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ABSTRACT

Graphics processing units are being widely used in embed-
ded systems as they can achieve high performance and en-
ergy efficiency. In such systems, the problem of computation
and data mapping for multiple applications while minimiz-
ing the completion time is quite challenging due to a large
size of the policy space, including heterogeneous application
characteristics, complex application structure, data commu-
nication costs, and data partitioning. To achieve fast com-
petition time, a fine-grain mapping framework that explores
a set of critical factors is needed for heterogeneous embedded
systems. In this paper, we consider this mapping problem
by presenting a theoretical framework that yields an optimal
integer programming solution. Moreover, based upon sev-
eral interesting measurements-based case studies, we design
three practical mapping algorithms with low time complex-
ity, each of which explores a specific set of factors that may
affect the completion time performance. We evaluated the
proposed algorithms by implementing them on a real hetero-
geneous system and using a large set of popular benchmarks
for evaluation. Experimental results demonstrate that our
proposed algorithms can achieve up to 30% faster comple-
tion time compared to the state-of-the-art mapping tech-
niques, and can perform consistently well across different
workloads.

Categories and Subject Descriptors

D.4.7 [Organization and Design]: Real-time systems and
embedded systems; C.1.3 [Other Architecture Styles]:
Heterogeneous (hybrid) systems

General Terms

Algorithms, Design, Experimentation, Performance
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1. INTRODUCTION

Graphics processing units (GPUs) are now commonly used
as co-processors in many embedded systems to accelerate
general-purpose applications. They are particularly capable
of executing data-parallel applications, due to their highly
multi-threaded architecture and high-bandwidth memory.
Various embedded system domains can benefit high per-
formance and better energy efficiency from utilizing GPUs.
For example, GPUs can efficiently perform matrix opera-
tions such as factorization on large data sets and multi-
dimensional FFTs and convolutions. Such operations are
often seen in many embedded applications including sig-
nal processing, imaging and video processing. By lever-
aging new programming models, such as CUDA [24] and
OpenCL [10], programmers can effectively develop highly
data-parallel kernels to execute such applications on GPUs.

By providing heterogeneous processing elements with dif-
ferent performance characteristics in the same system, het-
erogeneous CPU/GPU architectures are expected to provide
more flexibility for better performance compared to homoge-
neous systems. Fast completion time is an imperative perfor-
mance metric that needs to be optimized in most embedded
systems. For example, in a driver-assisted and autonomous
vehicle, the video streaming and sensor data processing tasks
need to be completed in a rapid manner. In order to mini-
mize the completion time for running a set of workloads, the
step that maps computations to processing elements is crit-
ical. In this paper, we consider the mapping problem in a
heterogeneous system containing multiple CPUs and GPUs.
Our goal is to minimize the completion time.

This mapping problem is quite challenging due to a large
size of the policy space. First of all, applications may demon-
strate (sometimes significantly) different performance char-
acteristics when executed on GPUs than CPUs. The map-
ping algorithm thus needs to consider such heterogeneity
when making prioritization and mapping decisions. More-
over, most real world workloads are implemented using rather
complex kernel graphs, where a kernel graph contains a num-
ber of data- or logical- dependent kernels. The precedence
constraints among kernels require the mapping algorithm
to consider: (i) the kernel graph structure and (i) differ-
ent data transfer costs among kernels if executed on dif-
ferent processors. Furthermore, for data-intensive kernels,
data partitioning techniques need to be incorporated into
the mapping algorithm because partitioning a kernel into
threads that can be run on multiple devices in parallel im-
proves the overall utilization.

Without considering the above-mentioned factors, map-



ping algorithms are unlikely to perform consistently well
across different workloads. Prior work on heterogeneous
CPU/GPU systems has focused on new programming mod-
els and API extensions for supporting multiple heteroge-
neous devices [23, 3, 12], automating the mapping proces-
sor [5, 15, 16|, enabling CPU and GPU sharing [20]. Differ-
ent mapping heuristics have been designed and applied in
these work. However, since the fine-grain mapping problem
is not the major focus of these work, the existing mapping
heuristics make simplified mapping decisions based upon a
limited set of metrics (e.g., data locality or execution time).

