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ABSTRACT

In many embedded real-time systems, applications often in-
teract with I/O devices via read/write operations, which
may incur considerable suspension delays. Unfortunately,
prior analysis methods for validating timing correctness in
embedded systems become quite pessimistic when suspen-
sion delays are present. In this paper, we consider the prob-
lem of supporting two common types of I/O applications
in a multiprocessor system, that is, write-only applications
and read-write applications. For the write-only applica-
tion model, we present a much improved analysis technique
that results in only O(m) suspension-related utilization loss,
where m is the number of processors. For the second appli-
cation model, we present a flexible I/O placement strategy
and a corresponding new scheduling algorithm, which can
completely circumvent the negative impact due to read- and
write-induced suspension delays. We illustrate the feasibil-
ity of the proposed I/O-placement-based schedule via a case
study implementation. Furthermore, experiments presented
herein show that the improvement with respect to system
utilization over prior methods is often significant.
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Figure 1: Example task model

1. INTRODUCTION

Applications that incur read and/or write operations are
commonly seen in embedded real-time systems. A typical
data processing application may need to write data to the
disk after performing computation on CPU. Such read and
write operations cause non-negligible suspension delays dur-
ing an application’s execution, i.e., an application is sus-
pended by the operating system while waiting for the com-
pletion of the I/O operation. For example, delays introduced
by disk I/O range from 15us (for NAND flash) to 15ms (for
magnetic disks) per read [12].

Unfortunately, such delays cause intractability in validat-
ing applications’ timing correctness, even in uniprocessor
systems [2]. If applications require hard real-time (HRT)
constraints (i.e., meeting deadlines, which is an underlying
requirement in many embedded real-time systems), then, in
the worst-case, significant utilization of processors have to
be sacrificed in order to provide such timing guarantee. Con-
sider an example task system with two identical recurrent
tasks 71 and 72 running on a uniprocessor platform. Each
released job in 7 and 72 first spends 5ms in reading data
from the disk, then spends 5ms in performing computation,
and finally spends 5ms in writing data to the disk. The rel-
ative deadline of these two tasks is set to be 15ms. From
the earliest-deadline-first (EDF) schedule shown in Fig. 1,
T2 misses its deadline while the total utilization of the sys-
tem is low (i.e., each task only requires 5/15 of the processor
capacity because suspensions do not occupy CPU). In this
paper, we consider the problem of scheduling and analyzing
HRT applications that contain I/O operations in a multi-
processor embedded real-time system. We specifically focus
on two common types of such applications, i.e., write-only
applications that incur only write operations, and read-write
applications that incur both read and write operations.

To deal with the read- and/or write-induced suspensions,
perhaps the most commonly used approach is suspension-
oblivious analysis, which simply treats suspension as compu-
tation by integrating suspension length into per-task worst-



case computation time requirements. However, this approach
yields ©(n) suspension-related utilization loss where n is the
number of tasks that may suspend in the system. Signifi-
cant system utilization may be sacrificed in the worst-case
under this approach if the number of suspending tasks is
large or suspension delays are long. The alternative is to ex-
plicitly consider suspensions in the scheduling analysis; this
is known as suspension-aware analysis. Previous research [6]
has demonstrated the advantage of using suspension-aware
analysis over suspension-oblivious analysis in many scenar-
ios.

We thus consider in this paper designing new suspension-
aware analysis techniques to improve system utilization. We
focus on global-scheduling approaches where tasks may mi-
grate among processors (as opposed to partitioned-scheduling
where tasks are statically assigned to processors). Specif-
ically, we study the global earliest-deadline-first(GEDF)
scheduling algorithm herein, but our proposed techniques
can also be extended to other fixed-job-priority global schedul-
ing algorithms. We first present an improved analysis tech-
nique for write-only applications. For read-write applica-
tions, our observation is that if the time at which applica-
tions’ read and write operations occur is not controllable,
then utilization loss is fundamental. For example, as seen in
Fig. 1, regardless of how we prioritize the two tasks, one of
them inevitably misses the deadline. Motivated by this ob-
servation, we design a flexible I/O placement policy, which
allows the scheduler to judiciously control the time at which
read and write operations occur. In this way, the negative
impact due to read- and write-induced suspensions can be
alleviated.

Overview. For the soft real-time(SRT) case (i.e., only re-
quiring bounded response times), an overview of the work
in scheduling task systems with suspensions on multiproces-
sors can be found in [5, 7, 6]. But such technique cannot be
applied to the analysis of the HRT case. For the HRT case,
several works has been focused on periodic tasks that may
suspend at most once on a uniprocessor [4, 10, 9]. On multi-
processors, [8] presents the only existing global suspension-
aware analysis for sporadic HRT suspending task systems
scheduled under global fixed-priority schedulers. However,
the resulting schedulability tests require pseudo-polynomial
time complexity and may be pessimistic in many scenarios.

