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Abstract

In work on multiprocessor real-time systems, task
scheduling with self-suspensions is a relatively unexplored
topic. In this paper, soft real-time sporadic task systems are
considered that include self-suspending tasks. Conditions
are presented for guaranteeing bounded deadline tardiness
in such systems under global EDF or FIFO multiprocessor
scheduling. These conditions enable many soft real-time
task systems with self-suspending tasks to be scheduled with
little or no utilization loss.

1 Introduction

In many real-time systems, tasks interact with external de-
vices that introduce self-suspension delays. Examples of
such devices include solid-state and magnetic disks and net-
work cards. Delays introduced by such devices can be mod-
erate (e.g., roughly 15µs per read and 200µs per write for
NAND Flash) or quite lengthy (e.g., roughly 15ms for mag-
netic disks) [3, 5]. Unfortunately, such delays quite nega-
tively impact schedulability in real-time systems if deadline
misses cannot be tolerated [12].

In this paper, we consider whether, on multiprocessor
platforms, such negative impacts can be ameliorated if task
deadlines are soft. Our focus on multiprocessors is moti-
vated by the advent of multicore platforms. There is cur-
rently great interest in providing operating-system support
to enable real-time workloads to be hosted on such plat-
forms. Many such workloads can be expected to include
self-suspending tasks. Moreover, in many settings, such
workloads can be expected to have soft timing constraints.
The soft timing constraint considered in this paper pertains
to implicit-deadline sporadic task systems and requires that
deadline tardiness be bounded.

All multiprocessor scheduling algorithms follow either a
partitioning or global-scheduling approach (or some com-
bination of the two). Under partitioning, tasks are statically
assigned to processors, while under global scheduling, they
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Figure 1: Example task system with low utilization.

may migrate. Under partitioning schemes, constraints on
overall utilization are required to ensure timeliness even if
bounded deadline tardiness can be tolerated. On the other
hand, a variety of global-scheduling approaches are capable
of ensuring bounded tardiness in sporadic systems (without
self-suspending tasks), as long as the system is not over-
utilized [6].

Unfortunately, if tasks may self-suspend, then bounded
tardiness cannot be guaranteed even on uniprocessors with-
out constraining the system in some way. Consider, for
example, the uniprocessor task system, scheduled by the
earliest-deadline-first (EDF) algorithm, shown in Fig. 1.
This system consists of two tasks, each of which releases
a new job every 10 time units that executes for 0.5 time
unit, then suspends for 9 time units, and then executes for
another 0.5 time unit. Tardiness grows unboundedly in this
system, even though its total utilization is small.

Motivated by the observations above, we consider in
this paper whether it is possible to specify reasonable con-
straints under which bounded deadline tardiness is guar-
anteed under global scheduling algorithms, for implicit-
deadline sporadic tasks systems with self-suspending tasks.
We focus specifically on two global scheduling algorithms
that are capable of ensuring bounded tardiness for ordinary
(suspension-less) sporadic systems with no utilization loss
[2, 7], namely, the global earliest-deadline-first (GEDF) al-
gorithm and the global first-in first-out (GFIFO) algorithm.

Related work. To our knowledge, self-suspensions have
not been considered before in the context of global real-time
scheduling algorithms.

In work pertaining to uniprocessors (and by extension
multiprocessors scheduled via partitioning), several schedu-
lability tests have been presented for analyzing tasks with
self-suspensions. These include a utilization-based test for



EDF [1] and response-time-bound tests for fixed-priority
systems [4, 8–10] and EDF-scheduled systems [10]. On
a more negative note, Ridouard et. al [13] have shown
that the feasibility problem for hard real-time, independent
tasks with self-suspensions is NP-hard in the strong sense.
Ridouard and Richard [12] have also shown that no op-
timal on-line algorithm exists for task systems with self-
suspensions. In fixed-priority systems, scheduling penalties
associated with self-suspensions can be lessened by using
a technique called the period enforcer [11], which forces
suspensions to occur more predictably.

Contributions. We show that GEDF’s and GFIFO’s abil-
ity to guarantee bounded tardiness in sporadic systems with
self-suspending tasks hinges upon a task parameter that
we call the “maximum suspension ratio,” denoted ξHmax,
with range [0,1]. We present a general tardiness bound,
which is applicable to either GEDF or GFIFO, that ex-
presses tardiness as a function of ξHmax and other task pa-
rameters. This bound shows that task systems consisting
of both self-suspending tasks and ordinary computational
tasks that do not suspend can be supported with bounded

tardiness if ξHmax < 1 − Ussum + U cL
m

, where m is the
number of processors, Ussum is the total utilization of self-
suspending tasks, and U cL is the total utilization of them−1
computational tasks of highest utilization. The task model
assumed in obtaining this result is very general and al-
lows self-suspensions within a task’s jobs to interleave ar-
bitrarily with computation. We show via a counterexam-
ple that task systems that violate our utilization constraint
may have unbounded tardiness. To assess the impact of this
constraint, we present schedulability experiments that com-
pare our analysis to a common approach for analyzing sys-
tems with self-suspensions wherein suspensions are merely
treated as computation. In these experiments, our approach
proved to be superior (i.e., could guarantee bounded tardi-
ness for more systems) in most of the tested scenarios.

Organization. The rest of this paper is organized as fol-
lows. Sec. 2 describes our system model. In Sec. 3, our
tardiness bound is derived and evaluated. Sec. 4 concludes.

2 System Model

We consider the problem of scheduling a set τ =
{T1, ..., Tn} of n independent sporadic tasks on m ≥ 2
identical processors. Each task is released repeatedly, with
each such invocation called a job. Jobs alternate between
computation and suspension phases. We assume that each
job of Tl executes for at most el time units (across all of
its execution phases) and suspends for at most sl time units
(across all of its suspension phases). We place no restric-
tions on how these phases interleave (a job can even begin

or end with a suspension phase). The jth job of Tl, denoted
Tl,j , is released at time rl,j and has a deadline at time dl,j .
Associated with each task Tl is a period pl, which speci-
fies both the minimum time between two consecutive job
releases of Tl and the relative deadline of each such job,
i.e., dl,j = rl,j + pl. The utilization of a task Tl is defined
as ul = el/pl, and the utilization of the task system τ as
Usum =

∑
Ti∈τ ui. We require el + sl ≤ pl, ul ≤ 1, and

Usum ≤ m; otherwise, tardiness can grow unboundedly (if
el + sl > pl or ul > 1, then Tl’s tardiness grows unbound-
edly; if Usum > m, then the system is overloaded, which
implies that tardiness grows unboundedly for at least one
task).

A common case for real-time workloads is that both self-
suspending tasks and computational tasks (which do not
suspend) co-exist. To reflect this, we let Ussum denote the
total utilization of all self-suspending tasks, and U csum de-
note the total utilization of all computational tasks.

