique is the following: At any non-busy
time t, if k processors (1 ≤ k ≤ m) are idle at t while at least
k suspending tasks have enabled tardy jobs with deadlines at
or before t that suspend simultaneously at t, then, by treating
suspensions of k jobs of k such tasks to be computation at t,
t becomes busy. Treating the suspensions of all such tasks to
be computation is needlessly pessimistic.

Let tf denote the end time of the schedule S. Our new
technique involves transforming the entire schedule S within
[0, tf ) from right to left (i.e., from time tf to time 0) to obtain
a new schedule S as described below. The goal of this trans-
formation is to convert certain tardy jobs’ suspensions into
computation in non-busy time intervals to eliminate idleness
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Figure 1: Transformation intervals with respect to Mk.
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Figure 2: Defining th and ri,v−c in the transformation method.

as discussed above. For any job τi,v , if its suspensions are
converted into computation in a time interval [t1, t2), then
τi,v is considered to execute in [t1, t2). We transform S to S
by applying m transformation steps, where in the kth step,
the schedule is transformed with respect to processor Mk.
Let S0 = S denote the original schedule, Sk denote the
transformed schedule after performing the kth transforma-
tion step, and Sm = S denote the final transformed schedule.
The kth transformation step works as follows.

Transformation method. By analyzing the schedule Sk−1

on Mk, we first define Nk ≥ 0 transformation intervals
denoted [A1

k, B
1
k), [A2

k, B
2
k), ..., [ANk

k , BNk

k ) ordered from
right to left with respect to time, as illustrated in Fig. 1.
These transformation intervals are the only intervals that are
affected by the kth transformation step. We identify these
transformation intervals by moving from right to left with re-
spect to time in the schedule Sk−1 considering allocations on
processor Mk. (An extended example illustrating the entire
transformation method will be given later.)

Moving from time tf to the left in Sk−1, let th denote the
first encountered non-busy time instant on Mk where at least
one task τi has an enabled job τi,v suspending at th where

di,v ≤ th. (3)

(If th does not exist, then we have Sk = Sk−1.) Let v − c
(0 ≤ c ≤ v − 1) denote the minimum job index of τi such
that all jobs τi,v−c, τi,v−c+1, ..., τi,v are tardy, as illustrated
in Fig. 2. Then, [ri,v−c, th + 1) is the first transformation
interval with respect to Mk, i.e., [A1

k, B
1
k) = [ri,v−c, th + 1).

To find the next transformation interval on Mk, further
moving from A1

k to the left in Sk−1, find the next th, τi,v ,
and τi,v−c applying the same definitions given above. If they
exist, then the newly founded interval [ri,v−c, th + 1) is the
second transformation interval [A2

k, B
2
k). Such a process con-

tinues, moving from right to the left in Sk−1, until time 0 is
reached before any such th is found. If task τi is selected
to define the transformation interval [Aqk, B

q
k) in the man-
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Figure 3: Switch: switch the computation of τi originally executed
on Mk′ to Mk.
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Figure 4: Move: move the computation of tasks other than τi from
Mk to some idle processor Mk′ .

ner just described, then we say that τi is associated with this
transformation interval; each transformation interval has ex-
actly one associated task. (As seen below, when performing
transformation steps after the kth step, τi cannot be selected
again for defining transformation intervals within [Aqk, B

q
k).)

According to the way we identify transformation intervals as
described above, the following property holds.

(G1) Successive transformation intervals with respect
to processor Mk do not overlap, i.e., Bqk ≤ A

q−1
k holds

where 2 ≤ q ≤ Nk.

After identifying all transformation intervals with respect
to Mk, we perform the following three operations on each
of these Nk transformation intervals, starting with [A1

k, B
1
k).