To better understand this mapping problem, in this pa-
per, we first present a theoretical framework that yields an
optimal integer programming (IP) solution. To the best of
our knowledge, this is the first work that provides theoret-
ical understanding of the mapping problem in the context
of data-dependent kernel graphs and heterogeneous devices.
We then show that practical mapping algorithms consid-
ering several critical factors may also perform consistently
well across different workloads. Specifically, motivated by a
number of measurements-based case studies, we design three
mapping algorithms, each of which explores a specific set of
factors that may affect the completion time performance.

We evaluated the proposed algorithms by implementing
them on a real heterogeneous system containing a four-core
CPU and two discrete GPUs with different performance
characteristics. Extensive experiments were conducted us-
ing a set of popular benchmarks and workloads, such as
cholesky factorization, MonteCarlo. Experimental results
demonstrate that our proposed algorithms can achieve much
faster completion time (up to 30% improvement) compared
to the state-of-the-art mapping techniques. By testing work-
loads with varying characteristics, experiments show that
the completion time performance under our mapping algo-
rithms is also consistent.

The rest of this paper is organized as follows. Sec. 6 de-
scribes related work. Sec. 2 presents the system model and
our theoretical framework. Sec. 3 describes the motivational
measurements-based case studies. Sec. 4 presents the pro-
posed practical mapping algorithms. Sec. 5 discusses our im-
plementation methodology and experimental results. Sec. 7
concludes.

2. SYSTEM MODELING AND MIP FORMU-
LATION

In this section we give out a list of notations and defi-
nitions to help us better formalize the proposed problem,
and then we propose a MIP (Mixed Integer Programming)
Formulation to get optimal mapping in theory.

2.1 System Model

Let us consider the problem of mapping n independent
applications I' = {71, 72,73, ..., Tn } onto m processors M =
{Mi1,M>, ..., M,,}. Each processor is either a CPU or a
GPU.

Each application 7; is composed by serial instructions and
kernels, where kernels represent computation operations. Ker-
nels of each application are chained together according to
the computation logic, they may have dependencies since
data flows from one kernel to another. That is, 7; is mod-
eled as a kernel graph that contains z; connected kernels
{r},72,...,77"}. Let N denote the total number of kernels

Table 1: Notation Summary.

N number of total tasks
n number of applications
m number of processors

-th

Ti 1" application

7 2" kernel /task of application 7;

M; "™ processor (either a CPU or a GPU)
cl, execution time of 77 on processor Mj,
S(7)) set of successor kernels/tasks of 77
P(7)) set of predecessor kernels/tasks of 77

el® edge from 77 to 7F

Ty—w(el®) | time taken to send data from 7/ to 77

of applications in I'. Each kernel Tij has an execution time of
€7, if executed on processor px. The execution time ranges
from milliseconds to hours, depending on the specific ap-
plication. Similar to prior work [23], we use the sampling
functionality of StarPU [8] to obtain the estimated execution
time of a kernel.

Between any two connected kernels is an edge, which im-
plies that precedence constraints exist between these two
kernels. If kernel 77 has an outgoing edge €] * to kernel 7,
then 7F cannot start execution until it receives the data pro-
duced by 77. Let P(7]) denote the set of predecessor kernels
of Tij, i.e., kernels that have outgoing edges to Tf Similarly,
let S(77) denote the set of successor kernels of 77, i.e., ker-
nels that have incoming edges to Tij . Let Tq_m,(e{ k) denote
the time for Tij executed on processor p, to send its produced
data to its successor ¥ (connected by edge eg k) executed on
processor p,,. A summary of important notation is given in
Table 1. We use the term task to represent a kernel comb-
ing with its needed data. For readability, in the rest of this
paper, we will use task and kernel interchangeably.

Definition 1. We define the depth of a kernel to be the
number of kernels on the longest path between this kernel
and a kernel of the corresponding kernel graph that has no
predecessors. Kernels with no predecessors have a depth of
1. Let D(7{) denote depth of kernel T{ in the kernel graph
of Ti.

Preemptive vs. non-preemptive execution On GPUs,
executions are often non-preemptive [14]. That is, once a
kernel starts execution on a GPU, it cannot be preempted
by other kernels until its completion. On CPUs, executions
can be preemptive. However, preemptions may incur signifi-
cant amount of overheads at runtime such as context switch
overhead and migration overhead [4]. To ensure the effi-
ciency, as well as simplify the formalism and algorithms,
we thus assume in this paper non-preemptive executions on
CPU as well.