Successive jobs of the same task are required to execute
in sequence. If a job Ti,j completes at time t, then its re-
sponse time is t− ri,j and its tardiness is max(0, t− di,j).
A task’s tardiness is the maximum tardiness of any of its
jobs. Note that, when a job of a task misses its deadline, the
release time of the next job of that task is not altered.

Unless stated otherwise, we henceforth assume that each
job of any task Tl executes for exactly el time units. By
Claim 4, given in an appendix, any tardiness bound derived
for systems that meet this restriction applies to other sys-
tems as well.

So that our analysis can be more accurately applied in
settings where a task’s total suspension time varies from
job to job, we assume that a fixed parameter H (H ≥ 1)
is specified and that SHi denotes the maximum total self-
suspension length for any H (H ≥ 1) consecutive jobs of
task Ti. Note that if H = 1, then a maximum per-job total
suspension length is being assumed.

Under GEDF (GFIFO), released jobs are prioritized by
their deadlines (release times). So that our results can be ap-
plied to both algorithms, we consider a generic scheduling
algorithm (GSA) where each job is prioritized by some time
point between its release time and deadline. Specifically, for
any job Ti,j , we define a priority value ρi,j = ri,j + κ · pi,
where 0 ≤ κ ≤ 1. Lower priority values denote higher pri-
orities, and ties are assumed to be broken in favor of tasks
with smaller indices. Note that GEDF and GFIFO are spe-
cial cases of GSA where κ is set to 1 and 0, respectively.

3 A Tardiness Bound for GSA

We derive a tardiness bound for GSA by comparing the allo-
cations to a task system τ in a processor sharing (PS) sched-
ule and an actual GSA schedule of interest for τ , both on m
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Figure 2: Illustration of Defs. 1-3.

processors, and quantifying the difference between the two.
We analyze task allocations on a per-task basis.

The time interval [t1, t2), where t2 > t1, consists of all
time instances t, where t1 ≤ t < t2, and is of length t2− t1.
For any time t > 0, the notation t− is used to denote the
time t− ε in the limit ε → 0+, and the notation t+ is used
to denote the time t+ ε in the limit ε→ 0+.

Definition 1. A task Ti is active at time t if there exists a
job Ti,v such that ri,v ≤ t < di,v .

Definition 2. Job Ti,v is pending at time t if t ≥ ri,v and
Ti,v has not completed all of its execution phases by t. Note
that Ti,v is not pending at t if it has completed all its execu-
tion phases by t but not all of its suspension phases.

Definition 3. Job Ti,v is enabled at t if t ≥ ri,v , Ti,v has not
completed by t, and its predecessor (if any) has completed
by t. A job is considered to be completed if it has finished
its last phase (be it suspension or computation).

The above three definitions are illustrated in Fig. 2.
LetA(Ti,j , t1, t2, S) denote the total allocation to the job

Ti,j in an arbitrary schedule S in [t1, t2). Then, the total
time allocated to all jobs of Ti in [t1, t2) in S is given by

A(Ti, t1, t2, S) =
∑
j≥1

A(Ti,j , t1, t2, S).

Consider a PS schedule PS. In such a schedule, Ti exe-
cutes with the rate ui when it is active. (Note that suspen-
sions are not considered in the PS schedule.) Thus, if Ti is
active throughout [t1, t2), then

A(Ti,j , t1, t2, PS) = (t2 − t1)ui. (1)

The difference between the allocation to a job Ti,j up to
time t in a PS schedule and an arbitrary schedule S, denoted
the lag of job Ti,j at time t in schedule S, is defined by

lag(Ti,j , t, S) = A(Ti,j , 0, t, PS)−A(Ti,j , 0, t, S). (2)

The concept of lag is important because, if lags remain
bounded, then tardiness is bounded as well. The LAG for a

finite job set J at time t in the schedule S is defined by

LAG(J, t, S) =
∑
Ti,j∈J lag(Ti,j , t, S)

=
∑
Ti,j∈J(A(Ti,j , 0, t, PS)−A(Ti,j , 0, t, S)). (3)

Our tardiness-bound derivation follows a format origi-
nally presented in [2] and focuses on a given task system τ .
We order the jobs in τ based on their priorities: Ti,v ≺ Ta,b
iff ρi,v < ρa,b or (ρi,v = ρa,b) ∧ (i < a). Let Tl,j be a job
of a task Tl in τ , td = dl,j , and S be a GSA schedule for τ
with the following property.

(P) The tardiness of every job Ti,k such that Ti,k ≺ Tl,j
is at most x+ ei + si in S, where x ≥ 0.

Our objective is to determine the smallest x such that
the tardiness of Tl,j is at most x + el + sl. This would by
induction imply a tardiness of at most x + ei + si for all
jobs of every task Ti, where Ti ∈ τ . We assume that Tl,j
finishes after td, for otherwise, its tardiness is trivially zero.
The steps for determining the value for x are as follows.

1. Determine an upper bound on the work pending for
tasks in τ that can compete with Tl,j after td. This is
dealt with in Lemmas 1–3 in Sec. 3.1.

2. Determine a lower bound on the amount of work pend-
ing for tasks in τ that can compete with Tl,j after td,
required for the tardiness of Tl,j to exceed x+ el + sl.
This is dealt with in Lemma 4 in Sec. 3.2.

3. Determine the smallest x such that the tardiness of Tl,j
is at most x+ el + sl, using the above upper and lower
bounds. This is dealt with in Theorem 1 in Sec. 3.3.

Definition 4. We categorize jobs based on the relationship
between their priorities and deadlines and those of Tl,j :

d = {Ti,v : (Ti,v � Tl,j) ∧ (di,v ≤ td)};

D = {Ti,v : (Ti,v ≺ Tl,j) ∧ (di,v > td)}.

d is the set of jobs with deadlines at most td with priority
at least that of Tl,j . These jobs do not execute beyond td in
the PS schedule. Note that Tl,j is in d. D is the set of jobs
that have higher priorities than Tl,j and deadlines greater
than td. Note that jobs not in d∪D have lower priority than
those in d∪D and thus do not affect the scheduling of jobs in
d∪D. For simplicity, we will henceforth assume that no job
not in d∪D executes in either the PS or GSA schedule. Let
DCI be the set of tasks with jobs in D. D consists of carry-
in jobs, which have a release time before td and a deadline
after td. Exactly one such job exists for each task in DCI .
(Note that D is empty under GEDF because jobs with later
deadlines have lower priorities.)



Definition 5. A time instant t is busy for a job set J if all
m processors execute a job in J at t. A time interval is busy
for J if each instant within it is busy for J .

The following claim follows from the definition ofLAG.