In the following, let [Aqk, B
q
k) (1 ≤ q ≤ Nk) denote the

currently considered transformation interval and let τi be the
associated task.
1. Switch: We assume that all computations of jobs of τi
occurring within [Aqk, B

q
k) happen on Mk. This is achieved

by switching any computation of τi in any interval [ta, tb) ⊆
[Aqk, B

q
k) originally executed on some processor Mk′ other

than Mk with the computation (if any) occurring in [ta, tb)
on Mk, as illustrated in Fig. 3.
2. Move: Then for all intervals in [Aqk, B

q
k) onMk where jobs

not belonging to τi execute while some job of τi suspends,
if any of such interval is non-busy (at least one processor
is idle in this interval), then we also move the computation
occurring within this interval on Mk to some processor Mk′

that is idle in the same interval, as illustrated in Fig. 4. This
guarantees that all intervals in [Aqk, B

q
k) on Mk where jobs

not belonging to τi execute are busy on all processors.
Due to the fact that all jobs of τi enabled in [Aqk, B

q
k) (i.e.,

τi,v−c, τi,v−c+1, ..., τi,v)1 are tardy, interval [Aqk, B
q
k) on Mk

1Note that, according to the way we select v − c, job τi,v−c−1 is not
enabled within [Aq

k, B
q
k) because it is not tardy and thus completes at or

before di,v−c−1 ≤ ri,v−c = Aq
k .



consists of three types of subintervals: (i) those in which
jobs of τi enabled within [Aqk, B

q
k) are executing, (ii) those

in which jobs of τi enabled within [Aqk, B
q
k) are suspending

(note that jobs of tasks other than τi may also execute on Mk

in such subintervals; if this is the case, then the move op-
eration ensures that any such subinterval is busy on all pro-
cessors), and (iii) those in which jobs of τi enabled within
[Aqk, B

q
k) are preempted. Thus, within any non-busy interval

on Mk in [Aqk, B
q
k), jobs of τi must be suspending (for oth-

erwise this interval would be busy on Mk). Therefore, we
perform the third transformation operation as follows.
3. Convert: Within all time intervals that are non-busy onMk

in [Aqk, B
q
k), convert the suspensions of all jobs of τi enabled

within [Aqk, B
q
k) into computation, as illustrated in Fig. 5.

This guarantees that Mk is busy within [Aqk, B
q
k). Since all

such jobs belong to the associated task τi of [Aqk, B
q
k), by the

definitions of Aqk and Bqk as described above, the following
property holds.

(G2) For any transformation interval [Aqk, B
q
k), jobs

whose suspensions are converted into computation in
this interval in the kth transformation step have releases
and deadlines within this interval.

When performing any later transformation step k′ > k
(i.e., with respect to processor Mk′ ), τi clearly cannot be se-
lected again for its suspensions to be converted into compu-
tation in idle intervals on Mk′ within [Aqk, B

q
k). Moreover,

since all intervals within [Aqk, B
q
k) on Mk where jobs not be-

longing to τi execute are busy on all processors, any switch or
move operation performed in later transformation steps does
not change the fact that [Aqk, B

q
k) is busy on Mk in the final

transformed schedule S. Note that the above switch, move,
and convert operations do not affect the start and completion
times of any job.

After performing the switch, move, and convert opera-
tions on [Aqk, B

q
k) as described above, the transformation

within [Aqk, B
q
k) is complete. We then consider the next trans-

formation interval [Aq+1
k , Bq+1

k ), and so on. The kth trans-
formation step is complete when all such transformation in-
tervals have been considered, from which we obtain Sk.

Repeating this entire process, we similarly obtain Sk+1,
Sk+2, ..., Sm = S.

Analysis. The transformation method above ensures the fol-
lowing.

Claim 2. At any non-busy time instant t ∈ [0, tf ) in the
transformed schedule S, at most m − 1 tasks can have en-
abled tardy jobs with deadlines at or before t.