Contributions. The existing suspension-oblivious and sus-
pension-aware approaches for supporting applications con-
taining read and write operations are pessimistic. In order to
support such applications in a more efficient way, we present
in this paper new suspension-aware analysis techniques for
two common application models. For write-only applica-
tions, our proposed analysis techniques results in only O(m)
suspension-related utilization loss. To the best of our knowl-
edge, this is the first analysis technique with a provable
O(m) suspension-related utilization loss for HRT suspending
task systems. For applications with both read and write op-
erations, we design a controllable I/O placement policy and
a corresponding global EDF-based scheduling algorithm. We

prove that the proposed I/O-placement-based scheduling tech-

nique can completely circumvent the negative impact due to
read- and write-induced suspension. The feasibility of im-
plementing this I/O-placement-based schedule in practice is
demonstrated via a case study. As demonstrated by exper-
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Figure 2: Example read-write task pattern

iments, our proposed techniques significantly improve upon
prior methods with respect to system utilization.

Organization. The rest of the paper is organized as fol-
lows. We define the system model in Sec. 2. In Sec. 3,
we present our analysis for write-only applications. In Sec.
4, we present our I/O placement policy for read-write ap-
plications and the corresponding scheduling algorithm and
schedulability test. In Sec. 5, we provide a case study to
show the improvement with respect to reducing response
time and the feasibility of our I/O- placement-based sched-
ule. In Sec. 6, we experimentally evaluate the proposed
schedulability test. Sec. 7 concludes.

2. SYSTEM MODEL

In this section, we formally define the system model. We
first present the general task models for applications with
read/write operations. Then we specifically define task mod-
els for read-write applications and write-only applications.

General task model. An embedded real-time systems can
be represented as a number of sporadic tasks that are in-
voked recurrently. Each invocation of a task is called a job
and there is a minimum time between two consecutive job re-
leases of a task. For each task, the time taken by read/write
operations is present as suspensions on processors. Thus, an
application with read/write operations is generally modeled
as a suspending sporadic task. Let 7 = {r1,...,7»} denote
the task system that contains the set of n independent sus-
pending sporadic tasks. Let T; be the period of task 7; where
T; is the minimum time between two consecutive job releases
of ;. For each task 7;, let C; and S; denote the worst-case
computation time and worst-case suspension time, respec-
tively. Define the utilization U; of task 7; as the ratio of

computation time C; to its period T; ( i.e., U; = %) and
the suspension ratio V; of task 7; as the ratio of suspension

time S; to its period T; (i.e., V; = %) We require

for otherwise, task 7; must miss its deadline in the worst
case. Let Usum = D1 Ui and Veum = Y .-, Vi, where
Usum is the system utilization.

Let 7;,; be the jth job released by task 7;; let r; ; and d;,;
be the corresponding release time and deadline. We consider
the implicit-deadline task systems where d; ; — ri; = T;.

Different kinds of applications may have varied operation
interleaving patterns. Next, we specifically define the task
models for read-write applications and write-only applica-
tions according to their operation interleaving patterns.



Read-write task model. The most common operation in-
terleaving pattern is to first read data from I/O devices, then
perform computation based upon the data, and finally write
the result back to I/O devices. As shown in Fig. 2, each
read-write task has three phases, a reading phase, a com-
puting phase, and a writing phase where the reading and
writing phases are modeled as suspensions. For each read-
write task 7;, let R;, C; and W; denote the total length of its
reading phase, computing phase, and writing phase, respec-
tively. Then each read-write task 7; could be represented
as ; = (R, Ch, Wi,Ti%‘./ For a read-write task 7;, we have
U, = %‘ and V; = L”E L,

Write-only task model. The write-only task model is
used to represent write-only applications. As shown in Fig.
3, each write-only task has three phases, where the first
phase and the last phase are computing phases, and the sec-
ond phase is a writing phase. For each write-only task 7,
let Cj;,1, W1 and Cj 2 denote the length of its first computing
phase, writing phase, and the second computing phase, re-
spectively. Each write-only task 7; can thus be represented
as 5 = (Ci1,Ws,Ci2,T;). Similarly, for a write-only task
T;, we have U; = 01%7012 and V; = %’ Let 6; = %
denote the ratio of the length of the writing phase to the
length of the first computing phase. We will use J; later in
the analysis given in Sec. 4.3.

System model. We assume that the platform is comprised
of m identical processors. We consider discrete time system.
Interval with unit length is called unit interval.

Definition 1. A unit interval [¢,t+1) is busy (resp. non-
busy) for a job set J if all m processors execute jobs in J
during [¢t,t + 1). A time interval [a,b) is busy (resp. non-
busy) for a job set J if each (resp. not all) unit interval
within [a,b) is busy for J. For conciseness, if we say an
interval is busy without referring any job set, we mean it is
busy for the set of all jobs in the task system.

Definition 2. If job 7;; has been released but has not
finished its last phase at time instant ¢, we say 7;,; is pending
at t. If job 7;; has been released but has not finished its all
computation at time instant ¢, we say 7; ; is comp-pending
at ¢. If job 7;; has been released but has not finished its all
suspension at time instant ¢, we say 7;,; is sus-pending at t.