Claim 1. If LAG(d, t2, S) > LAG(d, t1, S), where t2 >
t1, then [t1, t2) is non-busy for d. In other words, LAG for d
can increase only throughout a non-busy interval.

An interval could be non-busy for d for two reasons:

1. There are not enough enabled non-suspended jobs in d
to occupy all available processors. Such an interval is
called non-busy non-displacing.

2. There are enabled non-suspended jobs in d that are not
scheduled (because jobs in D occupy one or more pro-
cessors).

Definition 6. Let δk be the amount of execution time con-
sumed by a carry-in job Tk,v by time td.

Definition 7. LetB(D, td, S) be the amount of work due to
jobs in D that can compete with Tl,j after td.

Since d∪D includes all jobs of higher priority than Tl,j ,
the competing work for Tl,j is given by the sum of (i) the
amount of work pending at td for jobs in d, and (ii) the
amount of work B(D, td, S) demanded by jobs in D that
competes with Tl,j after td. Since jobs from d have dead-
lines at most td, they do not execute in the PS schedule
beyond td. Thus, the work pending for them is given by
LAG(d, td, S). Therefore, the competing work for Tl,j af-
ter td is given by LAG(d, td, S) +B(D, td, S). Let

Z = LAG(d, td, S) +B(D, td, S). (4)

A summary of the terms defined so far, as well as some
additional terms defined later, is presented in Table 1.

3.1 Upper Bound

In this section, we determine an upper bound on Z.

Definition 8. Let tn be the end of the latest non-busy non-
displacing interval for d before td, if any; otherwise, tn = 0.

The following two lemmas have been proved previously
for both GEDF [2] and GFIFO [7] for ordinary sporadic
task systems without self-suspensions. Note that the value
ofLAG(d, td, S)+B(D, td, S) depends only on allocations
in the PS schedule PS and allocations to jobs in d ∪ D in
the actual schedule S by time td. The PS schedule is not
impacted by self-suspensions. Also, Property (P) alone is
sufficient for determining how much work any job in d ∪D
other than Tl,j completes before td. For these reasons, Lem-
mas 1 and 2 continue to hold for task systems with self-
suspensions. For completeness, proofs are given in the ap-
pendix.

m Number of processors
n Number of tasks
S(Tl,j) Start time of job Tl,j
F (Tl,j) Finish time of job Tl,j
td Deadline of job Tl,j
Essum Total execution cost of all self-

suspending tasks in τ
Esum Total execution cost of all tasks in τ
Sssum Total suspension length of all tasks in τ
usmax Maximum utilization of any self-

suspending task in τ
U cL Sum of the min(m− 1, c) largest com-

putational task utilizations, where c is
the number of computational tasks

EcL Sum of the min(m− 1, c) largest com-
putational task execution costs

SHi Maximum total self-suspension length
for any H (H > 1) consecutive jobs of
task Ti

SHmax Maximum total self-suspension length
for any H (H > 1) consecutive jobs of
any task in τ

ξHi Suspension ratio of Ti
ξHmax Maximum suspension ratio
δk Amount of execution time consumed

by a carry-in job Tk,v by time td
B(D, td, S) Amount of work due to jobs in D that

can compete with Tl,j after td
W Amount of work due to jobs in d ∪ D

that can compete with Tl,j at or after
td + y, including the work due for Tl,j

Z Amount of competing work for Tl,j af-
ter td

ts Earliest non-busy instant in [td, td + y)
tp Finish time of Tl,j’s predecessor, if it

exists; otherwise (j = 1), tp = 0

Table 1: Summary of notation.

Lemma 1. LAG(d, td, S) ≤ LAG(d, tn, S) +∑
Tk∈DCI

δk(1− uk), where t ∈ [0, td].

Lemma 2. lag(Ti, t, S) ≤ ui · x+ ei + ui · si for any task
Ti and t ∈ [0, td].

Lemma 3 below upper bounds LAG(d, tn, S).

Definition 9. Let Essum be the total execution cost of all
self-suspending tasks in τ . Let Esum be the total execu-
tion cost of all tasks in τ . Let Sssum be the total suspension
length of all tasks in τ . Let usmax be the maximum utiliza-
tion of any self-suspending task in τ .

Definition 10. Let U cL be the sum of the min(m − 1, c)
largest computational task utilizations, where c is the num-



ber of computational tasks. Let EcL be the sum of the
min(m− 1, c) largest computational task execution costs.

Lemma 3. LAG(d, tn, S) ≤ (Ussum + U cL) · x + Essum +
EcL + usmax · Sssum.

Proof. By summing individual task lags at tn, we can
bound LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0,
so assume tn > 0. Consider the set of tasks β = {Ti : ∃Ti,v
in d such that Ti,v is enabled at t−n }. Given that the instant
t−n is non-busy non-displacing, at mostm−1 computational
tasks in β have jobs executing at t−n . Due to suspensions,
however, β may contain more than m − 1 tasks. In the
worst case, all suspending tasks in τ have a suspended en-
abled job at t−n and min(m−1, c) computational tasks have
an enabled job executing at t−n . If task Ti does not have an
enabled job at t−n , then lag(Ti, tn, S) ≤ 0. Therefore, by
(3), we have

LAG(d, tn, S) =
∑

Ti:Tw
i,v
∈d

lag(Ti, tn, S)

≤
∑
Ti∈β

lag(Ti, tn, S)

{by Lemma 2}

≤
∑
Ti∈β

(ui · x+ ei + ui · si)

≤ (Ussum + U cL) · x+ Essum + EcL

+ usmax · Sssum.

The demand placed by jobs in D after td isB(D, td, S) =∑
Tk∈DCI

(ek − δk). Thus, by (4) and Lemmas 1 and 3, we
have the following upper bound:

Z ≤ (Ussum + U cL) · x+ Essum + EcL + usmax · Sssum
+

∑
Tk∈DCI

(δi(1− uk) + (ek − δk))

≤ (Ussum + U cL) · x+ Essum + EcL + usmax · Sssum
+ Esum. (5)

3.2 Lower Bound

Lemma 4, given below, establishes a lower bound on Z that
is necessary for the tardiness of Tl,j to exceed x+ el + sl.

Definition 11. If job Ti,v is enabled and not suspended at
time t but does not execute at t, then it is preempted at t.

Definition 12. If Ti,v’s first phase is an execution (suspen-
sion) phase and it begins executing (a suspension) for the
first time at t, then t is called its start time, denoted S(Ti,v).
If Ti,v’s last phase (be it execution or suspension) completes
at time t′, then t′ is called its finish time, denoted F (Ti,v).

Definition 13. Let SHmax = max{SH1 , SH2 , ..., SHn }. (SHi
was defined earlier in Sec. 2.)

Definition 14. Let ξHi =
SHmax

SHmax +H · ei
be the suspension

ratio of Ti. Let ξHmax = max{ξ1, ξ2, ..., ξn} be the maxi-
mum suspension ratio.