Proof. Suppose that t ∈ [0, tf ) is non-busy in S, and there
are z idle processors at t. Assume that m or more tasks have
enabled tardy jobs at t with deadlines at or before t. Then
at least z such tasks have enabled tardy jobs suspending at t
in order for t to be non-busy. However, our transformation
method would have converted the suspension time at t of z

. . . . .

suspension of τi,v

Mk

after converting suspensions of jobs 
of τi into computation in non-busy 
intervals on Mk in [Akq, Bkq)
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di,vdi,v-c ri,vfi,v-c-1 di,v-c-1 Akq 

=ri,v-c

th Bkq

=th+1

Figure 5: Convert: convert the suspensions of all jobs of τi that
are enabled within [Aq

k, B
q
k) (i.e., τi,v−c, ..., τi,v) into computation

within all non-busy time intervals on Mk in [Aq
k, B

q
k).

such jobs into computation, which makes t busy on Mk, a
contradiction.

Example 1. Consider a two-processor task set τ that consists
of three tasks: τ1 = ((4(exec.), 2(susp.), 4(exec.)), 10(pe-
riod)), and τ2 = τ3 = ((2(exec.), 6(susp.), 2(exec.)), 10(pe-
riod)). Fig. 6(a) shows the original GEDF schedule S for
the time interval [0,34). Assume τ3,3 is the analyzed job so
that td = 30 and tf = 34. By the transformation method,
we first transform the schedule in [0, 34) with respect to pro-
cessor M1 (i.e., the first transformation step). Moving from
tf = 34 to the left in S, the first idle time instant on M1 is
time 31. At time 31, two jobs τ2,3 and τ3,3 are suspending
and both jobs satisfy condition (3) since d2,3 = d3,3 = 30.
We arbitrarily choose τ3 for this transformation step. Since
job τ3,1 has the minimum job index of τ3 such that all jobs
τ3,1, τ3,2, τ3,3 are tardy, we use τ3 for the transformation with
respect to M1 up to the release time of τ3,1, which is time 0.
Thus, M1 has only one transformation interval, i.e., [0, 32).
By the transformation method, we first perform the switch
operation, which switches any computation of jobs of τ3 in
[0, 32) that is not occurring on M1 to M1; this includes the
computation in [2, 4), [10, 12), and [22, 24). Accordingly, the
computations that originally occur in these three intervals on
M1, which are due to jobs of τ1, are switched to M2. The
resulting schedule after this switching is shown in Fig. 6(b).
After this switching, we apply the move operation, which
affects non-busy intervals in [0, 32) in which jobs of τ3 are
suspending while jobs of tasks other than τ3 are executing on
M1. For this example schedule, [6, 8), [16, 20), and [26, 30)
must be considered, and we move the computation of τ1 in
these three intervals from M1 to M2. (Note that since in-
tervals [4, 6) and [30, 32) are non-busy on both processors,
they are not considered.) The resulting schedule after this
moving is shown in Fig. 6(c). Finally, within all non-busy
intervals on M1 in [0, 32), which include [4, 8), [16, 20), and
[26, 32), we convert the suspensions of all enabled jobs of τ3
in [0, 32) into computation. We thus complete the first trans-
formation step and obtain the schedule S1, which is shown
in Fig. 6(d). As seen in Fig. 6(d), after applying the transfor-
mation method with respect to M1, M1 is fully occupied in
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Figure 6: Example schedule transformation.

interval [0, 32) by the computation of jobs of τ3, suspensions
of jobs of τ3 that are converted into computation, the com-
putations of jobs not belonging to τ3 that preempt jobs of τ3,
and the computations of jobs not belonging to τ3 that occur
on M1 while jobs of τ3 are suspending. Next, we perform
the second transformation step and transform S1 in [0, 34)
with respect to M2. This yields the final transformed sched-
ule S2 = S, as shown in Fig. 6(e). Notice that M2 is idle
in [4, 6) in S because jobs τ1,1 and τ2,1, which suspend in
[4, 6), have deadlines (at time 10) after time 6; thus, by the
transformation method (see (3)) these jobs’ suspensions are
not turned into computation.

Definition 8. Let ui =
ei + si
pi

= ui +
si
pi

.

Note that in the above definition, ui ≤ 1 holds for any
task τi ∈ τ because ei + si ≤ pi, as discussed in Sec. 2.

