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Abstract—Mobile Cloud Computing (MCC) bridges the gap
between limited capabilities of mobile devices and the increasing
users’ demand of mobile multimedia applications, by offloading
the computational workloads from local devices to the remote
cloud. Current MCC research focuses on making offloading
decisions over different methods of a MCC application, but
may inappropriately increase the energy consumption if having
transmitted a large amount of program states over expensive
wireless channels. Limited research has been done on avoiding
such energy waste by exploiting the dynamic patterns of ap-
plications’ run-time execution for workload offloading. In this
paper, we adaptively offload the local computational workload
with respect to the run-time application dynamics. Our basic idea
is to formulate the dynamic executions of user applications using
a semi-Markov model, and to further make offloading decisions
based on probabilistic estimations of the offloading operation’s
energy saving. Such estimation is motivated by experimental
investigations over practical smartphone applications, and then
builds on analytical modeling of methods’ execution times and
offloading expenses. Systematic evaluations show that our scheme
significantly improves the efficiency of workload offloading com-
pared to existing schemes over various smartphone applications.

I. INTRODUCTION

Smartphones nowadays are designated to execute com-

putationally expensive applications such as gaming, speech

recognition, and video playback. These applications increase

the requirements on smartphones’ capabilities in computation,

communication, and storage, and seriously reduce the smart-

phones’ battery lifetime. A viable solution to support these

applications is Mobile Cloud Computing (MCC) [24], which

offloads the computation workloads from local smartphones

to the remote cloud. Remote workload execution is then

supported by various techniques such as code migration [5],

[16] and Virtual Machine (VM) synthesis [2], [10], [11].

The major challenge of workload offloading in MCC is that

wireless communication between smartphones and the remote

cloud through 3G and WiFi is expensive. Hence, unconscious

migration of full application processes with large datasets does

not necessarily reduce the local energy consumption [17].

Instead, workloads are offloaded at a more fine-grained level

of different application methods [9], [16], and an application

is adaptively partitioned to ensure that the amount of energy

saved by remote execution overwhelms the expense of wire-

lessly transmitting the relevant program states [21], [7].
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However, limited research has been done on exploiting the

dynamic patterns of applications’ run-time execution for work-

load offloading. Most existing schemes assume fixed execution

path among different application methods, and make workload

offloading decisions through either empirical heuristics [21],

[16] or solving deterministic optimization problems [22], [5].

The run-time heterogeneity of application execution paths

due to different input datasets, user operations and system

contexts are completely ignored. Moreover, the impact of this

heterogeneity is also excluded from estimating the elapsed

time and energy consumption of method execution. Such esti-

mations in current schemes are only based on system profiling

over individual methods themselves, resulting in inaccurate

estimation of the practical cost of application execution.

The key to efficient exploitation of dynamic execution

patterns is to develop an analytical framework which appro-

priately formulates the stochastic characteristics of application

execution paths among different methods. Development of

such framework is challenging in two aspects. First, a method

invocation may relate to previous executions of multiple

methods with heterogeneous system contexts, and it is difficult

to characterize the invocation interdependency. Second, user

applications are usually executed with heterogeneous system

and network conditions, which complicate the quantitative

analysis on the energy saving of workload offloading.

In this paper, we propose a novel scheme to address the

aforementioned challenges and to make decisions on workload

offloading with respect to the run-time application dynamics.

Our basic idea is to formulate the interdependency among

method invocations using an order-𝑘 semi-Markov model, and

further characterize the transitions among application methods

based on the sojourn time distributions of Markovian states.

The appropriateness of workload offloading is then judged

by a probabilistic decision framework which incorporates the

knowledge about both method execution times and energy

consumption. Parameters about method transitions, execution

times, and energy consumptions are dynamically re-estimated

at runtime during application executions by various online

system profilers [15], [16]. The computational efficiency of the

decisions of workload offloading is also ensured by restricting

such decisions within a local scope of application execution.

To the best of our knowledge, our work is the first which ana-

lytically formulates and exploits the stochastic characteristics

of run-time application execution for workload offloading.



Our detailed contributions are as follows:

∙ We experimentally investigate the run-time execution

patterns of various smartphone applications. We observe

significant heterogeneity in the run-time execution paths

of these applications, as well as the execution times and

energy consumption of different application methods.

∙ Based on the investigation results, we develop a semi-

Markov framework which formulates the stochastic tran-

sitions among application methods, and provide quanti-

tative guidelines on offloading decisions through proba-

bilistic estimations of the offloading effectiveness.

∙ We propose analytical modeling on various aspects of

system dynamics during application executions, including

the execution times and energy consumption of appli-

cation methods. These models are then integrated into

decisions of workload offloading.

The rest of this paper is organized as follows. Section II

reviews the existing work. Section III presents our experi-

mental investigations on practical smartphone applications and

motivates our idea of the stochastic offloading framework.

Section IV describes the details of our framework, and Section

V presents analytical modeling on system dynamics. Section

VI evaluates the performance of our proposed approach.

Section VII discusses and Section VIII concludes the paper.

II. RELATED WORK

MCC integrates cloud computing into the mobile environ-

ment [6] and allows mobile users to efficiently utilize the cloud

resources. Cloudlets, which are local resource-rich servers pro-

viding prompt cloud access to nearby mobile users, have been

suggested to avoid the wireless transmission latency between

smartphones and the remote cloud [24]. Other designs adopt

various cloud computing techniques such as virtualization [12]

and Service-Oriented Architecture (SOA) [26].

Workload offloading in MCC focuses on how to offload

and what to offload. Research has been done to support

efficient remote application execution. MAUI [5] relies on

developers to specify the application partitioning by annotating

remoteable methods under the specific application framework,

i.e., Microsoft .NET. Later solutions improve the efficiency

and reliability of workload offloading through synthesis and

migration of VMs [4], [29]. CloneCloud [3], [2] creates an

augmented clone of the local application on the cloud, and

ThinkAir [16] enforces on-demand VM creation and resource

allocation. Other schemes further improve the offloading

generality by supporting multi-threaded [10] and interactive

applications [21].

Appropriate decisions of application partitioning, on the

other hand, are the prerequisite to efficient workload of-

floading. Such decisions are based on the profiling data

about application execution and system context, such as the

CPU usage, energy consumption, and network latency. Some

schemes such as CloneCloud [2] and MAUI [5] implement

offline profiling with various benchmark testing, and other

schemes [15], [16], [27] use online application profilers to

monitor application executions. Based on profiling data, most

schemes partition user applications using empirical heuristics

with specific assumptions. Odessa [21] assumes linear speedup

over consecutive frames in a face recognition application.