Definition 3. At time instant ¢, if job 7; ; is comp-pending
and it is able to perform computation at t, we say 7 ; is
comp-available at t. Note that if a job is suspended by
read/write operations, it cannot perform computation even
if it is comp-pending.

Definition 4. For a unit interval [¢,t+ 1), if a job 7;; is
comp-available at ¢ but does not compute in [t,t + 1), we
say 7;,; is comp-preempted in [t, ¢t + 1).

Scheduling algorithm. In this paper, we focus on global
earliest-deadline-first(GEDF) scheduling algorithm defined
as follows.

Definition 5. At each time instant, GEDF selects m comp-

available jobs with the earliest deadlines for computation.
Ties are broken by index where tasks with lower indexes
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Figure 3: Example write-only task pattern

are favored. Jobs are allowed to migrate among different
processors.

3. SUPPORTING WRITE-ONLY APPLICA-
TIONS

In this section, we investigate the GEDF schedule for HRT
write-only task systems. Our analysis draws the inspiration
from the lag-based analysis technique presented in the semi-
nal work of Devi [1]. Lag-based technique was originally de-
signed to handle SRT task systems. It has been extensively
applied to analyze different SRT suspending task systems in
prior work [6]. Based upon this technique, we develop a new
suspension-aware analysis for HRT suspending task systems,
which is the first of its kind to the best of our knowledge.

We will first introduce the lag-based analysis technique,
and then present our suspension-aware analysis and the re-
sulting schedulability test.

3.1 Lag-based Analysis Technique

For any given write-only task system 7, a processor share
(PS) schedule is an ideal schedule for computation where
each task 7; performs computation with a speed equal to U;
when it is comp-pending (which ensures that each of its jobs
completes its computation exactly at its deadline). Note
that suspensions are not considered in the PS schedule and
a task could execute the second computing phase as long
as it has finished the first computing phase. A wvalid PS
schedule exists for 7 if Ugsym < m holds.

Fig. 4 illustrates the PS schedule of the task system in
Fig. 1. Each of the two tasks has a utilization equal to
1/3 and thus shares 1/3 of the processor capacity. Every
job of the two tasks finishes its computation at its deadline
and suspensions are not considered. We can see that the PS
schedule is not a real schedule and only used to keep track
of the computation for analysis purposes.

[] computation
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Figure 4: Example PS schedule

In the lag-based analysis, schedulability tests are obtained
by comparing the computation performed by tasks in the



GEDF schedule S and the PS schedule PS. Let A(7;,j,t1, t2, S)
denote the total computation performed by job 7;; under
GEDF in [t1,t2). Then, the total computation performed
by each task 7; and all tasks in 7 in [¢1,t2) under GEDF is
given by

A(mist,ta, S) = > A(Tig, b1, 12, 5)
iz

and
A(r,t1,t2,8) = > A(7i ta, 2, 5).
=1

A(7i,t1,t2, PS) and A(7,t1,t2, PS) can be defined in a
similar manner corresponding to PS schedule.

The difference between the computation performed by a
job 7; ; up to time ¢ in PS and S, denoted the lag of job 7; ;
at time t, is defined by

lag(ﬂ',]’,t, S) = A(n,j,O,t,PS) — A(n,j,O,t, S)

Similarly, the difference between the computation performed
by a task 7; up to time t in PS and S, denoted the lag of
task T; at time t, is defined by

lag(7i,t,S) = Z:lag(n,j,t7 S)
jz1
= Z (A(T’L‘vjv 0,t, PS) - A(T’b‘y]'v 0,t, S)) (2)
j=1

The LAG for the task system 7 at time ¢ is defined as
LAG(,t,8) = lag(m;,t,5). (3)
=1

Also, LAG(T,t,S) can be represented as follow.
LAG(7,t,S) = A(r,0,t, PS) — A(T,0,t,5). (4)
Lemma 1. If [t1,t2) is a busy interval, then,
LAG(1,t2,S) < LAG(7,11,5).
Proor. By Eq. (4),
LAG(1,t2,S5) — LAG(7,t1,5)
A(T,tl,tQ,PS) —_ A(T,thtz,S)
= Usum'(tQ_tl)_m'(tQ—tl)
(Usum - m) . (t2 - tl)
< 0.

Lemma 1 implies LAG(7,t,S) cannot increase during a
busy interval. [

3.2 Lag-based Analysis for HRT Write-only
Task Systems

Now we analyze the schedulability for n sporadic write-
only tasks scheduled on m processors under GEDF.

Lemma 2. Consider job 7;; and a time instant t > r; ;.
Let S} denote the suspension of 7 ; finished by t. Let Cf
denote the computation of T;,; performed by time instant t.
Then,

*

Y
cr <% (5)

where §; = W;/Ci 1, as defined in Sec. 2.

PRrROOF. Case 1. If 7; ; has not finished its first comput-
ing phase at ¢, then S; = 0. Eq. (5) clearly holds.