Definition 9. The interval [ri,j , di,j) is called the job execu-
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Figure 7: An example task system containing three tasks, τ1 and
τ2 of utilization 0.5, and τ3 of utilization 0.6. All three tasks have
a period of 10 time units. (a) shows the PS schedule PS for this
system where each task executes according to its utilization rate
when it is active. Assume that in the transformed schedule S for
this system, three time units of suspensions of τ3,2 are turned into
computation, which causes the utilization of τ3 to increase to 0.9 in
τ3,2’s job execution window [r3,2, d3,2) = [10, 20). (b) shows the
corresponding schedule PS after this transformation. As seen, in
PS, task τ3 executes with a rate of 0.9 in [10, 20).

tion window for job τi,j .

Defining PS. Now we define the PS schedule PS corre-
sponding to the transformed schedule S. Without apply-
ing the transformation method, any task τi executes in a PS
schedule with the rate ui in any of its job execution win-
dows (i.e., when τi is active). Thus, if τi is active throughout
[t1, t2) in PS, then A(τi,j , t1, t2, PS) = (t2 − t1)ui holds.

On the other hand, after applying the transformation
method, since we may convert a certain portion of the sus-
pension time of any job of any task into computation, a task
may have different utilizations within different job execution
windows, but within the range of [ui, ui]. The upper bound
of this range is ui because all suspensions of a job could be
turned into computation. Thus, for any task τi that is active
throughout [t1, t2) in PS, we have

(t2 − t1) · ui ≤ A(τi,j , t1, t2, PS) ≤ (t2 − t1) · ui. (4)

An example is given in Fig. 7.
Note that our analysis does not require PS to be specifi-

cally defined; rather, only (4) is needed in our analysis.

Definition 10. Let vi =
si
pi

denote the suspension ratio for

task τi ∈ τ . Let vj denote the jth maximum suspension ratio
among tasks in τ .

In order for our analysis to be correct, we have to ensure
that such a valid PS schedule exists. That is, we have to
guarantee that the total utilization of τ is at most m at any
time instant t in PS. The following lemma gives a sufficient
condition that can provide such a guarantee.

Lemma 1. If Usum +
∑m
j=1 v

j ≤ m, then a valid PS sched-
ule PS corresponding to S exists.

Proof. By the transformation method, for any processorMk,
jobs whose suspensions are converted into computation with



respect to Mk do not have overlapping job execution win-
dows. This is because such jobs either belong to the same
task (in which case such jobs clearly do not have overlapping
job execution windows), or belong to different tasks each of
which is associated with a different transformation interval
with respect to Mk. In the latter case, non-overlap follows
by Properties (G1) and (G2) stated earlier. Since there are
m processors and the jobs used for the transformation with
respect to each processor do not have overlapping job execu-
tion windows, at any time t in PS, there exist at most m jobs
with overlapping job execution windows whose suspensions
are converted into computation, which can increase total uti-
lization by at most

∑m
j=1 v

j . This implies that at any time t
in PS, the total utilization of τ is at most Usum +

∑m
j=1 v

j ,
which is at most m according to the claim statement.

We next derive a lower bound (Sec. 3.2) and an upper
bound (Sec. 3.3) on the pending work that can compete with
τl,j after td in schedule S, which is given by LAG(d, td, S),
as d includes all jobs of higher priority than τl,j .

3.2 Lower Bound

Lemma 2 below establishes the desired lower bound on
LAG(d, td, S).

Lemma 2. If the tardiness of τl,j exceeds x + el + sl, then
LAG(d, td, S) > m · x+ el + sl.