ThinkAir [16] defines multiple static offloading policies, each

of which focuses on a sole aspect of system performance.

The efficiency of offloading decisions in practice, however, are

left unexamined and questionable. In contrast, our proposed

approach considers the most generic MCC scenario, and the

proposed stochastic offloading framework builds on experi-

mental investigations of the execution patterns of practical

smartphone applications.

Analytical offloading framework has also been studied [22],

[9], [5], [7], [19], but they assume the method invocations to be

represented by a stationary calling graph. Offloading decisions

are formulated as a graph cut problem [22], [9], integer

optimization [5], or fuzzy logic decision process [7], but all the

offloading operations are deterministic regardless of the run-

time dynamics of application execution. Comparatively, in this

paper we propose to make decisions of workload offloading

based on probabilistic transitions among application methods

that are formulated by a stochastic framework, and hence

ensure the practical applicability of workload offloading.

Fig. 1. Power metering system for energy measurement

III. EXPERIMENTAL INVESTIGATION

In this section, we motivate the development of a stochastic

framework depicting the dynamic execution patterns of user

applications, through experimental investigations of the run-

time executions of the following smartphone applications:

∙ Firefox for Mobile with version 24.0 is one of the

most popular web browsers on smartphones1. It supports

various types of interactive media contents such as Flash

and JavaScript, and hence has heterogeneous execution

patterns in both computation and communication.

∙ Chess-Walk is a chess game which supports either offline

or online gaming2, and is computationally expensive

according to different configurations of game difficulty

levels.

1http://hg.mozilla.org/mozilla-central/archive/tip.tar.gz
2https://gitorious.org/chesswalk
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(c) Barcode scanner

Fig. 2. Run-time dynamics of application execution paths
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Fig. 3. Run-time heterogeneity of methods’ execution times

∙ Barcode Scanner is an application that scans products’

barcodes and then searches online for product prices and

reviews3. It is usually communication intensive due to the

functionality of online search.

Our experiments use the Android Operating System (OS)

as the software platform. We analyze the source codes of

each user application, and embed the specialized monitoring

codes, which are connected to our backend software monitor,

into the application. Such software monitor is implemented

as an Android system service, and undertakes the application

profiling action every time when an application method starts

or finishes. The methods’ execution times are recorded based

on the smartphones’ local time measurement, and their power

consumptions are measured using a hardware power meter

as shown in Figure 1. All the experiments are performed

on a Samsung Nexus S smartphone with a 1GHz Cortex-

A8 CPU, 512MB RAM, and a 100-Mbps wireless LAN.

Each application is executed several times with different input

datasets and operations. For Firefox, we randomly load 100

different webpages with various page layouts and interactive

contents. For Chess-walk, we play 30 games with different dif-

ficulty levels. For Barcode scanner, we randomly scanned and

searched 50 different electronic products in a local BestBuy

store.

3http://code.google.com/p/zxing/

TABLE I
RUN-TIME DYNAMICS OF APPLICATION EXECUTION PATHS

Application Firefox Chess-walk Barcode

Avg No. of methods involved 93.7 34.7 57.9
Avg No. of methods executed per run 122.4 52.5 76.3

Avg method execution time (ms) 378.8 897.3 577.5
Avg variation of execution path 0.484 0.278 0.455

A. Run-time Dynamics of Application Execution Paths

We first focus on the variations of method execution paths

in different application runs. For each application, we index all

the application methods and record the application execution

path in each application run. The sequence of method execu-

tions in each application run with the specific input dataset 𝑆 is

recorded as a time series 𝐸𝑆 = {𝑚𝑆
1 ,𝑚

𝑆
2 , ...,𝑚𝐿𝑆

𝑆}, where

𝑚𝑆
𝑖 is the 𝑖-th application method being executed. Then, we

calculate the difference between two time series 𝐸𝑆𝑖
and 𝐸𝑆𝑗

as 𝐷𝑖𝑗 =
∑𝑁

𝑘=1 𝑑𝑘/𝑁 where 𝑁 = max{𝐿𝑖, 𝐿𝑗} and

𝑑𝑘 =

{
0 if 𝑚𝑖𝑘 = 𝑚𝑗𝑘

1 otherwise

In case that 𝐿𝑖 < 𝐿𝑗 , 𝑆𝑖 will be padded with 0s so that the

corresponding values of 𝑑𝑘 are all 1s, and vice versa.

The variations of method execution paths among different

application runs are illustrated in Figure 2. For the 𝑖-th
application run, Figure 2 shows the average variance between

𝐸𝑆𝑖 and all the other time series, i.e.,
∑𝐾

𝑗=1,𝑗 ∕=𝑖𝐷𝑖𝑗/(𝐾−1),
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Fig. 4. Run-time heterogeneity of methods’ energy consumption

where 𝐾 is the total number of application runs. The statistical

results are then summarized in Table I. From these results,

we see that the executed methods in multiple application runs

are highly possible to be different from each other, and such

difference is usually determined by the application contexts

and input datasets. For applications handling complicated and

interactive media contents such as Firefox, Figure 2(a) shows

that the execution variation can be up to 0.8. Applications with

specialized functionality exhibit lower variation, but Figure

2(b) shows that the variation for the Chess-walk application

could still be as high as 0.4.

B. Run-time Heterogeneity of Application Characteristics

Second, we investigate the run-time heterogeneity of ap-

plication characteristics, including the execution times and

energy consumption of different application methods. For each

smartphone application, we investigate its top 10 methods

with the maximum average execution times, and demonstrate

the variations of their execution times in different runs in

Figure 3. We observe that the run-time method execution

times exhibit significant variances, which could be over 50%

in the Chess-Walk and Barcode Scanner applications. Such

variances are usually method-specific and determined by the

specific contexts of method execution, such as the input dataset

and application execution path. In particular, we observe that

the execution times of a specific method will be significantly

varied by the next method being invoked.