Case 2.If 7; ; has finished its first computing phase but
has not finished its writing phase at t, then S; < W; and
CZ* = Ci71. Thus,

Sy 57 < Wi

Cy  Cin ~ Cin

Case 3. If 7;; has finished its writing phase at ¢, then
C; > Cs1 and S = W;. Thus,

= 0;.

S; W < Wi
CZ* o Cl* - C—;,l o
Lemma 2 proved. [

Lemma 3. Let L; = (m
maz{L1,...,Ln}. If

U@um S m — L: (6)

ds.

and, for every i,
Ui-(1+6) <1 (7)

then no job misses its deadline under GEDF.

PROOF. We prove this lemma by contradiction. Assume
job 7 ; is the first job that misses its deadline at d; ;. If
more than one job misses deadline at d; ;j, we choose the one
with the highest priority. Since jobs with priorities lower
than that of 7;; do not impact the scheduling of 7; ;, we get
rid of such jobs from our task system.

Because 7;,; has not finished its last phase at d; j, by the
definition of lag(7i,d; ;, S), lag(ti,d;,;,S) > 0. For every
k # i, lag(Tk,d;,j,S) = 0 because 7;,; is the first job that
misses its deadline. Thus,

LAG(7,di;,8) = > lag(tk,dij, S)
k=1

= lag(7i,dij,S)

> 0.

From time instant 0, let t* be the earliest time instant
such that

LAG(r,t",5) > 0. (8)

Since LAG(7,0,S5) = 0 and LAG(7,d; ;,S) > 0, t* is well
defined and d; ; > t* > 0. By the definition of LAG(r,t*, S),
there exists a task 75 at t* such that lag(7k,t*,.S) > 0, which
implies 7, must have at least one pending job. Because 7; ;
is the first job that misses deadline, 7, has only one job
pending at t*. Let 74, be this pending job of 74 and 7% is
released at r4,;. Because jobs of 75 released before 75, have
finished all their phases, we have

lag(t,t",S) = lag(tk,,t",S) > 0. 9)

There are three kinds of unit intervals to be considered
in [rg,;,t") as shown in Fig. 5: (1) 7, suspends in it; (2)
Tr, computes in it; (3) 7x,; does not compute or suspend
in it. Let 1, B2 and 3 denote the set of each kind of unit
intervals, respectively. Thus 81 UB2U B3 = [rk,,t*) and they
are pairwise disjoint. Let Bi, B2 and Bs denote the lengths
of each set, respectively. Note that unit intervals in 83 must
be busy. Depending on the lengths of these sets, we have
the following cases to consider.
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Figure 5: Three sets of unit intervals in [rg,t*)

case A. First, we discuss the cases when B; = 0, which
implies 7, does not suspend in [rg,t").

case A.1 : B; = B; = B3 = 0. In this case, t* = ri;
and lag(Tk,i,t*,S) = 0, which violates Eq. (9).

case A.2 : By =0,By =0,B3 > 0. In this case, [rg,,t")
is a busy interval. By Lemma 1,

LAG(r,t",S) < LAG(t,7,,5) <0,

which violates Eq. (8).

case A.3: By = 0,B2 > 0,B3 = 0. In this case, 7%,
is executing during the time interval. So lag(7g,,t*,S) =
Uy - B2 — B2 <0, which violates Eq. (9).

case A.4: By =0,B2 > 0,Bs > 0. In this case, first we
consider lag(7k,i,t", S). By the definitions of A(7y,1,t1,t2, PS)
and A(7k,,t1,t2,5), we have

A(Tk,l,Tk,z,t*,PS) = (B2 + Bg) CUE (10)
and A(7k,1,7k,1,t",S) = B2 . By Eq. (9),
0 < lag(te:,t*,S)

A(Tr,, i1, 6, PS) — A(Tr,i, k1,67, S)
(B2 + Bs) - Ui — Bs
By - (Ux — 1)+ Bs - Uy,

IN

which implies

Bs - Uy
B . 11
2<1—Uk: (11)

Now we consider LAG(7,t*,S). Because t* is the earliest
time instant that LAG(7,t*,S) > 0 and ri,; < t*, we have
LAG(7,7%,,5) < 0. By the definition of LAG,

LAG(T,t",S)
= LAG(7,7rk1,S) + A(T, 60, t", PS) — A(T, 71801, £, S).
Thus,
LAG(1,t",S) < A(1, 11, t7, PS) — A(1,rk0,t7,5).  (12)
Also we have
AT, 1k, t7, PS) = Usum - (B2 + Bs) (13)

and because f33 is a busy interval and 73 is executing during

627

A(T,Tk’l,t*,S)Zm'B3+B2. (14)
Therefore, by Eq. (8),
0 < LAG(mt",S)

{by (12)}

S A(T, TkJ,t*,PS) - A(T7 T}C7l,t*, S)
{by (13)}

= Usum' (BQ‘FB[;)*A(T,Tk,l,t*’S)
{by (14)}

S Ueum(B2+B3)—(mBg—|—BQ)