Proof. We prove the contrapositive: we assume that

LAG(d, td, S) ≤ m · x+ el + sl (5)

holds and show that the tardiness of τl,j cannot exceed x +
el + sl. Let ηl be the amount of work τl,j performs by time
td in S. Note that by the transformation method, 0 ≤ ηl <
el + sl. Define y as follows.

y = x+
ηl
m

(6)

We consider two cases.
Case 1. [td, td + y) is a busy interval for d. In this case,

the amount of work completed in [td, td + y) is exactly my.
Hence, the amount of work pending at td + y is at most

LAG(d, td, S)−my
{by (5) and (6)}

≤ mx+el+sl−mx−ηl =
el + sl − ηl. This remaining work will be completed no later

than td+y+el+sl−ηl
{by (6)}

= td+x+
ηl
m

+el+sl−ηl ≤
td+x+el+sl. Since this remaining work includes the work
due for τl,j , τl,j thus completes by td + x+ el + sl.

Case 2. [td, td + y) is a non-busy interval for d. Let ts
be the earliest non-busy instant in [td, td + y). If more than
m− 1 tasks have enabled tardy jobs in d at ts, then since all
such enabled tardy jobs in d at ts have deadlines at or before
td ≤ ts, by Claim 2, ts cannot be non-busy. Thus, at most
m−1 tasks can have enabled tardy jobs in d at ts. Moreover,
since the number of tasks that have enabled jobs in d does
not increase after td, we have

(Z) At most m− 1 tasks have enabled tardy jobs
in d at or after ts.

If τl,j completes by ts, then fl,j ≤ ts < td + y
{by (6)}

=

td+x+
ηl
m
< td+x+el+sl. In the rest of the proof, assume

that τl,j completes after ts. Let tp be the completion time of
τl,j’s predecessor (i.e., τl,j−1). If tp ≤ ts, then τl,j is enabled
at ts and will execute or suspend at ts because ts is non-busy.
Furthermore, by (Z), τl,j is not preempted after ts. Thus, by
the definition of ηl and ts, we have fl,j ≤ ts+ el + sl− ηl <
td + y + el + sl − ηl

{by (6)}
= td + x+

ηl
m

+ el + sl − ηl ≤
td + x+ el + sl.

The remaining possiblity is that tp > ts. In this case,
τl,j will begin its first phase at tp and by (Z) finish by time
tp + el + sl. By Property (P) (applied to τl,j’s predecessor),
tp ≤ td − pl + x+ el + sl ≤ td + x. Thus, the tardiness of
τl,j is fl,j − td ≤ tp + el + sl − td ≤ x+ el + sl.

3.3 Upper Bound

In this section, we determine an upper bound on
LAG(d, td, S).

Definition 11. Let tn be the end of the latest non-busy inter-
val for d before td, if any; otherwise, tn = 0.

By the above definition and Claim 1, we have

LAG(d, td, S) ≤ LAG(d, tn, S). (7)

Lemma 3. For any task τi and t ∈ [0, td], if τi has pending
jobs at t in the schedule S, then we have

lag(τi, t, S) ≤

{
ei + si if di,k ≥ t

ui · x+ ei + si + ui · si if di,k < t

where di,k is the deadline of the earliest pending job of
τi, τi,k, at time t in S. If such a job does not exist, then
lag(τi, t, S) ≤ 0.

Proof. If τi does not have a pending job at t in S, then by
Def. 3 and (1), lag(τi, t, S) ≤ 0 holds. So assume such a job
exists. Let γi be the amount of work τi,k performs before t.
By the transformation method, γi < ei + si holds.

By the selection of τi,k, we have lag(τi, t, S) =∑
h≥k lag(τi,h, t, S) =

∑
h≥k

(
A(τi,h, 0, t, PS) −

A(τi,h, 0, t, S)
)
. Given that no job executes before its

release time, A(τi,h, 0, t, S) = A(τi,h, ri,h, t, S). Thus,

lag(τi, t, S) = A(τi,k, ri,k, t, PS)−A(τi,k, ri,k, t, S)

+
∑
h>k

(
A(τi,h, ri,h, t, PS)

−A(τi,h, ri,h, t, S)
)
. (8)

By the definition of PS, (4), and Def. 8,
A(τi,k, ri,k, t, PS) ≤ ei + si, and

∑
h>k A(τi,h, ri,h, t, PS)



≤ ui · max(0, t − di,k). By the selection of τi,k,
A(τi,k, ri,k, t, S) = γi, and

∑
h>k A(τi,h, ri,h, t, S) = 0.