Similarly, for the method with the maximum average ex-

ecution time in each application, we show the fluctuations

of its run-time energy consumption along with its execution

times in different runs in Figure 4. We see that the energy

consumption of method execution increases along with the

method execution time, but the increasing speed is application-

specific. Computation-intensive applications such as Chess-

Walk have smaller fluctuation of methods’ energy consump-

tion, as shown in Figure 4(b). Moreover, randomness and

irregularity could also be observed. In Figures 4(a) and 4(c),

the energy consumption of a method execution with longer

time could also be possibly lower.

C. Motivation of Stochastic Offloading Framework

The above results show that the run-time transitions between

application methods are highly dynamic and therefore should

be formulated as a continuous-time stochastic process. Markov

Decision Processes (MDPs), in both discrete-time [13] and

continuous-time domains [23], have been exploited to formu-

late the run-time behavior patterns of mobile applications, in

which the application components are mapped to Markovian

states in different ways. In [23], the Markovian states corre-

spond to the application context information, and the states in

[13] are vectors of variables indicating the system status.

However, an ordinary Markov model is insufficient for fine-

grained formulation of the transitions between application

methods, whose characteristics of transition times and invoca-

tion independency could be heterogeneous. This is our motiva-

tion of adopting an order-k semi-Markov model. Since a semi-

Markov model supports arbitrary distributions of sojourn times

between Markovian states, we can associate each application

method with a Markovian state and characterize the transition

times between methods by re-estimating the parameters of

state sojourn time distributions. Moreover, an order-𝑘 Markov

model enables appropriate formulation of the impact of pre-

vious method invocations on the future application execution,

and flexibly balancing between the formulation accuracy and

overhead by adjusting the value of 𝑘.

IV. STOCHASTIC OFFLOADING FRAMEWORK

In this section, motivated by the experimental results in

Section III, we develop our stochastic framework for efficient

workload offloading decisions considering the dynamic ex-

ecution patterns of smartphone applications. Our basic idea

is to formulate the dynamic transitions of different methods

of a specific user application as a stochastic process, more

specifically, a order-𝑘 semi-Markov model, and further make

the workload offloading decisions based on probabilistic esti-

mations of the offloading effectiveness. Such estimations build

on the variations of methods’ execution times and offloading

expenses, with respect to the notations in Table II, which are

used throughout the rest of this paper.



TABLE II
NOTATION SUMMARY

Notation Explanation

𝕄 The set of application methods being executed
𝑀𝑛 The 𝑛-th application method being executed
𝑇𝑛 The time when 𝑀𝑛 is invoked

𝑀̃𝑛 The composite Markovian state {𝑀𝑛−1, ...,𝑀𝑛−𝑘}
T State transition probability matrix for the embedded

order-𝑘 Markov chain

𝐻𝑖𝑗(𝑡) Sojourn time distribution transiting from 𝑖 ∈ 𝕄
𝑘 to 𝑗 ∈ 𝕄

𝐶𝑗
𝐿, 𝐶𝑗

𝑅 Method 𝑗’s probabilities of being executed
locally and remotely, respectively

𝐸𝑀𝑛 (𝑡) Energy consumed by 𝑀𝑛 with
local execution time 𝑡

𝐶𝑀𝑛 (𝑡) Energy consumed by transmitting 𝑀𝑛’s program states
with local execution time 𝑡

A. System Model

The computational workloads of different methods of a user

application are adaptively offloaded from the local smartphone

to the remote cloud, so as to minimize the smartphone’s

local resource consumption. Since an application method may

request access to various local system resources, in this paper

we consider that the application programmer is responsible to

specify whether a method is remoteable before the deployment

and execution of the application. Similar assumption is also

made by the existing work [5], [16].

We consider a generic scenario of MCC which is also

used in [5]. We assume that the remote execution of an

application method causes negligible computational overhead

to the remote cloud, but may incur the smartphone’s local re-

source consumption of transmitting the program states before

and/or after this remote execution. As shown in Figure 5, such

transmission is necessary when other parts of the application

either invoking this method or being invoked by this method

are executed locally, and could only be ignored between

consecutive remote executions of application methods.

Modern smartphone OS enables multiple user applications

to be running simultaneously. However, their executions are

generally independent from each other. For example, Android

OS encapsulates the run-time binaries of each user application

into an instance of Davlik Java VM, so that the resource space

of this application is isolated from the rest of the system.

Most existing schemes realize workload offloading based

on the techniques of VM migration and remote synthesis.

Therefore, the rest of this paper will focus on ensuring the

workload offloading efficiency of a single user application.

The consideration of the mutual impact between different user

applications is orthogonal to the major focus of this paper.

B. Semi-Markov Chain Formulation

An order-𝑘 Markov renewal process representing the transi-

tions between different application methods is a set of random

variables {(𝑀𝑛, 𝑇𝑛) : 𝑛 ≥ 0}, where state space 𝕄 =
{𝑚1,𝑚2, ...,𝑚𝑁} is the set of user application methods. The

random variable 𝑇𝑛+1 − 𝑇𝑛 thus indicates the execution time

of 𝑀𝑛. Without loss of generality, we develop our stochastic

offloading framework with discrete-time, and various time

Local execution

Remote execution

Time
Methods: 1 2 3 4 5

Transmission of program states

Fig. 5. Model of transmitting program states between method executions

metrics, such as the number of CPU cycles, can be adopted

to quantify the values of 𝑇𝑛.

We consider that the invocation of a method 𝑀𝑛+1 is deter-

mined by the previous 𝑘 method invocations that are indicated

by the “composite state” 𝑀̃𝑛 = {𝑀𝑛−𝑘+1, ...,𝑀𝑛−1,𝑀𝑛}.

Correspondingly, we use an extended state transition proba-

bility matrix T ∈ ℝ
𝑁𝑘×𝑁 for the embedded order-𝑘 Markov

chain, such that for any 𝑝𝑖𝑗 ∈ T, 𝑗 ∈ 𝕄 represents a regular

system state, and 𝑖 ∈ 𝕄
𝑘 corresponds to a 𝑘-tuple of values

in the original state space 𝕄. In practice, the values of 𝑝𝑖𝑗 are

dynamically updated by the profiled execution history of user

application methods.