= (Usu'm - 1) - By + (Usum — m) - B3
{by (11)}
sum ° B
< 1— Uk + (U m) 3
By rearrangements, we have
Usum > m—(m—1) U
> m—(m—1) Unas
> m—1L

However, this violates Eq. (6).

case B. Secondly, we discuss the cases when By > 0.
case B.1 : By > 0,B = 0,B3 > 0. In this case, 7,
writes data before doing computation, which violates the
phase interleaving pattern of write-only tasks according to
the write-only task model.
case B.2 : B; > 0,B2 > 0,B3z = 0. In this case,
A(Tkyl, Tk,l, t*, PS)
= (Bi1+ B2) U
{by Lemma2}
(B2 -0k + B2) - Uk
Bz(5k+1)Uk
{by (7}
< Ba,
and A(7Tk,1,Tk,1,t",S) = Bz . Thus lag(1k,,t*,S) =
A(Tk’l, Tk,l, t*, PS) — A(T}c’l, Tk, t*, S) < 0, which violates
Eq. (9).
case B.3 : By > 0,B2 > 0,Bs > 0. First we consider
lag(Tk,,t*,S). By the definitions of A(7 j,t1,t2, PS) and
A(Ti,5,t1,t2,5), we have
ATk, T, t", PS)
= (Bi+B2+DBs) Uk
{by Lemma2}
< (B2:0k+ B2+ B3) - Ug
= Bg~(5k+1)-Uk+Bg'Uk, (15)

and A(Tk,1,Tk,1,t,S) = B2 . By Egs. (9) and (15),

0 < lag(tk:,t*,S)
= A(tii, k0, t5, PS) — A(Tk, 0, t, S)
By (0 +1) Uy + B3 Uy — B2
= By ((64+1)-Ux—1) + Bs-Ug (16)
By Egs. (7) and (16),

IN

_ Bs - U
2T Uk -Gkt 1)

Now let us consider LAG(T,t*,S). Because t* is the earliest
time instant that LAG(7,t*,S) > 0, and ri; < t* by the
definition of 7%, we thus have LAG(7,7k,1,5) < 0. By Eq.
(4), LAG(7,t*,S) = LAG(7,7%,,5) + A(7,78,,t", PS) —
A(r,r8,0,t%,S). Thus,

B (17)

LAG(T, t*,S) < A(T, Tk’l,t*,PS) - A(T, Tk’l,t*,S). (18)
By the definitions of A(r,t1,t2, PS) and A(7,t1,t2,5), we



have
A1, 15,1, PS) = Usym - (B1 + B2 + B3) (19)
and
A(r,ri,1,t",8) > m - Bs + Ba. (20)
Thus, by Eq. (8), we have
0 < LAG(mt,S)
{by (18)}

< A(r,rii,t", PS) — A(1,78,,t", S)
{by (19)}
= Usum - (B1+ B2+ Bs) — A(1,11,t%, S)
{by (20)}
< Usum - (B1+ B2+ B3) — (m - B3 + Ba)
{by Lemma 2}
< Usum - (B2:0x+ B2+ B3) —m-Bs — B
= (Usum (6 +1) = 1) - B2 + (Usum — m) - By
{by (17)}
Usum * (0 +1) —1) - Bs - Ui
By rearrangements, we have
Usum
> m— ((m—l)-Uk+m-Uk-5k)
> m-—1L, (21)

which violates Eq. (6).
Thus far, we have discussed all of the possible cases and
each case implies a contradiction. Lemma 3 thus follows. [

Lemma 3 implies the following schedulability test.

Theorem 1. Any write-only task system T can be suc-
cessfully scheduled under GEDF on m identical processors,
provided U; - (1 + 6;) < 1 holds for each 1; € 7, and Usum <
m — L holds where L is defined in Lemma 3.

Compared to the suspension-oblivious density test.
Density test [3] is a well-known schedulability test originally
designed for HRT task systems with no suspensions. The
following theorem states the density test.

Theorem 2. [3] A HRT task system can be successfully
scheduled by GEDF on m identical processors, provided by
Usum < m—(m—1)-Unae, where Unaz = maz{Ui,...,Un}.

By applying suspension-oblivious approach(i.e., treating
all suspension as computation) to the density test, we can
obtain the suspension-oblivious density test, which is he only
existing utilization-based test with polynomial time com-
plexity that can handle HRT suspending task systems. The-
orem 3 states the suspension-oblivious density test.

Theorem 3. A HRT suspending task system can be suc-
cessfully scheduled by GEDF on m identical processors, pro-
vided by Usum < m — (m — 1) - Zmaz — Veum, where Z; =
Ui + Vi, Zimae = maz{Z1, ..., Zn} and Zeum =Y 1y Zi.

By comparing our schedulability test to the suspension-
oblivious density test, we can see that these two tests are
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Figure 6: I/0O placements

incomparable (i.e., do not dominate each other). However,
in our schedulability test, the total utilization loss is caused
by the term L in which m - U; - §; is an O(m) suspension-
related utilization loss. While in the suspension-oblivious
density test, the total utilization loss is (m—1)-Zmaz + Veum,
which is an Q(n) suspension-related utilization loss.