Lemma 4. If the tardiness of Tl,j exceeds x+ el + sl, then
Z > (1−ξHmax)·mx−(m−1)el−m·sl−n·(SHmax+2S1

max).

Proof. We prove the contrapositive: we assume that

Z ≤ (1− ξHmax) ·mx− (m− 1)el
−m · sl − n · (SHmax + 2S1

max) (6)

holds and show that the tardiness of Tl,j cannot exceed x+
el + sl. Let ηl be the amount of work Tl,j performs by time
td in S. Define y as follows.

y = (1− ξHmax) · x+
ηl
m

(7)

Let W be the amount of work due to jobs in d ∪ D that can
compete with Tl,j at or after td + y, including the work due
for Tl,j . We consider two cases.

Case 1. [td, td + y) is a busy interval for d ∪ D. In this
case, the amount of work due to jobs in d ∪ D performed
within [td, td + y] is my, and hence, W = Z −my. Thus,
by (6) and (7),W ≤ (1−ξHmax)·mx−(m−1)el−m·sl−n·
(SHmax+2S1

max)−my = (1−ξHmax) ·mx−(m−1)el−m ·
sl−n·(SHmax+2S1

max)−(1−ξHmax)·mx−ηl < 0. Since Tl,j
can suspend for at most sl time units after td+y (and at least
one task executes while it is not suspended), the amount of
work performed by the system for jobs in d ∪ D during the
interval [td + y, F (Tl,j)) is at least F (Tl,j) − td − y − sl.
Hence, F (Tl,j) − td − y − sl ≤ W < 0. Therefore, the
tardiness of Tl,j is F (Tl,j) − td < y + sl = (1 − ξHmax) ·
x+

ηl
m

+ sl ≤ x+ el + sl.

Case 2. [td, td + y) is a non-busy interval for d∪D. Let
ts ≥ td be the earliest non-busy instant in [td, td + y). Job
Tl,j cannot become enabled until its predecessor (if it exists)
completes. Let tp be the finish time of Tl,j’s predecessor
(i.e., Ti,j−1), if it exists; otherwise (j = 1), let tp = 0. We
consider three subcases.

Subcase 2.1. tp ≤ ts and Tl,j is not preempted after
ts. In this case, Tl,j performs its remaining execution and
suspension phases in sequence without preemption after ts
(note that, by Def. 11, Tl,j is not considered to be preempted
when it is suspended). Thus, because ts < td+y, by (7), the
tardiness of Tl,j is at most ts+el−ηl+sl−td < td+y+el−
ηl+sl−td = (1−ξHmax)·x+

ηl
m

+el−ηl+sl ≤ x+el+sl.
The claim below will be used in the next two subcases.

Claim 2. The amount of work due to d ∪ D performed
within [t1, t2), where S(Tl,j) ≤ t1 < t2 ≤ F (Tl,j), is at
least m(t2 − t1)− (m− 1)el −m · sl.
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Figure 3: Subcase 2.2.

Proof. Within [t1, t2), all intervals during which Tl,j is pre-
empted are busy, and Tl,j can execute for at most el time.
Within intervals where Tl,j executes, at least one processor
is occupied by Tl,j . Thus, at most m−1 processors are idle
while Tl,j executes (for at most el time units) in [t1, t2).
Also, all processors can be idle while Tl,j is suspended and
this happens for at most sl time units in [t1, t2).

Subcase 2.2. tp ≤ ts and Tl,j is preempted after ts. Let
t1 be the earliest time when Tl,j is preempted after ts, and
let t2 be the last time Tl,j resumes execution after being pre-
empted. (A finite number of jobs have higher priority than
Tl,j , so t2 exists.) Then, as shown in Fig. 3, Tl,j executes
or suspends within [ts, t1). Also, because Tl,j is preempted
at t1, t1 is busy with respect to d ∪ D. Within [t1, t2), Tl,j
could be repeatedly preempted. All such intervals during
which Tl,j is preempted must be busy in order for the pre-
emption to happen. Note that F (Tl,j) ≤ t2 + el − ηl + sl.
Thus, if t2 ≤ y + td, then F (Tl,j) ≤ y + td + el − ηl + sl,
which by (7) implies that Tl,j’s tardiness is F (Tl,j)− td ≤
y + el − ηl + sl ≤ (1− ξHmax) · x+ el + sl ≤ x+ el + sl,
as required. If t2 > td + y, then by Claim 2, the amount of
work due to d ∪ D performed within [ts, td + y) is at least
m(td + y − ts) − (m − 1)el −m · sl. Because [td, ts) is
busy, the work due to d∪D performed within [td, td + y) is
thus at least my − (m − 1)el −m · sl. Hence, the amount
of work that can compete with Tl,j (including work due to
Tl,j) at or after td + y is
W ≤ Z − (my − (m− 1)el −m · sl)

{by (6)}
≤ (1− ξHmax) ·mx− (m− 1)el −m · sl −

n·(SHmax+2S1
max)− (my − (m− 1)el −m · sl)

= (1− ξHmax) ·mx− n·(SHmax+2S1
max)−my

{by (7)}
= −n·(SHmax+2S1

max)− ηl
≤ 0.

Therefore, the tardiness of Tl,j is F (Tl,j) − td ≤ y +
W ≤ y = (1− ξHmax) · x+

ηl
m
< x+ el + sl.

Subcase 2.3: tp > ts. The earliest time Tl,j can
commence its first phase (be it an execution or suspension

td ts tp

Busy Busy:      is 
preempted
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due to 
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or 
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Figure 4: Subcase 2.3.

phase) is tp, as shown in Fig. 4. If fewer than m tasks have
enabled jobs in d ∪ D at any time instant within [ts, tp),
then Tl,j will begin its first phase at tp and finish by time
tp + el + sl. (Note that the number of enabled jobs in d∪D
does not increase after td.) By Property (P) (applied to Tl,j’s
predecessor), tp ≤ td − pl + x + el + sl ≤ td + x. Thus,
the tardiness of Tl,j is F (Tl,j) − td ≤ tp + el + sl − td ≤
x+ el + sl.

The remaining possibility (which requires a much
lengthier argument) is: tp > ts and at least m tasks have
enabled jobs in d∪D at each time instant within [ts, tp). In
this case, given that at least m tasks have enabled jobs in
d ∪ D at ts, ts is non-busy due to suspensions.

Let W ′ be the amount of work due to d ∪ D performed
during [ts, tp). Let I be the total idle time in [ts, tp), where
the idle time at each instant is the number of idle processors
at that instant. Then, W ′+I = m · (tp− ts). The following
claim will be used to complete the proof of Subcase 2.3.