As a result, the associated order-𝑘 semi-Markov kernel 𝑄
is defined by

𝑄𝑖𝑗(𝑡) = ℙ(𝑀𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡∣𝑀̃𝑛 = 𝑖)

= 𝑝𝑖𝑗𝐻𝑖𝑗(𝑡),
(1)

where 𝐻𝑖𝑗(𝑡) indicates the probability that the method 𝑗 will

be invoked by the composite state 𝑖 at or before time 𝑡.
Based on 𝐻𝑖𝑗(𝑡), we have the distribution 𝐷𝑖(𝑡) indicating

the average holding time of the composite state 𝑖 as

𝐷𝑖(𝑡) = ℙ(𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡∣𝑀̃𝑛 = 𝑖) =

𝑁∑
𝑗=1

𝑄𝑖𝑗(𝑡)

Without loss of generality, we consider that 𝐻𝑖𝑗(𝑡) covers

both cases of 𝑗’s local and remote executions, and hence

𝐻𝑖𝑗(𝑡) = 𝑐
𝑖𝑗
𝐿ℎ

𝑖𝑗
𝐿 (𝑡) + 𝑐

𝑖𝑗
𝑅ℎ

𝑖𝑗
𝑅(𝑡), (2)

where ℎ𝑖𝑗𝐿 (𝑡) and ℎ𝑖𝑗𝑅(𝑡) correspond to 𝑗’s sojourn time distri-

bution when it is executed locally and remotely, respectively.

The exponents 𝑐𝑖𝑗𝐿 and 𝑐𝑖𝑗𝑅 indicate the method 𝑗’s probability

of local and remote execution, respectively, when 𝑗 is invoked

from the composite state 𝑖. The cumulative probability for the

method 𝑗 to be executed locally and remotely can then be

calculated as 𝐶𝑗
𝐿 =

∑
𝑖∈𝕄𝑘 𝑐

𝑖𝑗
𝐿 and 𝐶𝑗

𝑅 =
∑

𝑖∈𝕄𝑘 𝑐
𝑖𝑗
𝑅 . As a

result, we will make our offloading decisions based on such

knowledge about the sojourn time distributions indicating the

method execution times.

C. Offloading Decisions

At time 𝑇𝑛 when the method 𝑀𝑛 is about to be invoked,

our basic idea of determining whether to offload the execution

of 𝑀𝑛 to the remote cloud is to adaptively evaluate the effec-

tiveness of 𝑀𝑛’s remote execution on saving the smartphone’s
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local energy, and only offload the execution of 𝑀𝑛 if the

amount (𝐺𝑀𝑛
) of energy saving is non-negative.

The calculation of 𝐺𝑀𝑛 takes into account the stochastic

characteristics of 𝑀𝑛’s execution times and energy consump-

tion, and is restricted within the scope of the Local Invocation

Graph (LIG) of 𝑀𝑛, so as to ensure the computational

efficiency of such offloading decision without sacrificing the

decision correctness. The LIG of a method 𝑀𝑛, as illustrated

in Figure 6, is defined to include the composite state 𝑀̃𝑛−1

determining the invocation of 𝑀𝑛, and the other application

methods that may be invoked by 𝑀𝑛 in the future.
Without loss of generality, we consider the possibility for

𝑀𝑛 to invoke every other application method 𝑚𝑗 ∈ 𝕄, which

is indicated by the state transition probability 𝑝𝑀̃𝑛,𝑗
. If 𝑀𝑛

will invoke 𝑚𝑗 after completing 𝑀𝑛’s own execution, 𝐺𝑀𝑛

equals to the difference between the energy consumption of

𝑀𝑛’s local execution and the transmission of 𝑀𝑛’s program

states after its remote execution. According to Section IV-A,

such transmission is only necessary when 𝑚𝑗 is executed

locally. As a result, at time 𝑇𝑛 when𝑀𝑛 is about to be invoked

by 𝑀𝑛−1, we compute 𝐺𝑀𝑛
as

𝐺𝑀𝑛
=

𝑁∑
𝑗=1

𝑝𝑀̃𝑛,𝑗
⋅
(∫ ∞

0

ℎ𝑀̃𝑛,𝑗
𝐿 (𝑡) ⋅ (𝐸𝑀𝑛

(𝑡)− 𝐶𝑗
𝐿𝐶𝑀𝑛

(𝑡))𝑑𝑡

)

−
{
0 , 𝑀𝑛−1 is executed remotely

−𝐶𝑀𝑛−1
(𝑇𝑛 − 𝑇𝑛−1) , 𝑀𝑛−1 is executed locally,

(3)

where ℎ𝑀̃𝑛,𝑗
𝐿 (𝑡) and 𝐶𝑗

𝐿 are defined in Eq. (2), and we consider

that both 𝐸𝑀𝑛
(𝑡) and 𝐶𝑀𝑛

(𝑡) vary along with 𝑀𝑛’s local

execution time 𝑡. Since the transmission of program states is

only necessary when 𝑚𝑗 will be executed locally, Eq. (3) es-

sentially provides a lower bound of energy saving that happens

when both 𝑀𝑛−1 invoking 𝑀𝑛 and 𝑀𝑛+1 being invoked by

𝑀𝑛 are executed locally. Note that energy consumption of

transmitting 𝑀𝑛−1’s program states, which is indicated by

𝐶𝑀𝑛−1
(𝑇𝑛 − 𝑇𝑛−1), is fixed by 𝑇𝑛 and 𝑇𝑛−1.

From Eq. (3), we see that the offloading decision on 𝑀𝑛

highly depends on whether other application methods invoking

𝑀𝑛 or being invoked by 𝑀𝑛 are offloaded or not. As illus-

trated by Figure 5, the “ping-pong” operations on workload

offloading, i.e., frequent switches between the local and remote

method executions, simply waste the majority of consumed

energy on unnecessary transmission of program states between

local smartphones and the remote cloud, and lead to severe

penalties on the system’s energy efficiency. Such penalties are

reflected in Eq. (3) by incorporating the quantity 𝐶𝑀𝑛
(𝑡).

V. SYSTEM DYNAMICS OF APPLICATION EXECUTION

In this section, we further substantiate our stochastic of-

floading framework presented in Section IV by providing de-

tailed formulations on various aspects of system dynamics of

application executions. These formulations enable quantified

guidelines for the workload offloading operations in practice.

For each aspect of the system dynamics, we also provide

analytical methods to adaptively re-estimate the parameters

describing such dynamics, using the runtime profiled informa-

tion about the real-time status of application execution. These

information could be efficiently provided by various online

application profilers [15], [16] and is then used to ensure the

practical appropriateness of workload offloading decisions.

A. Sojourn Time Distribution

The sojourn time distributions of Markovian states rep-

resenting the user application methods are the key to the

efficiency and correctness of workload offloading decisions.