By setting these values into (8), we have

lag(τi, t, S) ≤ ei + si − γi + ui ·max(0, t− di,k). (9)

There are two cases to consider.
Case 1. di,k ≥ t. In this case, (9) implies lag(τi, t, S) ≤

ei + si − γi ≤ ei + si.
Case 2. di,k < t. In this case, because t ≤ td and dl,j =

td, τi,k is not the job τl,j . Thus, by Property (P), τi,k has a
tardiness of at most x + ei + si. Since τi,k is the earliest
pending job of τi at time t, the earliest possible completion
time of τi,k is at t+ ei − γi (τi,k may suspend for zero time
at run-time). Thus, we have t+ ei− γi ≤ di,k + x+ ei + si,
which gives t − di,k ≤ x + γi + si. Setting this value into
(9), we have lag(τi, t, S) ≤ ei+si−γi+ui ·(x+γi+si) ≤
ui · x+ ei + si + ui · si.

Definition 12. Let Um−1 be the sum of the m − 1 largest
ui values among tasks in τ . Let E be the largest value of the
expression

∑
τi∈τ (ei+ si) +

∑
τi∈ψ ui · si, where ψ denotes

any set of m− 1 tasks in τ .

Lemma 4 below upper bounds LAG(d, td, S).

Lemma 4. LAG(d, td, S) ≤ Um−1 · x+ E.

Proof. By (7), we have LAG(d, td, S) ≤ LAG(d, tn, S).
By summing individual task lags at tn, we can bound
LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0, so as-
sume tn > 0.

Given that the instant tn − 1 is non-busy, by
Claim 2, at most m − 1 tasks can have enabled tardy
jobs at tn − 1 with deadlines at or before tn − 1.
Let θ denote the set of such tasks. Therefore, we

have LAG(d, td, S)
{by (7)}
≤ LAG(d, tn, S)

{by (2)}
=∑

τi:τi,v∈d lag(τi, tn, S)
{by Lemma 3}

≤
∑
τi∈θ(ui · x + ei +

si+ui·si)+
∑
τj∈τ−θ(ej+sj)

{by Def. 12}
≤ Um−1·x+E.

3.4 Determining x

Setting the upper bound on LAG(d, td, S) in Lemma 4 to
be at most the lower bound in Lemma 2 will ensure that the
tardiness of τl,j is at most x+el+sl. The resulting inequality
can be used to determine a value for x. By Lemmas 2 and 4,
this inequality is m · x + el + sl ≥ Um−1 · x + E. Solving
for x, we have

x ≥ E − el − sl
m− Um−1

. (10)

By Defs. 8 and 12, Um−1 < m clearly holds. Thus, if
x equals the right-hand side of (10), then the tardiness of
τl,j will not exceed x + el + sl in S. A value for x that
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Figure 8: GEDF schedule of the counterexample.

is independent of the parameters of τl can be obtained by
replacing −el− sl with maxl(−el− sl). Moreover, in order
for our analysis to be valid, the condition Usum+

∑m
i=1 v

j ≤
m as stated in Lemma 1 must hold.

Since the transformation method used to obtain S does not
alter the tardiness of any job, the claim below follows.

Claim 3. The tardiness of τl,j in the original schedule S is
the same as that in the transformed schedule S.

By the above discussion, the theorem below follows.

Theorem 1. With x as defined in (10), the tardiness of any
task τl scheduled under GEDF is at most x+el+sl, provided
Usum +

∑m
i=1 v

j ≤ m where vj is defined in Def. 10.

4 Theoretical Dominance over Prior Tests
We now show that our derived schedulability test theoreti-
cally dominates the two existing prior approaches [6, 7] with
respect to schedulability. Moreover, we show via a coun-
terexample that task systems that violate the utilization con-
straint stated in Theorem 1 may have unbounded tardiness.