Claim 3. W ′ ≥ (1−ξHmax)·m(tp−ts)−n·(SHmax+2S1
max).

Proof. We begin by dividing the interval [ts, tp) into subin-
tervals on a per-processor basis. The subintervals on pro-
cessor k are denoted [IT (k)

i , ET
(k)
i ), where 1 ≤ i ≤ qk,

IT
(k)
i = ts, IT

(k)
i+1 = ET

(k)
i , and ET (k)

qk = tp, as illus-

trated in Fig 5. With each such subinterval [IT (k)
i , ET

(k)
i ),

we associate a unique task, denoted T (k)
i . We assume that

during [IT (k)
i , ET

(k)
i ), T (k)

i executes only on processor k,
and ET (k)−

i is the last time T (k)
i is enabled within [ts, tp).

Thus, if ET (k)
i < tp, then the last job of T (k)

i to be en-
abled within [ts, tp) finishes its last phase (be it execution
or suspension) at time ET (k)−

i ; if ET (k)
i = tp, then T (k)

i

has enabled jobs throughout [IT (k)
i , tp). Note that it is pos-

sible that T (k)
i executes or suspends within [ts, tp) prior to

IT
(k)
i . We call the subinterval [IT (k)

i , ET
(k)
i ) the presence

interval of T (k)
i . The fact that a unique task can be asso-

ciated with each subinterval follows from the assumption
that at least m tasks have jobs in d ∪ D that are enabled
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Figure 5: Presence intervals within [ts, tp].

at each time instant in [ts, tp).1 (Note that multiple jobs of
T

(k)
i may execute during its presence interval.) We let λ(k)

denote the set of all tasks that have presence intervals on
processor k.

We now upper-bound the idleness on processor k by
bounding its idleness within one of its presence intervals.
For conciseness, we denote this interval and its correspond-
ing task as [IT (T ), ET (T )) and T , respectively. If proces-
sor k is idle at any time in [IT (T ), ET (T )), then some job
of T is suspended at that time. Thus, the total suspension
time of jobs of T in [IT (T ), ET (T )), denoted I(T ), upper-
bounds the idle time on processor k in [IT (T ), ET (T )).

Task T may have multiple jobs that are enabled within its
presence interval. Such a job is said to fully execute in the
presence interval if it starts its first phase (be it execution or
suspension) within the presence interval and also completes
all of its execution phases in that interval (note that it may
not complete all of its suspension phases). A job is said to
partially execute in the presence interval if it starts its first
phase (be it execution or suspension) before the presence
interval or completes its last execution phase after the pres-
ence interval. Note that at most two jobs of T could partially
execute in its presence interval (namely, the first and last
jobs to be enabled in that interval). We now prove that I(T ),
and hence the idleness within [IT (T ), ET (T )) on proces-
sor k, is at most ξHmax · (ET (T )−IT (T ))+SHmax+2S1

max

(see Def. 13). Depending on the number of jobs of T that
execute during T ’s presence interval, we have two cases.

Case 1. T has at most H jobs that fully execute in its
presence interval. (Additionally, T may have at most two
jobs that partially execute in its presence interval.) In this
case, I(T ) is clearly at most SHmax + 2S1

max.
Case 2. T has more than H jobs that fully execute in

its presence interval. (Again, T may have at most two jobs
that partially execute in its presence interval.) In this case,
the jobs of T that are enabled in its presence interval can
be divided into nT sets, where one set contains fewer than
H fully executed jobs plus at most two partially-executed
jobs and each of the remaining nT − 1 sets contains exactly
H fully-executed jobs. Let θ denote the union of the latter
nT − 1 job sets. Without loss of generality, we assume that

1As time increases from ts to tp, whenever a presence interval ends
on processor k, a task exists that can be used to define the next presence
interval on processor k. It can also be assumed, without loss of generality,
that this task executes only on processor k during its presence interval.

θ contains jobs that are enabled consecutively. The total
suspension time for the first job set defined above is clearly
at most SHmax + 2S1

max. We complete this case by showing
that the total suspension time for all jobs in θ is at most
ξHmax · (ET (T )− IT (T )).

To ease the analysis, let IT ′(T ) be the start time of the
first enabled job in θ, and ET ′(T ) = min(ET (T ), FT ),
where FT is the finish time of the last enabled job
in θ. Then ET ′(T ) − IT ′(T ) ≤ ET (T ) − IT (T ).
Also, ET ′(T ) − IT ′(T ) = I(θ) + ∆(θ) + E(θ), where
I(θ) is the total suspension time of all jobs in θ within
[IT ′(T ), ET ′(T )), ∆(θ) is the total preemption time of all
jobs in θ within [IT ′(T ), ET ′(T )), and E(θ) is the total
execution time of all jobs in θ within [IT ′(T ), ET ′(T )).
(Recall that, by Def. 11, a suspended task is not consid-
ered to be preempted.) Given that θ contains (nT − 1) H
fully-executed jobs, I(θ) ≤ (nT −1) ·SHT . Moreover, given
our assumption that each job executes for the corresponding
task’s worst-case execution time,E(θ) = (nT−1)·H ·e(T ),
where e(T ) is the worst-case execution time of T . Thus,

I(θ) =
I(θ)

ET ′(T )− IT ′(T )
· (ET ′(T )− IT ′(T ))

=
I(θ)

I(θ) + ∆(θ) + E(θ)
· (ET ′(T )− IT ′(T ))

≤ I(θ)
I(θ) + E(θ)

· (ET ′(T )− IT ′(T ))

{ because I(θ) ≤ (nT − 1) · SHT }

≤ (nT − 1) · SHT
(nT − 1) · SHT + E(θ)

· (ET ′(T )− IT ′(T ))

{ because E(θ) = (nT − 1) ·H · e(T )}

≤ (nT − 1) · SHT · (ET ′(T )− IT ′(T ))
(nT − 1) · SHT + (nT − 1) ·H · e(T )

=
SHT

SHT +H · e(T )
· (ET ′(T )− IT ′(T ))

{by Def. 13}

≤ SHmax
SHmax +H · e(T )

· (ET ′(T )− IT ′(T ))

{by Def. 14}
= ξHmax · (ET ′(T )− IT ′(T ))
≤ ξHmax · (ET (T )− IT (T )).

This concludes the proof of Case 2 of Claim 3.
Given that a task can be identified with only one presence

interval and there are at most n tasks, the idleness within
[ts, tp) on m processor satisfies

I ≤ n · (SHmax + 2S1
max)

+
∑

T∈λ(1)∪...∪λ(k)

ξHmax · (ET (T )− IT (T ))

= ξHmax ·m(tp − ts) + n · (SHmax + 2S1
max).



Thus,W ′ = m(tp−ts)−I ≥ (1−ξHmax)·m(tp−ts)−n·
(SHmax+2S1

max). This completes the proof of Claim 3.