2.2 An MIP Formulation

We formalize the problem of minimizing the makespan of
a given set of applications executed on m CPU and GPU
devices by specifying an integer program with a polynomial
number of variables as follows. We first define a new set of
variables that are used in the integer program.



Definition 2. Define

if Tij is the x-th kernel executed by My,
otherwise,
foralll<w<m,1<z<n, 1<i<n, 1<5< 2. For
every kernel 7}, let s} > 0 denote the starting time of its
execution.

The makespan can be denoted by Ciuee. Then this prob-
lem may be formulated as:
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where a >> 0 is a sufficiently large penalty coefficient.

Integer program description. Eq. (1) ensures that each
task is assigned to exactly one processor. Eq. (2) ensures
that at most one task will be the first one to be executed by
any given processor. If a task is the g** (where g > 2) as-
signed to processor M, then there must be another assigned
as the (g — 1) task of this same processor, as ensured by
Eq. (3). Moreover, Eq. (4) ensures that precedence con-
straints are respected. That is, no task 77 may start execu-
tion unless all its predecessors have already completed their
execution and 7] has already received the data produced by

its predecessors.

(a) (b)

Figure 1: Kernel dependency graph

Eq. (5) defines the sequence of starting times of the set of
tasks assigned to the same processor. It expresses the fact
that task 77 must start at least Cf, time units after the
beginning of task 7, whenever it is executed after task T
on the same processor My, i.e., pd(1") = Zi\;gﬂ pp(r]) =1
for some g = 1,2,..., N—1. Eq. (6) defines the constraint on
the makespan (i.e., the maximum completion time among
all kernels).

By solving the above formulation, we obtain an optimal
solution that minimizes the makespan. Unfortunately, solv-
ing this integer program (although it has a polynomial num-
ber of 0-1 variables) is quite expensive in practice. In the
next sections, we report several key observations motivated
by measurements-based case studies (Sec. 3), which further
motivate our design on several efficient online mapping al-
gorithms that can be applied in practice (Sec. 4).

3. CASE STUDIES: WHAT TO CONSIDER
FOR MAKING MAPPING DECISIONS

In this section, we present several measurements-based
case studies that motivate the design of our mapping algo-
rithms. We measured the completion time of executing a
vector add application 71 and a matrix multiplication ap-
plication 72 on a heterogeneous system configured with one
Intel Core i7 CPU and NVIDIA GeForce GTX660 GPU. 1
can be expressed as (vi +v2) * 7, where v1 and v are vectors
and 7 is a constant. 72 can be expressed as (a * b) + (c* d),
where a, b, ¢, d are four input matrices. These applica-
tions are commonly seen in scientific computing. The cor-
responding kernel graphs are illustrated in Fig. 1. Specif-
ically, 71 contains two kernels 74 72, where 71 is a vector
add kernel and 77 is a vector scale kernel. 5 contains three
kernels, where 74 and 72 are two matrix multiplication ker-
nels, and 73 is a matrix add kernel. For the generated input
data, v1 and vz have a size of 50000 elements each. a, b,
¢, and d are four matrices with a size of 1024 x 1, 1 % 1024,
1024%1024, and 1024 %1024, respectively. Through profiling,
the execution time of each kernel is listed in Table 2. We
have conducted various experiments based upon this system
setup and recorded the corresponding mapping sequences
and completion times under different strategies. Among the
obtained results, we have identified several factors that may
significantly affect the mapping performance.
Observation #1: kernel-level mapping or application-
level mapping? In this case study, our observation is that
for applications that contain multiple dependent kernels,
treating kernels as the mapping entity yields better perfor-
mance than mapping each entire application to a processing
unit. Fig. 2(a) shows the schedule of performing application-
level mapping. The dash lines in this figure represent the



Table 2: Execution time of kernels

CPU GPU
71 | 5.68 x 10%us | 4.22 x 10%us
| 1.52 x 10%us | 2.42 x 10%us
7o | 4.41 x 10%us | 5.6 x 10%us
75 | 8.74 x 10%us | 8.44 x 10%us
75 | 4.40 x 10%us | 4.20 x 10%us

final completion time. The (tiny) space among kernel execu-
tion blocks represents the delay due to necessary data trans-
fer. Fig. 2(b) shows the schedule of performing kernel-level
mapping, in which we can see that the completion time is
shortened. The main performance acceleration comes from
the parallel executions of multiple kernels on two processing
units. Intuitively, for systems that support multiple appli-
cations, kernel-level mapping is a better choice because it
can better utilize the hardware resources.