We evaluate our schedulability test by conducting exten-
sive experiments in Sec. 6. In the next section, we consider
the read-write task model.

4. SUPPORTING READ-WRITE APPLICA-
TION

In this section, we consider supporting read-write appli-
cations. Unfortunately, our analysis technique presented in
Sec. 3 cannot be directly applied to the read-write task
model. If a job begins with a reading phase, then the value
d; defined in Sec. 2 is no longer well defined. To deal with
the read-write task model, we design an I/O placement pol-
icy and a corresponding new scheduling algorithm, which
enable us to completely eliminate the negative impact due
to read-and write-induced suspensions.

4.1 I/0O Placement Policy

As shown in Fig. 1, if phases are required to be exe-
cuted in a pre-defined order, then the negative impact due
to read-/write-induced suspensions is fundamental. Moti-
vated by this, we design an flexible I/O placement policy
that allows the scheduler to decide when to compute and
suspend within each job’s execution window. This resulting
desirable property is called flexible suspension pattern.

To achieve the flexible suspension pattern, our I/O place-
ment policy let job 7;,;—1 help 7; ; perform its reading phase,
and let job 7; 41 help 7;,; perform its writing phase. Let
7 and 7 denote the task system using our I/O placement
policy and the original task system, respectively. For each
task 7;, a pre-fetching job T; ¢ executes the reading phase
of 7;,1; job 73,1 contains the computing phase of ;1 and the
reading phase of ;2. For j > 2, 7; ; contains the writing
phase of 7; 1, the computing phase of 7; ; and the reading
phase of 7; j41. The following example illustrates our I/O
placement policy.

Example. Consider a read-write task system containing
two tasks 71 and 72 on a uniprocessor platform. Each re-
leased job of both tasks reads data from disk, performs com-
putation on processor, and writes the results back to disk.
Fig. 6, shows the transformed task system 7 using our
proposed flexible I/O placement policy. After the transfor-
mation, the suspension phases and the computation phases
of the same job become independent. For example, for job
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Figure 7: GEDF-R/W schedules

71,2 shown in Fig. 6, since the writing phase W71 writes
the output of the computing phase Ci,1 to disk, it has no
dependency with the computing phase C5 1.

Note that the reordering process happens in the applica-
tion programming phase. It has been well designed before
running and thus will not incur the locality loss of data at
runtime. Based on this I/O placement policy, we design the
following GEDF-based scheduling algorithm.

4.2 GEDF-R/W Scheduling Algorithm

Our scheduling algorithm, denoted GEDF-R/W, extends
GEDF in a way such that the scheduler decides when to per-
form computation and suspension. GEDF-R/W is defined
as follows.

Definition 6. At each time instant, GEDF-R/W selects
m comp-pending jobs with the earliest deadlines for compu-
tation. If an comp-pending job 7; ; is comp-preempted, 75 ;
will perform suspension if it has not finished all its suspen-
sions.

We use the example task system in Sec. 4.1 to illustrate
GEDF-R/W scheduling algorithm. In Fig. 7(a), we can
easily see that 7 is not schedulable under GEDF even the
total system utilization is low. In Fig. 7(b), we try to apply
GEDF-R/W to the original task system 7. However GEDF-
R/W scheduling is infeasible without the flexible suspension
pattern. Fig. 7(c) shows that 7 can be successfully scheduled
by GEDF-R/W.

4.3 Scheduling Analysis

In this section, we analyze the GEDF-R/W schedule of
read-write task systems using our I/O placement policy.

LAG and SLAG. In Sec. 3, we introduce the lag-based
technique and the related definitions. In this section, A(7; ;

,t1,t2,9), lag(ms,t,S) and LAG(T,t,S) are defined in the
same manner corresponding to the GEDF-R/W schedule S
and the PS schedule PS.

For a write-only task, a job is finished if and only if it has
finished all its computation because it ends with a comput-
ing phase. However, this is not true for read-write tasks,
where the last phase finished in a job of a read-write task
could be a suspension phase. Intuitively, the PS schedule
provides a good means to track the progress on computa-
tion performed in the GEDF-R/W schedule. But only using
the PS schedule is insufficient to track the progress on sus-
pensions performed in the GEDF-R/W schedule, in which
case it is hard to check whether a job of a read-write task
misses its deadline (because a job can still miss its deadline
while completing all the computation). Therefore, to deal
with read-write task model, we define the following perfect
schedule for suspensions denoted as the SPS schedule. In a
SPS schedule SPS, each read-write task 7; suspends with
a speed equal to V; when it is sus-pending (which ensures
that each of its jobs finishes its suspension exactly at its
deadline). We use the task system in Fig. 1 to illustrate the
SPS schedule as shown in Fig. 8. In the SPS schedule, the
two tasks perform suspensions with a speed equal to their
corresponding suspension ratios 2/3. Similar to PS, SPS is
not a real schedule and is only used for analysis purposes to
keep track of the suspension.