We now complete the proof of Subcase 3.2 (and thereby
Lemma 4). As shown in Fig. 4, [td, ts) and [tp, S(Tl,j))
are busy for d ∪ D. By Claim 2, the amount of work due to
d∪D performed in [S(Tl,j), F (Tl,j)) is at leastm(F (Tl,j)−
S(Tl,j))− (m− 1)el −m · sl. By Claim 3, the amount of
work due to d∪D performed in [ts, tp) is at least (1−ξHmax)·
m(tp− ts)− n · (SHmax− 2S1

max). By summing over all of
these subintervals, we can lower-bound the amount of work
due to d ∪ D performed in [td, F (Tl,j)), i.e., Z:

Z ≥ m(ts − td) + (1− ξHmax) ·m(tp − ts)
− n · (SHmax + 2S1

max) +m(S(Tl,j)− tp)
+ m(F (Tl,j)− S(Tl,j))− (m− 1)el −m · sl.

(8)

By (6) and (8), we therefore have

(1− ξHmax) ·mx− (m− 1)el −m · sl
−n · (SHmax + 2S1

max)
≥ m(ts − td) + (1− ξHmax) ·m(tp − ts)
− n · (SHmax + 2S1

max) +m(S(Tl,j)− tp)
+ m(F (Tl,j)− S(Tl,j))− (m− 1)el −m · sl,

which gives,

F (Tl,j)− td ≤ (1− ξHmax) · x+ ξHmax · (tp − ts).

According to Property (P) (applied to Tl,j’s predecessor),
tp − ts ≤ tp − td ≤ x − pl + el + sl ≤ x. Therefore,
F (Tl,j)− td ≤ (1− ξHmax) ·x+ ξHmax ·x < x+ el+ sl.

3.3 Determining x

Setting the upper bound on LAG(d, td, S) +B(D, td, S) in
(5) to be at most the lower bound in Lemma 4 will ensure
that the tardiness of Tl,j is at most x+el+sl. The resulting
inequality can be used to determine a value for x. By (5)
and Lemma 4, this inequality is (Ussum +U cL) ·x+Essum +
EcL + usmax · Sssum + Esum ≤ (1 − ξHmax) · mx − (m −
1)el −m · sl − n · (SHmax + 2S1

max).
Let V = Essum + EcL + usmax · Sssum + Esum + (m −

1)el +m · sl +n · (SHmax+ 2S1
max). Solving for x, we have

x ≥ V

(1− ξHmax) ·m− Ussum − U cL
. (9)

x is well-defined provided Ussum + U cL < (1 − ξHmax) ·m.
If this condition holds and x equals the right-hand side of
(9), then the tardiness of Tl,j will not exceed x+ el + sl. A
value for x that is independent of the parameters of Tl can
be obtained by replacing (m−1)el+m·sl withmaxl((m−
1)el +m · sl) in V .

Theorem 1. With x as defined in (9), the tardiness of any
task Tl scheduled under GSA is at most x+el+sl, provided
Ussum + U cL < (1− ξHmax) ·m.

For GFIFO and GEDF, the bound in Theorem 1 can be
improved.

Corollary 1. For GFIFO, Theorem 1 holds with V replaced
by V − Esum +

∑
pi>pl

ei in the numerator of (9).

Proof. Under GFIFO, DCI consists of carry-in jobs that
are released before rl,j and have deadlines later than td,
which implies that these jobs have periods greater than
pl. Thus, the upper bound in (5) can be refined to obtain
LAG (d, td, S) +B(D, td, S) ≤ (Ussum+U cL)·x+Essum+
EcL + usmax · Sssum +

∑
pi>pl

ei. Using this upper bound to
solve for x, the corollary follows.

Corollary 2. For GEDF, Theorem 1 holds with V replaced
by V − Esum in the numerator of (9).

Proof. Under GEDF, the demand placed by jobs in D af-
ter td is zero because D = ∅. Thus, under GEDF,
LAG (d, td, S) +B(D, td, S) ≤ (Ussum+U cL)·x+Essum+
EcL + usmax · Sssum. Using this upper bound to solve for x,
the corollary follows.

3.4 A Counterexample

Previous research has shown that every sporadic task system
for whichUsum ≤ mwithout self-suspensions has bounded
tardiness under GEDF and GFIFO [2,7]. We now show that
it is possible for a task system containing self-suspending
tasks to have unbounded tardiness under GEDF or GFIFO
if the utilization constraint in Theorem 1 is violated.

Consider a two-processor task set τ that consists of three
self-suspending tasks: T1 = ((3(exec.), 7(susp.)), 10(pe-
riod)), T2 = ((1(exec.), 8(susp.), 1(exec.)), 10(period)), and
T3 = ((1(exec.), 8(susp.), 1(exec.)), 10(period)). For this
system, ξHmax = 0.8 (assuming H = 1) and Ussum + U cL =
0.7. Thus, (1 − ξHmax) · m = 0.4 < Ussum + U cL, which
violates the condition stated in Theorem 1. Fig. 6 shows the
tardiness of each task in this system under GFIFO/GEDF by
job index assuming each job is released as early as possible.
We have verified analytically that the tardiness growth rate
seen in Fig. 6 continues indefinitely.

3.5 Experimental Evaluation

In this section, we describe experiments conducted using
randomly-generated task sets to evaluate the applicability of
the tardiness bound in Theorem 1. Our goal is to examine
how restrictive the theorem’s utilization cap is, and to com-
pare it with another commonly-used approach, which we
call SuspToComp, wherein all suspension phases are treated
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Figure 6: Tardiness growth rates in counterexample.
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If some processor is idle during 
[t’,t’+ε), then it is scheduled and 
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If all processors are busy during 
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must be re-scheduled at t’+ε.

: some computation phase 
ranked lower than Δ

: ρ

: task Ti

Case 1:

Case 2:

If all processors are busy during [t’,t’+ε) 
and Ti,k is the lowerst-priority job among 
all jobs scheduled within [t1,t2), then the 

additional computation is scheduled at t3.

t3

: Ti is preempted
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: Δ
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short 
suspensions
ξmax = 0.05

moderate 
suspensions
ξmax = 0.2

long 
suspensions
ξmax = 0.5

per-task 
utilization

suspension 
length

light

medium

heavy

min:
avg:
max:
min:
avg:
max:
min:
avg:
max:

2.6 µs
197 µs
526 µs
263 µs
789 µs
1.6 ms
789 µs
2.2 ms
4.2 ms

2.5 ms

12 µs
938 µs

789 µs

3.75 ms
50 µs

938 µs

10 ms
1.25 ms
3.75 ms
7.5 ms

5 ms
15 ms
30 ms

3.75 ms
10.3 ms
20 ms

15 ms
41.25 ms

80 ms

Table 2: Per-job suspension-length ranges.

as computation phases. From [2, 7], tardiness is bounded
under SuspToComp provided Usum ≤ m and UL ≤ m,
where UL is the sum of the min(m− 1, n) largest task uti-
lizations. (Note that, under SuspToComp, treating suspen-
sions as computation causes utilizations to be higher.)