CPU T,

GPU T,
: | -
Lol
(a)
Data penalty
v !
cou | T, T, | i
i
o [Tt | ' [r*]
-
(b)
i
v [T'] 12 |12 !
_
GPU T, T
: >
(c)
i
cPu Tll “ '|-1Z " 'rz2 " (Tzl)z | E
i
i
oy (1) IS
: >
(d)
i
CPU Tz2 " T12 | | '|'z1 Heaevnyafg,ta E
/ :
aru [T T, | [ !
i

Figure 2: (a) Application level mapping and (b) Kernel level
mapping (c) Different map order (d) Data Partition (e) Bad
data partition

Observation #2: heterogeneity matters. Fig. 2(c)
shows the schedule of a kernel mapping policy with a differ-
ent kernel ordering scheme than the mapping policy shown
in Fig. 2(b). The applied mapping policy considered in this
case prioritize kernels by considering the heterogeneity. In-
tuitively, a kernel that has a faster execution time on a spe-
cific type of processor (either CPU or GPU) should prefer-
ably be assigned to that type of processor. As shown in
Table 2, kernels 72, and 75 have much shorter execution
times on GPU compared to CPU. Thus, by prioritizing such
kernels over other kernels (such as 74 and 7'22), they have
higher possibilities to be assigned to their favorite proces-
sors, as observed in Fig. 2(c). This case study highlights
the fact that for CPU/GPU systems, the heterogeneity re-
flected by hardware and application characteristics must be
considered in the mapping algorithm.

Observation #3: data partitioning—is it always ben-
eficial? As seen in Table 2, 74 is the most computation-
intensive kernel. Fig. 2(c) shows that 75 cannot start ex-
ecution because 74 completes late, which causes resource
under-utilization and longer completion times. By parti-
tioning the input matrix of 73 into two slices, we are able to
reduce its execution time by running the kernel with partial
data on both CPU and GPU in parallel. Let (75); and (75 )2
denote the resulting two kernels each with half data. The
resulting schedule with reduced completion time is shown in
Fig. 2(d). However, data partitioning is not free. It incurs
additional data transfer overhead because data need to be
sent to both (73)1 and (73 )2, and the corresponding results
need to be merged and then sent to 75. Since the data size
is not very large in this case, the performance gain due to
data partitioning overwhelmed the penalty due to additional
data transfer. Nevertheless, when we increase the input ma-
trix size for 75 to 16384 * 16384, the negative impact due
to additional data transfer under partitioning becomes ob-
vious, as illustrated in Fig. 2(e). Our observation herein is
that data partitioning may be beneficial only when the input
data size is reasonably small.

It is clear from these case studies that the completion
time performance heavily depends on the mapping algo-
rithm, which needs to consider a number of influential fac-
tors including the kernel structure, heterogeneity, kernel pri-
oritization, and data partitioning.

4. PRACTICAL MAPPING ALGORITHMS

In this section, we present three practical online algo-
rithms for mapping tasks in a heterogeneous platform con-
sisting of multiple CPUs and GPUs. Our algorithmic de-
sign is motivated by the observations as discussed in Sec. 3.
Specifically, the proposed mapping algorithms consider het-
erogeneity, kernel graph structure, and data partitioning.
The first algorithm (we call it the baseline algorithm) mainly
factors heterogeneity into making mapping decisions (be-
sides considering traditional factors such as data locality and
earliest completion time). The second algorithm considers
kernel structure when prioritizing tasks. The third algo-
rithm extends the baseline algorithm by taking advantages
of data partitioning. As seen in Sec. 5, these three algo-
rithms yield different performance under different experi-
mental scenarios, depending on specific application charac-
teristics.