[ suspension

Speed (suspension ratio)

A
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Figure 8: Example SPS schedule

Let slag(Ti j,t,S) denote the difference of suspensions done
by 7:,; in SPS and S. Next, we analyze the schedulability
for a read-write task system on m identical processors under
GEDF-R/W.

Lemma 4. If job 7;,; misses its deadline at d; ;, then
lag(ﬁ,j,di,j, S) > 0. (22)

PROOF. By the definitions of lag(7; ;, di 5, S) and slag(7i ;
,di ;,S), they cannot be negative at d; ;. And because 7; ;
has not finished all its suspensions or computation at d; j,
at least one of them must be positive. Thus,

lag(n,j, di,j, S) + slag(n,j, diyj, S) > 0. (23)

Suppose that 7 ; has not finished its suspensions at d; ;.
In this case, there are three kinds of unit intervals to be
considered in [r; j,d; ;). Let v1 denote the set of unit inter-
vals in which 7;; is comp-preempted and suspends; let 72
denote the set of unit intervals in which 7;; is not comp-
preempted and suspends; let 3 denote the set of unit in-
tervals in which 7;; is not comp-preempted and computes.
Thus 1 Uy2 Uxs = [k, di,;) and they are pairwise disjoint.
Let L1, Lo and L3 be the length of each set, respectively.
According to GEDF-R/W, 7; ; must suspend in all unit in-



tervals in ;. Thus,
lag(7i,j,dij, S)
= U;-(Li+ L2+ L3) — L3,
and
slag(7i,j,dsj,S)
= Vi-(Li+ Lz + L3) — (L1 + Lo),
and
lag(mi,j,di 5, S) + slag(i j,di 5, )
= (U;+Vi—1)-(L1+ L2+ Ls)
{by (1)}

< 0,

which violates Eq. (23). Therefore, 7; ; must have finished
all of its suspensions but have not finished its computation,
which implies lag(7; ;, di j,S) > 0.

Lemma 4 thus follows. Intuitively, Lemma 4 implies that
when a job misses its deadline it is necessary that it has
not finished its computation, which can be used to derive an
necessary condition for deadline miss, as shown in Lemma.

5. O

Lemma 5. If
Usum <m —(m —1) - Unaaz, (24)
then no job misses its deadline under GEDF-R/W.

PROOF. Due to the limitation of space, we present this
proof in a technique report [11]. [

Lemma 5 implies the following schedulability test.

Theorem 4. A HRT read-write task system wusing our
I/0 placement policy can be successfully scheduled under
GEDF-R/W on m identical processors, provided by Usym <
m—(m—1)  Unaz-

This schedulability test is identical to the density test
shown in Theorem 2 for ordinary task systems with no sus-
pensions, which implies the negative impact of suspension
has been completely eliminated.

5. CASE STUDY

In this section, we show the feasibility of our I/O place-
ment policy and the corresponding GEDF-R/W schedul-
ing via a case study implementation. We also evaluate the
scheduling performance with respect to the response time
bound of tasks. We programmed the real-time matrix calcu-
lation read-write applications, which read matrix from disk,
perform the matrix calculation, and write the result to disk.
For conciseness, let us denote the application programmed
using our I/O placement policy as our application and the
application programmed using the original I/O placement
policy as original application.

5.1 Implementation

Our case study was conducted on an ASUS machine with
a two-core CPU running at 3.40GHz. In order to get no-
ticeable response times we used matrices with size 500*500.
First, we generated 5000 matrices stored in the disk and
the elements in the matrices were randomly generated inte-
gers using a uniform distribution [0,9]. We used GEDF to

schedule the original application and used GEDF-R/W to
schedule our application. We recorded the response time of
the first 400 jobs of each task. In our experiments, 100ms
is the unit interval of computation and suspension.

We conducted experiments for two cases: (1) two tasks on
a uniprocessor; (2) three tasks on two processors. In case
(1), the read-write application has two tasks 71 and 72 and
the function of each task in shown in Fig. 9. As the figure
shows, the reading of 71 contains 3 unit intervals that reads
three matrix A, B and C from disk, respectively; the com-
puting phase of 71 contains 2 unit intervals that perform two
multiplication operations respectively; the writing phase of
71 contains 1 unit interval that writes the resulting matrix
to disk. The second task 72 in case (1) has the similar work
mode as shown in Fig. 9. We also pre-conducted an experi-
ment to estimate the length of each kind of phases. Reading
one matrix from disk or writing one matrix back to disk
consumes less than 100ms in the worst-case and each ma-
trix operation consumes less than 200ms in the worst-case.
Thus, we set the periods of 71 and 7 as 950ms and 1250ms,
respectively. In case (2), we ran three tasks 71, 72 and 73
on two processors where 71 and 73 are identical to 71 in case
(1) and 79 is identical to 72 in case (1).

Ekeading phase Computing phase Writing phase
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Figure 9: Matrix calculation

5.2 Performance Evaluation

The performance of each cases is shown in Fig. 10. The
z-axis denotes the job number and the y-axis denotes the
response time of each job.