In this section, we focus on determining the appropriate

characteristics of such distribution with respect to the context

of mobile workload offloading, and further develop algorithms

to efficiently re-estimate the parameters of such distribution at

real-time.

The characteristics of sojourn time distributions, which

determine the transitions among Markovian states representing

application methods, mainly depend on whether an application

method is executed locally or remotely. According to our

experimental investigations in Section III-B, when a method

is executed locally, its execution time is determined by the in-

stantaneous computational capability of the local smartphone,

which could be highly dynamic due to the current system

workload (e.g., CPU utilization, system memory usage) and

resource availability. When an application method is executed

remotely, the dominant factor determining its execution time,

on the other hand, is the network bandwidth and data trans-

mission latency. As suggested by MAUI [5], such wireless

network conditions are also dynamic, and would significantly

affect the method execution times when the amount of data

being transmitted for remote execution is large. Due to such

dynamic characteristics of method executions, we consider

that both the local and remote method execution times fol-

low Gaussian distributions, and formulate the sojourn time

distribution 𝐻𝑖𝑗(𝑡) as a Gaussian mixture, such that

𝐻𝑖𝑗(𝑡) = 𝑐
𝑖𝑗
𝐿ℎ

𝑖𝑗
𝐿 (𝑡) + 𝑐

𝑖𝑗
𝑅ℎ

𝑖𝑗
𝑅(𝑡)

= 𝑐𝑖𝑗𝐿ℕ(𝑡∣𝜇𝑖𝑗𝐿 , (𝜎𝑖𝑗𝐿 )2) + 𝑐𝑖𝑗𝑅ℕ(𝑡∣𝜇𝑖𝑗𝑅 , (𝜎𝑖𝑗𝑅 )2),
(4)

where ℕ(⋅) is Gaussian density form. Such Gaussian mixture

is illustrated in Figure 7. The decision of workload offloading

in Eq. (3) uses quantities ℎ𝑖𝑗𝐿 (𝑡) and 𝐶𝑗
𝐿 from Eq. (4).



0 2 4 6 8
0.0

0.1

0.2

P
ro

ba
bi

lty
 d

en
si

ty

Data value

 Gaussian mixture
 Remote execution time
 Local execution time

Fig. 7. Gaussian mixture model of method execution times

The most common way to re-estimate the parameters of

𝐻𝑖𝑗(𝑡) is to apply the Expectation-Maximization (EM) algo-

rithm [28] over the profiling information about the past method

execution times. However, the accuracy of such re-estimation

under the Maximum Likelihood (ML) criterion, which depends

on large training datasets and multiple rounds of iteration,

would be seriously impaired by the limited availability about

such profiling information.

Instead, we adopt the Maximum A Posteriori (MAP) method

[8] for the limited training data. Given a prior parameter set

𝜆0 of 𝐻𝑖𝑗(𝑡) and the training data set X = {𝑥1, ..., 𝑥𝑇 }, we

compute the a posteriori probability for the data sample 𝑥𝑡
and the 𝑚-th Gaussian component of 𝐻𝑖𝑗(𝑡) as

ℙ(𝑚∣𝑥𝑡, 𝜆0) = 𝑐𝑖𝑗𝑚ℕ(𝑥𝑡∣𝜇𝑖𝑗𝑚, (𝜎𝑖𝑗𝑚)2)∑
𝑝∈{𝐿,𝑅}

𝑐𝑖𝑗𝑝 ℕ(𝑥𝑡∣𝜇𝑖𝑗𝑝 , (𝜎𝑖𝑗𝑝 )2)

where 𝑚 = {𝐿,𝑅}. Based on such probabilities, the parame-

ters of 𝐻𝑖𝑗(𝑡) are re-estimated as

𝑐𝑖𝑗𝑚 =
𝑇∑

𝑡=1

ℙ(𝑚∣𝑥𝑡, 𝜆0),

𝜇̂𝑖𝑗𝑚 =
1

𝑐𝑖𝑗𝑚

𝑇∑
𝑡=1

ℙ(𝑚∣𝑥𝑡, 𝜆0)𝑥𝑡,

(𝜎̂𝑖𝑗𝑚)2 =
1

𝑐𝑖𝑗𝑚

𝑇∑
𝑡=1

ℙ(𝑚∣𝑥𝑡, 𝜆0)𝑥2𝑡 − (𝜇̂𝑖𝑗𝑖 )
2.

In practice, the computational complexity of parameter re-

estimation with 𝑇 training data samples is 𝑂(𝑇 ). Such re-

estimation overhead hence could be efficiently controlled by

varying the size of training dataset and achieving different

tradeoffs between the responsiveness and accuracy of param-

eter re-estimation. Adopting a smaller dataset enables the

Gaussian mixture model to promptly capture the up-to-date

dynamics of method execution times, but reduces the accuracy

of parameter re-estimation due to the limited training data. A

larger dataset, on the other hand, increases such accuracy at the

risk of missing important variations of system characteristics.

B. Energy Consumption of Local Execution

The energy consumption 𝐸𝑗(𝑡) of the method 𝑗’s local

execution, as described by Section IV and experimentally

validated by Section III-B, is determined by 𝑗’s local execution

time 𝑡. Although various energy models such as JouleMeter

[14] have been proposed to measure the relationship between

the method execution time and energy consumption, they are

all empirical models based on experimental data and ignore

the probabilistic uncertainties of method executions.

Our experimental investigation results in Figure 4 have

shown that such energy consumption generally increases along

with 𝑡. Therefore, our basic idea is to formulate the relation-

ship between the energy consumption and local execution time

of an application method using a 𝑚-order polynomial, i.e.,

𝐸𝑗(𝑡) =

𝑚∑
𝑖=1

𝑎𝑗𝑖 𝑡
𝑖, (5)

where 𝐸𝑗(0) = 0 and the coefficients 𝑎𝑗𝑖 can be adaptively

re-estimated through real-time linear regression analysis [25]

over the profiled information about method execution times

and energy consumption, which can be written as tuples

{(𝑡1𝑗 , 𝐸1
𝑗 (𝑡1)), (𝑡

2
𝑗 , 𝐸

2
𝑗 (𝑡1)), ...}. Since the local method exe-

cution times are specified in Section V-A to be normally

distributed, we know that 𝐸𝑗(𝑡), as a random variable, follows

chi-square distribution with 𝑚 degrees of freedom.