In our experiments, task sets were generated as fol-
lows. Task periods were uniformly distributed over
[50ms,100ms]. Per-task utilizations were distributed dif-
ferently for each experiment using three uniform distribu-
tions: [0.001,0.1] (light), [0.1,0.3] (medium), and [0.3,0.8]
(heavy). Task execution costs were calculated from peri-
ods and utilizations. We varied Ussum as follows: Ussum =
0.1 · Usum (suspensions are relatively infrequent), Ussum =
0.4 · Usum (suspensions are moderately frequent), and
Ussum = 0.7 · Usum (suspensions are frequent). Moreover,
we varied ξmax as follows: 0.05 (suspensions are short),
0.2 (suspensions are moderate), and 0.5 (suspensions are
long). Table. 2 shows suspension-length ranges generated
by these parameters. We also varied Usum within {1, 2, ...,
8}. For each combination of (umax, Ussum, Usum), 1,000
task sets were generated for an eight-processor system. For
each generated system, soft real-time schedulability (i.e.,
the ability to ensure bounded tardiness) was checked under
SuspToComp and using the condition stated in Theorem 1.
In doing so, system overheads were ignored (factoring over-
heads into our analysis is beyond the scope of this paper).

The schedulability results that were obtained are shown
in Fig. 8 (the organization of which is explained in the fig-
ure’s caption). Each curve plots the fraction of the generated
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Figure 7: Average tardiness under LA, as computed via
Theorem 1.

task sets the corresponding approach successfully sched-
uled, as a function of total utilization. As Fig. 8 shows,
our approach proved to be superior, sometimes by a sub-
stantial margin, in all tested scenarios summarized in the
first two rows of graphs. However, in many of the scenarios
summarized in the third row of grows, SuspToComp proved
to be superior. In these scenarios, task utilizations are high
and suspensions are long or frequent. Our analysis is nega-
tively impacted in such cases because U cL tends to be large
when utilizations are high, and ξmax tends to be large when
suspensions are long. It is worth noting, however, that our
approach allows certain tasks to be designated as compu-
tational tasks. Thus, the SuspToComp approach is really a
special case of our approach. It would be interesting to in-
vestigate intermediate choices between the two extremes of
modeling all versus no suspensions as computation.

In addition to schedulability, the magnitude of tardiness,
as computed using the bound in Theorem 1, is of impor-
tance. Fig. 7 depicts the average of the computed bounds for
each of the tested scenarios in our experimental framework
for the case where Usum = m and Usums = 0.1 ·Usum (that
is, for each scenario in this case, an average of all bounds
for all tasks in all schedulable task sets is plotted). As can
be seen, tardiness is reasonable if task utilizations are low
and suspensions are short. However, as either task utiliza-
tions or suspension lengths increase, tardiness increases, as
an examination of the bound in Theorem 1 suggests should
be the case. With large task utilizations and long suspen-
sion lengths, tardiness is quite high, perhaps unacceptably
so, even though these systems are deemed to be schedula-
ble.

4 Conclusion

We have derived a tardiness bound that can be applied to
globally-scheduled sporadic task systems that include self-
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Figure 8: Soft real-time schedulability results. In the first (respectively, second and third) row of graphs, light (respectively,
medium and heavy) per-task utilizations are assumed. In the first (respectively, second and third) column of graphs, relatively
infrequent (respectively, moderately frequent and frequent) suspensions are assumed. Each graph gives three curves per
tested approach for the cases of short, moderate, and long suspensions, respectively. The label “LA-s(m/l)” indicates the
approach of this paper assuming short (moderate/long) suspensions. Similar “SC” labels are used for SuspToComp.

suspending tasks. This bound is applicable to a class of
global algorithms that includes GEDF and GFIFO. The de-
rived tardiness bound requires overall utilization to be con-
strained. We have shown via a counterexample that utiliza-
tion constraints are fundamental. We also presented schedu-
lability experiments that suggest that our constraint is quite
liberal in many systems and is often less pessimistic than
modeling suspensions as computation.
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5 Appendix

In this appendix, we prove Claim 4 and Lemmas 1 and 2.
In proving Claim 4, we lift the restriction, given earlier in
Sec. 2, that each job executes for the corresponding task’s
worst-case execution time. To state this claim, some addi-
tional terminology is required.

We say that a sporadic task system τ is concrete if the
release time (and hence deadline) and actual execution cost
and suspension time of every job of each task is fixed. Two
concrete task systems are compatible if they have the same
jobs with the same release times (they can have different ac-
tual execution and suspension times). A concrete task sys-
tem τ is maximal if the actual execution time of any job
equals the corresponding task’s worst-case execution time.

Claim 4. For any concrete task system τ , there exists a
compatible maximal concrete task system τ ′ such that, for
any job Ti,k, its response time in the GSA schedule for τ ′ is
at least its response time in the GSA schedule for τ .

Proof. The existence of the desired maximal concrete sys-
tem is demonstrated via a construction method in which
computation phases are ranked as follows: (i) if Ti,k ≺
Tx,y , then all computation phases of Ti,k are ranked be-
fore all computation phases of Tx,y; (ii) earlier computation
phases of Ti,k are ranked before later computation phases
of Ti,k. Let ε be a positive value that is small enough so
that within any interval [t, t + ε), each processor schedules
exactly one job or no job, and the actual and worst-case ex-
ecution cost of any computation phase is a multiple of ε.

Consider a computation phase C of a job Ti,k that is not
maximal. We show that the length of C can be increased
by ε by adding to the end of C a piece of computation ρ
of length ε. In so doing, it may be necessary to reduce the
length of a lower-ranked computation phase by ε and to re-
duce the length of a subsequent suspension phase (if any)
of Ti,k. By inducting over all computation phases in rank
order, and by iteratively increasing any non-maximal exe-
cution time by ε, we can obtain a compatible concrete task
system that is maximal. The construction method will en-
sure that no job’s response time is reduced.

Let [t, t + ε) denote the time interval where ρ should be
added to the schedule (according to GSA). If, before adding
ρ, task Ti is scheduled within [t, t + ε), then the computa-
tion phase of Ti executing at that time, call it C ′, is ranked
lower than C. In this case, we can accommodate ρ by re-
ducing C ′ in length by ε.2 If C and C ′ are separated by a
suspension phase, then the length of that suspension phase
must be defined to be zero.