In case (1), the total utilization of 71 and 72 is about 0.9
(400/950 + 600/1250) which does not exceed 1. According
to the analysis in Sec. 4.3 the response time of 71 and 72
in our application should not exceed 950ms and 1250ms.
However, our analysis has not taken the overhead due to
job migration into consideration. From Fig. 10 we can see,
in practice, the response time of some jobs of 71 in our ap-
plication is about 50ms lager than the theoretical estima-
tion. However, compare to GEDF, GEDF-R/W performed
considerably better with respect to reducing response time.
Moreover, as shown in Figs. 10(a) and (b), GEDF-R/W is
able to achieve bounded response time while the response
time under GEDF grows unboundedly. In case (2), the ex-
periment shows that GEDF-R/W can significantly reduce
response times in the multiprocessor case. For instance, in
Fig. 10(c), the response time of 73 under GEDF varies from
1150ms to 1550ms. While the response time of 73 under
GEDF-R/W is merely around 920ms with very slight vari-
ance.
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6. EXPERIMENTAL EVALUATION

In this section we evaluate our schedulability test stated
in Theorem 1 by experiments. Our goal is to examine how
restrictive the derived schedulability test is and to compare
it with suspension-oblivious density test shown in Theorem
2.

Experimental setup. Consider that for magnetic disks,
the suspension delay incurred is roughly 10us to 45us[12].
Thus in our experiment, the lengths of writing phases S;
were uniformly distributed over [5us,50us]. Task utiliza-
tions U; were generated using three uniform distributions:
[0.001, 0.05](light), [0.05, 0.1](medium) and [0.1, 0.3](heavy).
The suspension ratio V; of each task were generated by
following two uniform distributions: [0.005,0.1](short) and
[0.1,0.3](long). And for each task 7;, we set the ratio of
the first computing phase to its total computation length «;
(o = Cclll) as 0.9, 0.5 and 0.2, respectively. Therefore, T;
can be calculated by S; and V;, and C; can be calculated by
T; and U;. The length of C; 1 and C; 2 can be calculated by
C; and «a;, and J; can be calculated by W; and C; ;1. Note
that when «; grows larger, d; becomes smaller.

For each task system and a given utilization cap, we gen-
erated tasks to each task system until the total utilization
exceeds the utilization cap and then we reduced the utiliza-
tion of the last task to make the total utilization equal to
utilization cap. For every utilization cap we generated 1000
task systems to evaluate the proposed schedulability test.
We conducted the experiment for m = 4.

Results. The experimental results are shown in Fig. 11
and the detailed explanation is available in the caption of
Fig. 11.

From Fig. 11 we can see that in most cases our schedu-
lability test is superior to suspension-oblivious density test,
especially when «; = 0.9 and «; = 0.5. In Fig. 11 (a),
(b) and (c), regardless of the suspension length, our test
significantly improves upon the suspension-oblivious den-
sity test in reducing the utilization loss. For example, in
Fig. 11(a), when suspension is short, all task systems with
Usum < 3.5 are schedulable under our test; while the to-
tal utilization of task systems that are schedulable under
suspension-oblivious density test is at most 1.9.

However, when the utilization is heavy and «; is large, the
suspension density-test becomes better than our schedulabil-
ity test, as shown in Figs. 11 (h) and (i). Moreover, with the
increase of per-task utilization, both tests performed worst

due to the large values of Z,,4, in Theorem 2 and U; in The-
orem 1. This is because with the decrease of «;, d; becomes
larger. In such cases fewer task systems can pass our test
due to the increase of the term L defined in Lemma 3.

To conclude, in most cases our schedulability test is supe-
rior to the suspension-oblivious density test, often by a sub-
stantial margin. However, as discussed in Sec. 4.3, these two
tests do not dominate each other and in some extreme cases
suspension-oblivious density test can be a better choice.

7. CONCLUSION

In this paper, we have considered the problem of support-
ing applications with read/write operations in embedded
real-time systems. First, we have shown that write-only task
systems can be supported under GEDF on a multiprocessor
with O(m) suspension-related utilization loss. As demon-
strated by experiments presented herein, in most cases our
schedulability test is prior to the previous test. Second, in
order to support read-write applications, we design a flexi-
ble I/O placement and a corresponding scheduling algorithm
which enable us to completely eliminate the negative impact
due to read- and write-induced suspensions. The presented
case study shows our I/O placement is able to significantly
reduce the response time. The presented case study im-
plemented in real systems suggest that our proposed 1/0-
placement-based GEDF-R/W scheduling is feasible in prac-
tice.

In this paper, we assume that the resource of I/O devices
is sufficient to support as many tasks as we need, which is
not true in practice. To handle I/O contention, one possible
way is to integrate such contention into the worst-case sus-
pension length parameter. However, this is very pessimistic.
Thus, for future work, we plan to consider the co-scheduling
problem on multiple resources. We also plan to design better
algorithms that can reduce the job migration cost.
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