When using the approach of treating all suspensions as
computation [7], which transforms all SSS tasks into ordi-
nary sporadic tasks, and then applying prior SRT schedu-
lability analysis [2], the resulting utilization constraint is
given by Usum +

∑n
i=1

si
pi
≤ m. Clearly the constraint

Usum +
∑m
i=1 v

j ≤ m from Theorem 1 is less restrictive
than this prior approach. Moreover, the resulting utiliza-
tion constraint2 when using the technique presented in [6]

is given by Usum <

(
1−maxi

(
si

ei + si

))
· m. Since∑m

i=1 v
j ≤ maxi

(
si

ei + si

)
· m, our schedulability test

is also less restrictive than this prior approach. Note that a
major reason the prior approach in [6] causes significant ca-
pacity loss for some task systems is the fact that the term

maxi

(
si

ei + si

)
·m is not associated with any task period

parameter. As a result, many task systems with even small
utilizations may be deemed to be unschedulable.
Counterexample. Consider a two-processor task set τ that
consists of three identical self-suspending tasks: τ1 = τ2 =

2Note that for generality, we consider here SSS task systems where all
n tasks in the system are SSS tasks. As shown in [6], if many tasks are
ordinary computational tasks (with no suspensions), then the schedulability
test presented in [6] can be improved.
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Figure 9: SRT schedulability results. In all six graphs, the x-axis denotes the task set utilization cap and the y-axis denotes the fraction
of generated task sets that were schedulable with bounded deadline tardiness. In the first (respectively, second) column of graphs, m = 4
(respectively, m = 8) is assumed. In the first (respectively, second and third) row of graphs, light (respectively, medium and heavy) per-
task utilizations are assumed. Each graph gives three curves per tested approach for the cases of short, moderate, and long suspensions,
respectively. As seen at the top of the figure, the label “O(m)-s(m/l)” indicates the approach of O(m) assuming short (moderate/long)
suspensions. Similar “LA” and “SC” labels are used for LA and SC.

τ3 = ((1(exec.), 8(susp.), 1(exec.)), 10(period)). For this sys-
tem, Usum +

∑m
i=1 v

j = 0.6 + 1.6 = 2.2 > m = 2, which
violates the condition stated in Theorem 1. Fig. 8 shows the
GEDF schedule of this task system. As seen, the tardiness of
each task in this system grows with increasing job index.

5 Experiments

In this section, we describe experiments conducted using
randomly-generated task sets to evaluate the applicability of
Theorem 1. Our goal is to examine how restrictive the de-
rived schedulability test’s utilization cap is, and how large the
magnitude of tardiness is, and to compare it with prior meth-
ods [6, 7]. In the following, we denote our O(m) schedula-
bility test, the test presented in [6], and that presented in [7],
as “O(m),” “LA,” and “SC,” respectively.

Experimental setup. In our experiments, task sets were gen-
erated as follows. Task periods were uniformly distributed
over [50ms,200ms]. Task utilizations were distributed differ-
ently for each experiment using three uniform distributions.
The ranges for the uniform distributions were [0.005,0.1]
(light), [0.1,0.3] (medium), and [0.3,0.8] (heavy). Task ex-
ecution costs were calculated from periods and utilizations.
Suspension lengths of tasks were also distributed using three
uniform distributions: [0.005 · (1−ui) ·pi, 0.1 · (1−ui) ·pi]
(suspensions are short), [0.1·(1−ui)·pi, 0.3·(1−ui)·pi] (sus-
pensions are moderate), and [0.3·(1−ui)·pi, 0.8·(1−ui)·pi]
(suspensions are long).3 We varied the total system utiliza-
tion Usum within {0.1, 0.2, ...,m}. For each combination of
task utilization distribution, suspension length distribution,
and Usum, 1,000 task sets were generated for systems with

3Note that any si is upper-bounded by (1− ui) · pi.



four and eight processors.4 Each such task set was generated
by creating tasks until total utilization exceeded the corre-
sponding utilization cap, and by then reducing the last task’s
utilization so that the total utilization equalled the utilization
cap. For each generated system, SRT schedulability (i.e., the
ability to ensure bounded tardiness) was checked for O(m),
LA, and SC.