4.1 Baseline Algorithm: Heterogeneity Ratio-
based Mapping

As discussed in Sec. 3, without considering heterogeneous
workload characteristics on CPUs and GPUs, the mapping
algorithm is unlikely to efficiently utilize the heterogeneous
resources. Our proposed baseline algorithm takes hetero-
geneity into consideration when making mapping decisions.
Before describing the algorithm, we first give several defini-
tions.

Definition 3. The favorite ratio ka of a task Tij eze-
cuted on processor My, is defined to be

m(CI
o, ®)

For any task 7, a larger F}, wvalue implies T; is more suit-

able to be executed on My. That is, 7} may have a shorter
execution time if executed on My, compared to other proces-

S0rS.

Definition 4. The heterogeneity ratio of a task Tij 15
defined to be

H) = makazl(Fi];k) (10)
For any task Tij, a large heterogeneity ratio implies that it
may be more beneficial to execute T} on one of its favorite

processors My where F}, is large.
,

Example: Considering the example system described in
Sec. 3, the favorite ratio of i if executed on processor
1 (CPU) is F{; = max(Ci,,Cl2)/Cl, = 5.68/5.68 =
1, and the favorite ratio of 71 if executed on processor 2
(GPU) is F{y = maz(Ci 1,01 4)/Cta = 5.68/4.22 = 1.35.
The heterogeneity ratio of 7¢ can be calculated by Hi =
mam(FﬁhFﬁQ) = F1172 =1.35.

Definition 5. Let MDAC(7], M,) denote the Max Data
Transfer Time of Tl-j if Tij is assigned on Mg, which is de-
fined as the mazimum time for transferring data from any
of T ’s predecessor tasks to ;. Specifically, MDTT (7], M)
is given by

MDAC(77,M,) = max Ty_q(e) (11)

Tik GP(Tij)
where tau? is executed on M,.

Definition 6. Let EFT(7], M,) denote the Earliest Fin-
ish Time of 7} if 7] is assigned on M. It is defined as:

EFT (1], M) = Tavair(My) + MDAC(7], M,) + C?, (12)

where Tavait(Myg) 1s the earliest time at which processor M,
is available,

Our proposed baseline algorithm prioritizes tasks based
on their heterogeneity ratio. The intuition is to give tasks
with larger heterogeneous ratios higher possibilities to be
assigned on their favorite processing units. Compute each
task’s heterogeneity ratio at runtime may incur a consider-
able amount of overheads. To avoid such overheads, in our
implementation, we maintain a lookup table for each task,
which records its historical sampling information. Consider
the matrix multiplication kernel as an example, each entry in

the lookup table contains data size, average execution time,
processing unit to which it is assigned, heterogeneity ratio,
hash value, etc. Thus, at runtime, we only need to check
the lookup table to figure out the needed information (e.g.,
heterogeneity ratio). After prioritizing tasks, the algorithm
selects the best processing unit for executing each task in
turn based on the earliest finish time. The psuedo-code of
the algorithm is given in Algorithm. 1.

Algorithm 1 Heterogeneity ratio-based mapping

1: function PusHTAsk(T")

2: Sort tasks in the ready queue by largest-
heterogeneity-ratio-first

3 for ¢; in ReadyQueue decreased by H; do

4 if H(task) < H(t;) then

5: continue

6 end if

7 InsertBefore(task, t;, ReadyQueue)

8: end for

9: num < GetAllDeviceLen()

10: if num < thr then

11: PUsSHTASKONDEVICEQUEUE

12: end if

13: end function

14:

15: function PUSHTASKONDEVICEQUEUE

16: 7 + PopFront(ReadyQueue)

17: for M, in processor set M do ,

18: EFT(TlJ7Mq) = TAvail(Mq)+MDAC(TiJﬂMq)+
CT{,Mq

19: end for

20:  Assign 77 to M, that minimize EFT (77, M,)
21: end function

Pseudo-code description. The PushTask() function on
Line 1 is in charge of pushing incoming tasks into the ready
queue of the scheduler. It first obtains the heterogeneity ra-
tios from the lookup table for each incoming task (Line 2),