It is obvious that the value of 𝑚 is vital to the effectiveness

of such modeling, and an inappropriate value of 𝑚 would

lead to the problem of either “under-fitting” or “over-fitting”.

In practice, a larger value of 𝑚 is adopted to depict the

randomness of energy consumption characteristics. As shown

in Figure 4, such randomness is mainly exhibited by the non-

monotonicity between the variations of energy consumption

and method execution times. Therefore, our framework adap-

tively selects the value of 𝑚 at real-time according to the

current level of system dynamics. Such value is determined as

proportional to the variances of local execution time distribu-

tion, i.e., (𝜎𝑖𝑗𝐿 )2 as specified in Eq. (4). The larger variance

exists among the local execution times of method 𝑗, the more

likely that the energy consumption of these executions to be

heterogeneous, and hence a larger 𝑚 should be adopted.

To better depict such randomness of energy consumption

characteristics, we also extend the above model to consider

each polynomial coefficient 𝑎𝑗𝑖 as a Gaussian random variable,

i.e., to use 𝑎̃𝑗𝑖 ∼ ℕ(𝑎𝑗𝑖 , (𝜎
𝑗
𝑖 )

2) replacing 𝑎𝑗𝑖 in Eq. (5). As

a result, for any given 𝑡 of the method 𝑗’s local execution

time, we probabilistically predict the energy consumption of

𝑗’s local execution in form of a Gaussian distribution. The

variances of 𝑎̃𝑗𝑖 are determined, being similar to the choice of

𝑚, according to the dynamics of 𝑗’s local executions.

C. Energy Consumption of Transmitting Program States

The transmission of program states, as illustrated by Figure

5, only happens when application methods are invoked consec-

utively but executed at different network locations (i.e., local

devices or the remote cloud). Previous studies [5], [30] have



shown that the energy consumption of such data transmission

is determined by the wireless network conditions, rather than

the amount of data being transmitted. The majority of energy

is consumed on establishing the wireless network connections

instead of actual data transfer. The more unstable the wireless

connection is, the more frequent the end-to-end data trans-

mission sessions will be disconnected and resumed, and the

higher energy is consumed on data transmission. Therefore,

the energy consumption 𝐶𝑗(𝑡) of transmitting method 𝑗’s
program states is also formulated as a function of 𝑗’s local

execution time 𝑡. The longer a method is executed, the data

transmission is more likely to last longer and hence there is

higher chance for the wireless network to be disconnected.

More specifically,

𝐶𝑗(𝑡) =

𝑚∑
𝑖=1

𝑏𝑗𝑖 𝑡
𝑖, (6)

and the same order of 𝑚 is used in 𝐶𝑗(𝑡) for simplicity.

However, being different from Section V-B which considers

the polynomial coefficients as normally distributed random

variables, we believe that the probabilistic features of such

energy consumption of data transmission would be highly

skewed. Therefore, 𝑏𝑗𝑖 are extended to be heavy-tailed distribu-

tions. We consider that the distributions of 𝑏𝑗𝑖 could be either

exponential or power-law, and refer the detailed investigation

of such probabilistic characteristics to be the future work.

D. Quantified Operations of Workload Offloading

By combining Eqs. (4), (5), and (6), we derive the analytical

solution of the workload offloading decision described in Eq.

(3). In particular, we are able to simplify the integration

specified by Eq. (3) by exploiting the similarity of Eqs. (5)

and (6), both of which are 𝑚-order polynomials.

We focus on the non-deterministic part of Eq. (3), which is

𝐺̃𝑀𝑛
=

𝑁∑
𝑗=1

𝑝𝑀̃𝑛,𝑗
⋅
(∫ ∞

0

ℎ𝑀̃𝑛,𝑗
𝐿 (𝑡) ⋅

𝑚∑
𝑠=1

𝑝𝑗𝑠𝑡
𝑠𝑑𝑡

)
,

where 𝑝𝑗𝑠 = 𝑎
𝑗
𝑠 − 𝐶𝑗

𝐿 ⋅ 𝑏𝑗𝑠.

Since the value of each 𝑝𝑗𝑠 is independent from each other

and the value of 𝑡, we have

𝐺̃𝑀𝑛
=

𝑁∑
𝑗=1

𝑚∑
𝑠=1

𝑝𝑗𝑠 ⋅
∫ ∞

0

ℎ𝑀̃𝑛,𝑗
𝐿 (𝑡) ⋅ 𝑡𝑠𝑑𝑡

=

𝑁∑
𝑗=1

𝑚∑
𝑠=1

𝑝𝑗𝑠√
2𝜋𝜎𝑖𝑗𝐿

⋅
∫ ∞

0

exp(− (𝑡− 𝜇𝑖𝑗𝐿 )2
2(𝜎𝑖𝑗𝐿 )2

) ⋅ 𝑡𝑠𝑑𝑡

=

𝑁∑
𝑗=1

𝑚∑
𝑠=1

2(𝑠−3)/2 ⋅ 𝑝𝑗𝑠
𝜋(𝜎𝑖𝑗𝐿 )(1−𝑠)

⋅ Γ(1 + 𝑠
2

)⋅
(
𝜇𝑖𝑗𝐿 (1 + 𝑠)√

2
𝑀(

1− 𝑠
2
,
3

2
,
(𝜇𝑖𝑗𝐿 )

2

2(𝜎𝑖𝑗𝐿 )2
) + 𝜎𝑖𝑗𝐿𝑀(−𝑠

2
,
1

2
,
(𝜇𝑖𝑗𝐿 )

2

2(𝜎𝑖𝑗𝐿 )2
)

)
,

(7)

where Γ(𝑡) is the Gamma function and 𝑀(𝑎, 𝑏, 𝑧) =∑∞
𝑛=0

𝑎(𝑎+1)...(𝑎+𝑛−1)⋅𝑧𝑛

𝑏(𝑏+1)...(𝑏+𝑛−1)⋅𝑛! is the confluent hypergeometric

function, a.k.a., Kummer’s function [1]. By substituting Eq.

(7) to Eq. (3), we calculate the the amount of energy saved

by offloading method 𝑀𝑛 as

𝐺𝑀𝑛 = 𝐺̃𝑀𝑛 −
{
0 if 𝑚𝑖𝑘 = 𝑚𝑗𝑘

1 otherwise.
(8)

In practice, both Gamma and Kummer functions could be

efficiently computed by non-iterative numerical methods, such

as Lanczos approximation [18] or rational approximation [20].