Results. The obtained schedulability results are shown in
Fig. 9 (the organization of which is explained in the figure’s
caption). Each curve plots the fraction of the generated task
sets the corresponding approach successfully scheduled, as a
function of total utilization. As seen, in all tested scenarios,
O(m) significantly improves upon LA and SC by a substan-
tial margin. For example, as seen in Fig. 9(a), when task
utilizations are light and m = 4, O(m) can achieve 100%
schedulability when Usum equals 3.7, 3.1, and 2.1 when sus-
pension lengths are short, moderate, and long, respectively,
while LA and SC fail to do so when Usum merely exceeds
1.8, 0.7, and 0.3, respectively. Note that when task utiliza-
tions are lighter, the improvement margin by O(m) over LA
and SC increases. This is because in this case, the si/(ei+si)
term that cause utilization loss in LA becomes large since ei
is small; similarly, for SC, more tasks are generated under
light utilizations, which causes more utilization loss since all
generated tasks’ suspensions must be converted into compu-
tation. On the other hand, O(m)’s utilization loss is deter-
mined by them largest suspension ratios, and thus is not sim-
ilarly affected. In general, when suspension lengths are short
and moderate, O(m) achieves little or no utilization loss in all
scenarios. Even when suspension lengths become long, uti-
lization loss under O(m) is still reasonable, especially when
compared to the loss under LA and SC. Observe that all three
approaches perform better when using heavier per-task uti-
lization distributions. This is because when ui is larger, si
becomes smaller since ei + si ≤ pi must hold, which helps
all three approaches yield smaller utilization loss.

In addition to schedulability, the magnitude of tardiness,
as computed using the bound in Theorem 1, is of importance.
Table 1 (the organization of which is explained in the ta-
ble’s caption) depicts the average of the computed bounds
for each of the nine tested scenarios (three utilization distri-
butions combined with three suspension length distributions)
when m = 4 under O(m), SC, and LA, respectively. In all
tested scenarios, O(m) provides reasonable predicted tardi-
ness, which is comparable to SC and improves upon LA. For
cases where suspensions are short, the predicted tardiness un-
der O(m) is low. Moreover, as Fig. 9 implies, O(m) can often
ensure bounded tardiness when SC or LA cannot. To con-
clude, our proposed analysis technique not only often guar-
antees schedulability with little or no utilization loss, but can
provide such a guarantee with reasonable predicted tardiness.

4As noted earlier in Sec. 1, recent experimental work [1] suggests that
global algorithms are viable only for small to moderate processor counts.

Table 1: Average tardiness bounds under O(m), SC, and LA when
m = 4. The labels “u-L” /“u-M”/“u-H” indicate light/medium/
heavy task utilizations, respectively. Within the row “O(m),” the
three sub-rows “n-O(m)” /“n-SC”/“n-LA” represent the average
tardiness bound achieved by O(m) as computed for all task sets
that can be successfully scheduled under O(m)/SC/LA, respec-
tively. The rows “SC”/“LA” represent the average tardiness bound
achieved by SC/LA as computed for all task sets that can be suc-
cessfully scheduled under SC/LA, respectively. All time units are
in ms.
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6 Conclusion
We have presented a novel technique for analyzing SRT SSS
task systems. The resulting schedulability test yields only
an O(m) suspension-related utilization loss, which theoreti-
cally dominates prior approaches [6, 7]. As demonstrated by
experiments presented herein, our proposed test significantly
improves upon prior methods with respect to schedulability,
and is often able to guarantee schedulability with little or no
utilization loss while providing low predicted tardiness.

In future work, we hope to extend the ideas of this paper
to apply to HRT SSS task systems. In the HRT case, it may
be similarly possible to transform the analyzed schedule on
a processor-by-processor basis. However, transformation in-
tervals cannot be defined on the basis of tardy jobs, as done
in this paper.
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