then insert the tasks into the ready queue by largest-heterogeneity-

ratio-first (Lines 3-8). On Line 9, function GetAllDevice-
Len() gets the total number of assigned tasks in all device
queues. If the number is less than a predefined threshold
thr(Line 10), then the scheduler executes the PushTaskOn-
DeviceQueue() function. In other words, if the total number
of tasks that have been assigned to devices is large enough,
then the scheduler will stop dispatching tasks in the ready
queue to devices. The intuition is to let the ready queue hold
most of the unassigned tasks and sort them in order while
guaranteeing that processing units have enough tasks resid-
ing in their device queues to be executed. Unlike the greedy
dispatching approach that assigns ready tasks immediately
to devices, our non-greedy approach ensures that tasks en-
tering the ready queue late still have a fairly good chance to
be assigned to their favorite processing units. The function
PushTaskOnDeviceQueue (Lines 15-21) seeks to assign tasks
to devices. It first grabs the task with highest heterogeneous
ratio (Line 16), then estimates the finish time of this task if
assigned to each processor (Lines 17-19), and finally assigns
the task to the processor that yields the earliest finish time
(Line 20).

Time complexity. This algorithm need to compute the



heterogeneity ratio and do sort insertion that is O(l2), the
assignment phase need O(I* - m) time complexity. The total
time complexity is O(I? - m) where [ is the number of tasks
and m is the number of processors.

4.2 Kernel Graph Structure Considerations

Our second algorithm improves upon the baseline algo-
rithm by considering the kernel graph structure of each ap-
plication. As discussed in Sec. 3, our observation is that for
many applications, the time taken to transfer data among
kernels executed on different devices (which heavily depends
on the kernel graph structure) is far from negligible when
compared to task execution times. For certain data-intensive
applications, the data transfer time is actually the dominant
factor in response time performance. Let T(egk) to represent
the general data transfer cost between two dependent tasks
tf and t¥. Since T(e{k) can be decided only after knowing
the specific devices to which these two tasks are assigned,
we compute the average cost as the estimated data transfer
time between ¢! and t® which is given by

> (Tioulel)

q,weM

T(el) =

(13)

m2
Note that if Tij and 7F are assigned to the same device, then
T(el*) =o0.

The algorithm seeks to assign higher priorities to tasks
with larger rank(7/) values. rank(t}) is defined as:

Z ngq/m-&- max (T(egk)

k J
MgeM Ty €5(77)

+ > Cly/m), (14)

MgeM

rank(r)) =

where Y Cl-j’q/m denotes the average execution time of
MseM

task Tij , and the max() term represents the longest time
taken to send 77’s data to any of its successor tasks plus
this successor’s execution time. The intuition behind using
rank(r]) values is to give pairs of connected kernels that are
computation-intensive and/or data-intensive higher possibil-
ities to be assigned to their favorite devices. The pseudo-
code of this algorithm is given in Algorithm. 2. As seen, the
algorithm is identical to our baseline algorithm except that
the scheduling priorities tasks using the rank(7]) values in-
stead of heterogeneity ratios.

Algorithm 2 Structure rank based heuristics

: function PUsHTASK(task)
rank(task) <— Compute rank of task
for t; in ReadyQueue decreased by rank(t;) do
if rank(task) < rank(t;) then
continue
end if
InsertBefore(task,t;, ReadyQueue)
end for
9: num < GetAllDeviceLen()
10: if num < thr then
11: PUsHTASKONDEVICEQUEUE
12: end if
13: end function

4.3 Data Partitioning

According to the observation given in Sec. 3, the intuition
behind data partitioning is that if a task is data-intensive,
then dividing its data into multiple slices would give it a
higher chance to utilize more processors. This idea has been
proposed and applied in [21], but only under a single kernel
scenario. For example, an automated partitioning technique
has been proposed in [23] to partition the data of a single
kernel such that this kernel can be executed on a CPU and a
GPU in parallel. Unlike prior work, our third algorithm con-
siders data partitioning as a sub-component and integrates
it into our considered multi-kernel scenario.

Despite of its advantages, data partitioning may also in-
troduce additional data transfer costs, as discussed in Sec. 3.
Thus, a mapping algorithm needs to decide whether to ap-
ply data partitioning to applications. Our third algorithm
extends the baseline heterogeneity ratio-based algorithm by
taking data partitioning into account. We apply a historical
data profiling technique to decide whether a task needs to be
partitioned. In the implementation, we record the histori-
cal sampling data and use a non-linear regression-based cost
model (a* D° + ¢) [19] (where a, b, and c are constant coef-
ficients, and D is the data size) to find out the relationship
between data size and execution time. Given the data size
of a kernel, if the estimated execution time (without apply-
ing data partitioning) is larger than a pre-defined threshold,
then we partition it into multiple blocks.

S. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation methodol-
ogy and experimental results used to evaluate the effective-
ness of our proposed algorithms.

5.1 Implementation

We implemented our scheduler algorithms on top of the
StarPU runtime platform [8] as customized schedulers. To
better support our algorithms, we modified part of StarPU’s
core code. The role of the StarPU scheduler is to dispatch
tasks onto different processing units (named "workers” in-
ternally). All StarPU scheduling strategies implement task
dispatching using queue-based method. Tasks that have re-
ceived needed data from their predecessors are pushed in
a ReadyQueue. This ReadyQueue is updated at runtime
while tasks arrive dynamically. Based upon this dispatching
model, our schedulers make mapping decision at runtime for
tasks in ReadyQueue.

StarPU has several pre-defined schedulers, including the
eager scheduler, the dm scheduler, and the dmda scheduler.
The eager scheduler uses a single FIFO task queue, as il-
lustrated in Fig. 3 (a), from which workers draw tasks to
execute. The mapping decision is made only when a worker
becomes idle. More complex schedulers such as the dm
scheduler maintain one queue for each processing unit, as
shown in Fig. 3 (b). A task is immediately dispatched to
a specific worker once it is pushed into the ReadyQueue.
Different from these implementation strategies, our sched-
uler uses a central priority queue to hold and sort tasks, and
dispatch tasks to worker’s private queues, as illustrated in
Fig. 3 (c). Under our implementation, the proposed sched-
ulers do not immediately dispatch a incoming task to one of
the workers’ queues. Instead, we set a threshold value (as
discussed in Sec. 4.2) to trigger the dispatching action. The
central priority queue would dispatch tasks to workers only
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Figure 3: Our scheduler implementation

CPU GPU1 GPU2
Architecture Intel Core NVIDIA GeForce|NVIDIA GeForce
i7-4770 GTX 660 GT 620
Frequency 3.9 GHz 1033 MHz 700 MHz
Memory 16GB DDR3 (2048MB GDDRS5| 2048MB DDR3
oS 64-bit Linux Ubuntu lucid

Figure 6: Experimental Hardware Specification

when the total number of tasks residing in workers’ queues
is less than the pre-defined threshold value. A large thresh-
old value may allow the scheduler to have a better ordering
of the ReadyQueue. However, when considering multiple
application scenarios, the total number of tasks could be
large. Since pushing tasks into the ReadyQueue may in-
cur overheads, a large threshold value may also reduce the
efficiency as such overheads negatively impact the timing
performance. Although depending on the specific hardware,
the idea behind setting a threshold value is to perform task
pushing and task execution in parallel at runtime.

5.2 Experimental Setup

We implemented the proposed algorithms in a real het-
erogeneous desktop computer consisting of a CPU and two
discrete GPUs. The hardware specification is given in Fig. 6.
The benchmarks used in the experiments are listed in Fig.4.
All benchmarks are rewritten in order to be used on the
StarPU runtime platform. Among the benchmarks, Monte-
Carlo and Cholesky factorization are considered to be com-
putation -intensive because they have relatively heavier com-
puting workload for processor units and have a relatively
high computation-to-communication ratio (i.e., the kernel
execution time is far greater than the time to transfer its
needed data from another device). On the other hand,
VectorAdd and VectorIncrement are consider to be date-
intensive because their computing workload is low, but may
generate heavy date traffic. To reflect different workload sce-
narios, we vary the problem scale of each benchmark three
problem sizes.

The specific values of the problem sizes generated in the
experiments are shown in Fig. 4. Moreover, we test three

workload composition scenarios commonly seen in practice,
i.e., computation-intensive, data-intensive, and randomly
mixed workloads. To generate these composition scenarios,
we first generate one instance of each of the seven bench-
marks shown in Fig. 4 as the base case. We then gener-
ate the computation-intensive workload composition using
the base case combined with three instances of each of the
two computation-intensive benchmarks (mentioned above).
Similarly, the data-intensive workload composition is gen-
erated using the base case combined with three instances
of each of the two data-intensive benchmarks. The mixed
workload composition is generated by creating two instances
of each of the seven considered benchmarks. Note that the
current StarPU runtime system implementation mainly con-
siders the single application scenario. To support simultane-
ous execution of multiple applications, in our experiments,
we compose all the benchmarks into one single executable
file by rewriting and compiling the source codes of the bench-
marks using StarPU’s SDK.