Therefore, the practical computational complexity of calcu-

lating Eq. (7) is 𝑂(𝑚 ⋅ 𝑁). Therefore, compared to existing

schemes which require solving complicated graph-cut [22], [9]

or integer optimization [5] problems for the offloading decision

for each application method, our proposed method is far

more computationally efficient, and is able to ensure prompt

offloading operations in computational-intensive scenarios.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of our proposed

framework on reducing the local devices’ resource consump-

tion. Our proposed framework is compared with the following

schemes which make decisions of workload offloading based

on static execution patterns of user applications:

∙ MAUI [5]: the decision of workload offloading is made

by solving an integer optimization problem based on a

global calling graph among application methods.

∙ AlfredO [22], [9]: the offloading decision is based a call-

ing graph similar to MAUI, but aims to find an optimal

graph cut at the local scope of application execution.

∙ FuzzyLogic [7]: The decision of workload offloading is

made by a fuzzy logic engine to adapt to the continuous

changes of application executions. Each input parameter

of method execution is transformed into respective fuzzy

sets, to which various offloading rules are applied.

The following metrics are used in our evaluations. Each

experiment is repeated multiple times with random input

datasets or user operations for statistical convergence.

∙ Method execution time, the average elapsed time of

method executions over multiple experiment runs.

∙ Amount of energy saved, the percentage of local energy

consumption saved by workload offloading.

∙ Computational overhead, the smartphones’ local energy

consumption for decisions of workload offloading. Partic-

ularly, such overhead is measured as the percentage of the

energy consumption of application executions.

A. Evaluation Setup

We evaluate the efficiency of workload offloading over the

three smartphone applications being used for experimental

investigation in Section III. We embed the implementation

of our offloading framework into the binaries of each user

application, and our offloading operations follow the method

of CloneCloud [2], such that a clone VM is maintained at

our cloud server for each smartphone application running

foreground. Each time before an application method is in-

voked, our offloading engine is invoked first and evaluate
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Fig. 8. Effectiveness of workload offloading

the practical effectiveness of the method’s remote execution

according to Eq. (7). An application method is only offloaded

for remote execution if such operation could actually reduce

the local energy consumption, and our offloading engine is

responsible for triggering the remote execution by transmitting

the method’s program states to the cloud server.

Our evaluations use Samsung Nexus S smartphones with

Android v4.2, and a Dell OptiPlex 9010 PC with an Intel i7-

3770@3.4GHz CPU and 8GB RAM as the cloud server. The

smartphones are connected to the cloud server via 100Mbps

campus WiFi. We adopt the techniques proposed in MAUI [5]

for method profiling, and collect information about the exe-

cution times and energy consumption of method executions.

The power consumptions of method execution and network

data transmission are measured in the similar way as de-

scribed in Section III, and the remote method execution times

being measured include the time of wirelessly transmitting

the program states between the local mobile devices and the

remote cloud. Such profiling information is then used to re-

estimate the parameters of semi-Markov models and functions

describing system dynamics.

Each experiment lasts for 10 minutes, during which the

smartphone applications are operated by multiple human be-

ings with heterogeneous operational behavior patterns and

real-world application scenario contexts. Such evaluation

methodology, being different from the randomly generated

application workloads, is able to better depict the practical

run-time dynamics of user applications in real-world scenarios.

More specifically, for Firefox, heterogeneous webpages with

different types of interactive contents are browsed. For Chess-

Walk, users play games with their specified difficulty levels.

For Barcode Scanner, users scan different product barcodes

at random intervals during the 10-minute experiment period.

Offloading decisions are then made independently for each

application method being invoked during the experiment.

B. Offloading Effectiveness

We first compare the offloading effectiveness of our pro-

posed framework with other schemes. Smartphone applica-

tions are executed with idle phone status4, and an order-

3 semi-Markov model is applied. The results are shown in

Figure 8. By selectively offloading the appropriate workload

to the cloud server, our framework dramatically reduces the

application method execution times. As shown in Figure 8(a),

the reduction of method execution time achieved by our

framework exceeds 50% in all applications. Comparatively,

such reductions achieved by the existing schemes are generally

below 25%, mainly due to their ignorance of the dynamic

patterns of application execution when making decisions of

workload offloading. In particular, MAUI has the lowest

offloading effectiveness because it considers all the execution

paths in user applications to be fixed.
Meanwhile, our framework also reduces the energy con-

sumption of method execution. As shown in Figure 8(b),

such energy saving is application-dependent and determined

by the level of run-time dynamics of application executions.

In ChessWalk where most application operations are logical

calculations, our framework saves over 60% of the smartphone

energy. Comparatively, such energy savings in Firefox and

Barcode Scanner are relatively lower, but our proposed frame-

work generally outperforms other existing schemes by over

20%. The major reason of such advantage is that our scheme

is able to achieve more accurate estimations about the actual

energy consumed by method executions, through investigation

and integration of dynamic application execution patterns.
We also evaluate the computational overhead of making

workload offloading decisions. As shown in Figure 8(c), such

overhead of our proposed framework is lower than 5% of

the actual application execution in all cases. Comparatively,

decisions of workload offloading on MAUI takes up to 20%

of the system resources, which are mainly used to solve the

integer optimization problems with respect to every method

invocation. The overhead of AlfredO is lower due to its focus

on a local optimum of the graph-cut problem, but is still

around 50% higher than our scheme.
We further evaluate the effectiveness of workload offloading

with different system workloads. Such evaluation is conducted

4The current system workload is minimized to avoid the impact of other
concurrent user applications on the workload offloading decisions.
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Fig. 9. Effectiveness of workload offloading with different levels of system workload
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Fig. 10. Effectiveness of workload offloading with different methods estimating the parameters of sojourn time distribution

based on the Firefox application which has heterogeneous run-

time occupation of CPU when browsing different webpages.