In the rest of the proof, we consider the other possibility:
before adding ρ, Ti is not scheduled within [t, t + ε) (and
hence, it is not scheduled in [t′, t+ ε), where t′ is the com-
pletion time of C). In this case, if there is an idle processor
in [t, t + ε), then ρ can be scheduled there without mod-
ifying the length of any lower-ranked computation phase.
On the other hand, if there is no idle processor, then, as ρ
should be scheduled in [t, t + ε), there must be a compu-
tation phase ranked lower than C scheduled then. We can
accommodate ρ and allow it to be scheduled in [t, t+ ε) by
reducing the length of that lower-ranked computation phase
by ε. If C is followed by a suspension phase, then, once ρ
has been added to the schedule, it may be necessary to re-
duce the length of that suspension phase. In particular, if,
before adding ρ, Ti,k was suspended in [t, t + ε), then the
length of that suspension phase must be reduced so that it
starts as t+ ε.

Note that the construction method used in this proof
strongly exploits the fact that, in our task model, suspension
phases are upper-bounded, and hence, can be reduced.

2If C′ is of length ε and is followed by a suspension phase, then we
can avoid altering the length of that suspension phase by assuming that C′

executes for zero time at time t+ ε. Note that C′’s execution time will be
increased in a subsequent induction step. A similar comment applies to the
argument in the next paragraph.



Theorem 1 shows that, for any maximal concrete task
system, the tardiness of any task Tl scheduled under GSA
is at most x+ el + sl, with x as defined in (9). By Claim 4,
the same is true for any non-maximal concrete task system.

Let A(J, t1, t2, S) denote the total time allocated to all
jobs in the job set J in [t1, t2) in the schedule S.

Lemma 1. LAG(d, td, S) ≤ LAG(d, tn, S) +∑
Tk∈DCI

δk(1− uk), where t ∈ [0, td].

Proof. By (3), we have

LAG (d, td, S) ≤ LAG(d, tn, S) +A (d, tn, td, PS)
−A (d, tn, td, S) . (10)

We split [tn, td) into z non-overlapping intervals
[tpi , tqi), 1 ≤ i ≤ z, such that tn = tp1 , tqi−1 = tpi ,
and tqz = td. Each interval [tpi , tqi) is either busy or non-
busy displacing for d, by the selection of tn. We assume
that the intervals are defined so that for each non-busy
displacing interval [tpi

, tqi
), if a task in DCI executes in

[tpi , tqi) then it executes continuously throughout [tpi , tqi);
we let αi denote the set of such tasks.

We now bound the difference between the work per-
formed in the PS schedule and the GSA schedule S across
each of these intervals [tpi

, tqi
). The sum of these bounds

will give us a bound on the total allocation difference
throughout [tn, td). Depending on the nature of the interval
[tpi , tqi), two cases are possible.

Case 1. [tpi
, tqi

) is busy. Since in S all processors
are occupied by jobs in d, we have A(d, tpi

, tqi
, PS) −

A(d, tpi
, tqi

, S) ≤ Usum(tqi
, tpi

)−m(tqi
− tpi

) ≤ 0.

Case 2. [tpi , tqi) is non-busy displacing. The cumulative
utilization of all tasks Tk ∈ αi is

∑
Tk∈αi

uk. The carry-in
jobs of these tasks do not belong to d, by the definition of d.
Therefore, the allocation of jobs in d during [tpi

, tqi
) in PS

is A(d, tpi , tqi , PS) ≤ (tqi − tpi)(m −
∑
Tk∈αi

uk). All
processors are occupied at every time instant in the interval
[tpi

, tqi
), because it is displacing. Thus, A(d, tpi

, tqi
, S) =

(tqi
− tpi

)(m − |αi|). Therefore, the allocation difference
for jobs in d throughout the interval is

A(d, tpi
, tqi

, PS)−A(d, tpi
, tqi

, S)

≤ (tqi
− tpi

) ((m−
∑
Tk∈αi

uk)− (m− |αi|))

= (tqi
− tpi

)
∑
Tk∈αi

(1− uk) . (11)

For each task Tk in DCI , the sum of the lengths of the
intervals [tpi , tqi) in which the carry-in job of Tk executes
continuously is at most δk. Thus, summing the allocation

differences for all the intervals [tpi
, tqi

) given by (11), we
have

A(d, tn, td, PS)−A(d, tn, td, S)

≤
z∑
i=1

∑
Tk∈DCI

(tqi − tpi)(1− uk)

≤
∑

Tk∈DCI

δk(1− uk). (12)

Setting this value into (10), we get LAG(d, td, S) ≤
LAG(d, tn, S) + A(d, tn, td, PS) − A(d, tn, td, S) ≤
LAG(d, tn, S) +

∑
Tk∈DCI

δk(1− uk).

Lemma 2. lag(Ti, t, S) ≤ ui · x+ ei + ui · si for any task
Ti and t ∈ [0, td].

Proof. Let di,k be the deadline of the earliest pending job
of Ti, Ti,k, in the schedule S at time t. If such a job does not
exist, then lag(Ti, t, S) = 0, and the lemma holds trivially.
Let γi be the amount of work Ti,k performs before t.

By the selection of Ti,k, we have

lag(Ti, t, S) =
∑
h≥k

lag(Ti,h, t, S)

=
∑
h≥k

(A(Ti,h, 0, t, PS)−A(Ti,h, 0, t, S)).

Given that no job executes before its release time,
A(Ti,h, 0, t, S) = A(Ti,h, ri,h, t, S). Thus,

lag(Ti, t, S) = A(Ti,k, ri,h, t, PS)−A(Ti,k, ri,k, t, S)

+
∑
h>i

(A(Ti,h, ri,h, t, PS)

−A(Ti,h, ri,h, t, S)). (13)

By the definition of PS, A(Ti,k, ri,h, t, PS) ≤ ei,
and

∑
h>k A(Ti,h, ri,h, t, PS) ≤ ui · max(0, t − di,k).

By the selection of Ti,k, A(Ti,k, ri,k, t, S) = γi, and∑
h>k A(Ti,h, ri,h, t, S) = 0. By setting these values into

(13), we have

lag(Ti, t, S) ≤ ei − γi + ui ·max(0, t− di,k). (14)

There are two cases to consider.

Case 1. di,k ≥ t. In this case, (14) im-
plies lag(Ti, t, S) ≤ ei − γi, which implies
lag(Ti, t, S) ≤ ui · x+ ei + ui · si.

Case 2. di,k < t. In this case, because t ≤ td and dl,j =
td, Ti,k is not the job Tl,j . Thus, by Property (P), Ti,k has
tardiness at most x+ei+si, so t+ei−γi ≤ di,k+x+ei+si.
Thus, t − di,k ≤ x + γi + si. Setting this value into (14),
we have lag(Ti, t, S) ≤ ui · x+ ei + ui · si.