The variations of system workloads are simulated by running

articulated dumb calculations with different levels of complex-

ity at background. As demonstrated by Figure 9, the effec-

tiveness of workload offloading on reducing the smartphones’

local resource consumption generally decreases with higher

system workload, because the smartphone applications used

for our experiments have to compete for the system resources

with other concurrent system processes. Nevertheless, our

proposed framework is still able to minimize such degradation

of offloading effectiveness in such cases. As shown in Figure

9(a), when the system workload increases from 10% to 90%,

the increase of the average method execution time in our

scheme is less than 500ms, while such increase in AlfredO

and FuzzyLogic can be up to 1000ms. Similar difference is

shown in Figure 9(b), where our scheme can still save over

30% of the energy consumption when the system workload is

higher than 70%.

C. Different Modeling of Application Dynamics

Section V describes various methods to analytically formu-

late the system dynamics during application executions. Such

formulations are then used to enable quantified operations of

workload offloading as specified by Eq. (7). It is therefore

interesting to evaluate the impact of these methods on the ef-

fectiveness of workload offloading, which is highly dependent

on the actual characteristics of system dynamics.

We evaluate such impacts using the Barcode Scanner appli-

cation and an order-3 semi-Markov model. We first evaluate

different methods estimating the parameters of sojourn time

distribution, including the Maximum Likelihood (ML) and

Maximum A Posteriori (MAP) methods. As shown in Figure

10(a), both methods are able to significantly reduce the energy

consumption of local smartphones. When the system workload

is lower than 30%, the ML method works better, but its

effectiveness of workload offloading decreases with higher

system workload. On the other hand, Figure 10(b) shows

that the ML method incurs higher computational overhead.

Especially when the system workload is higher than 50%,

the iterative computations needed by the ML method leads

to over 40% overhead increase. Such increase hence validates

our choice of the MAP method in Section V-A.

In Sections V-B and V-C, we proposed to better depict the

randomness of energy consumption characteristics of method

execution by considering each polynomial coefficient in Eqs.

(5) and (6) as a random variable. The impact of this approach

is shown in Figure 11. When the system workload is lower

than 50%, considering such system randomness only has

negligible improvement on energy saving, but consumes extra

30% computational overhead as illustrated in Figure 11(b).

Only when the system workload is higher than 70%, there
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Fig. 11. Impact of considering system execution randomness on workload offloading

is noticeable improvement on the effectiveness of workload

offloading, as shown in Figure 11(a), due to the increasing

level of system dynamics and uncertainty. Therefore, we

advise to only incorporate such probabilistic formulation of

system randomness in computational-intensive scenarios.

D. The Order of Semi-Markov Model

In this section, we investigate the impact of different orders

(𝑘) of the semi-Markov model, which is the key of our

proposed framework to formulating the invocation relation-

ship among application methods, on workload offloading. We

maintain the system workload as 0% for such evaluation. The

results are shown in Figure 12. When the value of 𝑘 is small,

the semi-Markov model is generally incapable of precisely

characterizing the impacts of previous application methods on

subsequent method executions, and hence the effectiveness of

workload offloading is reduced. This reduction is particularly

significant when 𝑘 < 3. As shown in Figures 12(a) and

12(b), when 𝑘 is reduced from 3 to 1, the average method

execution time increases by over 50%, and the amount of

energy saved decreases by 30%. In contrast, when 𝑘 is large,

further increase of 𝑘 will not improve the effectiveness of

workload offloading, but unnecessarily incur higher computa-

tional overhead for maintaining the Markovian state space and

transition probability matrix. The computational complexity

of making offloading decisions also increases. As shown in

Figure 12(c), when 𝑘 increases from 3 to 5, the computational

overhead increases by over 300%, only leading to less than

10% further improvement of offloading effectiveness.

To summarize, increasing 𝑘 helps better characterize the

dynamic execution patterns of user applications, but may incur

additional or even unnecessary system overhead. From Figure

12, we generally conclude that 𝑘 = 3 is the best choice for

the smartphone applications we used in our evaluations.

VII. DISCUSSIONS

A. Timing Constraints

Timing constraints are found in many user applications such

as navigation and gaming, where the execution of an applica-

tion method must be completed within a given deadline. Being

different from existing schemes which explicitly consider these

constraints [5], [16], we implicitly satisfy these constraints

by incorporating the sojourn time distributions of Markovian

states into the decisions of workload offloading. In Eq. (3), the

offloading effectiveness is only evaluated during the sojourn

time of the current Markovian state. A timing constraint can

be simply applied by replacing the upper integral limit in Eq.

(3).

B. Temporal Dependency of Offloading Decisions

The offloading decision of an application method is affected

by such decisions on previous methods. Existing schemes

consider such temporal dependency at the global scale of

application execution based on static execution patterns [9],

[5], but the computational complexity of formulating such

dependency with dynamic execution patterns would increase

exponentially with the scale of application methods. Our

proposed framework, as shown in Figure 6, adaptively bal-

ances between the offloading effectiveness and computational

overhead by constructing a Local Invocation Graph (LIG). In

practice, such temporal dependency could be easily considered

in larger scales by expanding the LIGs and incorporating more

methods in the subsequent application execution path.

C. Mutual Impacts between Different Applications

A modern mobile device is able to simultaneously run mul-

tiple user applications. The offloading decisions and operations

of different smartphone applications may affect each other

when these applications are running simultaneously, especially

in cases of resource sharing or inter-process communication.

Although the consideration of such mutual impact is out of

the scope of this paper, the offloading framework proposed in

this paper could be extended for the co-existence of multiple

applications. For example, the difference of run-time execution

patterns among user applications could be quantified by the

Kullback-Leibler (KL) distance measure between the corre-

sponding semi-Markov models. The smaller such difference is,

the more likely that applications will compete for the limited

system resources at the same time, and the larger impact they

will have on the offloading operations of each other. The co-

existence of multiple user applications, on the other hand,

may also affect the interdependence of application method
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Fig. 12. Impact of the order of semi-Markov model on the effectiveness of workload offloading

invocations due to the mutual disturbance of the memory

access patterns among multiple applications. We refer the

studies of such mutual impacts among multiple applications

to our future work.

VIII. CONCLUSION

In this paper, we investigate and exploit the dynamic run-

time execution patterns of MCC applications for workload

offloading. Our basic idea is to formulate these patterns

using an order-𝑘 semi-Markov model, and characterize the

method transitions based on the sojourn time distributions of

Markovian states. Based on experimental investigations over

various smartphone applications, we probabilistically evaluate

the effectiveness of offloading operations, and ensure that the

offloading decisions reflect various aspects of system dynam-

ics. The effectiveness of our proposed scheme is evaluated by

extensive experiments over realistic smartphone applications.
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