We compare our proposed mapping algorithms against
the best available scheduler of StarPU—the dmdar (deque
model data aware) scheduler, which considers the task exe-
cution time and the data transfer time when making map-
ping decisions. It is similar to the classical heterogeneous-
earliest-finish-time-first scheduling (HEFT): dmdar sched-
ules each task to a processing unit that provides the min-
imum finish time, and sorts tasks residing in each worker
queue by largest number of available data buffers first.
Moreover, we compared our algorithms to the integer pro-
gramming formulation, which yields an optimal (theoreti-
cally) solution. For each experimental setup, we tested two
system configurations: one with one CPU and two GPUs,
and the other one with one CPU and one GPU (GTX 660).
Regarding the evaluation metric, we measured the final com-
pletion time for running each entire experiment set. In
the following, we denote our baseline mapping algorithm
(Sec. 4.1), structure-based mapping algorithm (Sec. 4.2),
data partitioning-based mapping algorithm (Sec. 4.3), the
dmdar scheduler, and the integer programming solution, as
“h-ratio”, “d-rank”, “ad-part”, “dmdar”, and “IP”, respec-
tively.

5.3 Results

The obtained experimental results comparing our map-
ping algorithms against dmdar are shown in Fig. 5 (the or-
ganization of which is explain in the figure’s caption). Each
bar plots the speedup achieved by the corresponding algo-
rithm upon a naive CPU-only mapping algorithm which pri-
oritizes workloads by shortest-execution-time-first and maps
all workloads only to CPU.

As seen, in most tested scenarios, our proposed mapping
algorithms improve upon dmdar. The performance gain
varies depending on the workload composition and problem
scale. As shown in all six graphs of Fig. 5, when the problem
size is small or medium, one or more of our proposed algo-
rithms yield slightly better performance than dmdar. The
improvement is not significant in these case because the vari-
ances in heterogeneity ratio and structure spawn are small.
Thus, the benefit of specifically considering these factors be-
comes less significant. When the problem size becomes large,
the performance improvement achieve under our proposed
algorithms becomes more substantial. For example, as seen
in Fig. 5(b), for computation-intensive workloads with large



Benchmark Description Small Problem Size Midium Problem Size Large Problem Size
xgemm Combined matrix multiplication and addition  [1k*1k matrix x 3 4k*4k matrix 8k*8k matrix
cg Conjugate Gradient 1k* 1k matrix and 1k vector  |4k*4k matrix and 4k vector  |8k*8k matrix and 8k vector
cholesky Cholesky matrix factorization 1k*1k matrix 1k*1k matrix 4k*4k matrix
increment Vector incrementation 10k vector 100k vector 1M vector
va Vector Add 10k vector 100k vector 1Mk vector
pi Monte Carlo method to compute pi 1k hits per task, 1k tasks 4k hits per task, 1k tasks 8Kk hits per task, 1k tasks
fblock 3-D assignment 128*128*128 cube 256%256%*256 cube 512%512*512 cube
Figure 4: Benchmarks used in experiments
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Figure 5: Experimental results on the competition time.
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In all six graphs, the z-axis denotes the three tested scenarios

where problem size scale is varied to be small, medium, and large (according to Fig. 4). The y-axis denotes the speedup each
algorithm achieved upon the naive CPU-only mapping algorithm. Graphs in the first (second) row depict the results under
the system configuration with one CPU and two GPUs (one CPU and one GPU). In the first (respectively, second and third)
column of graphs, mixed (respectively, computation-intensive and data-intensive) workloads are assumed.

problem size, h-ratio, d-rank, and ad-part improve upon dm-
dar by more than 15%, 10%, and 110%, respectively. In par-
ticular, ad-part achieves the best performance in these cases
because computation-intensive kernels are divided into par-
allel threads with partial data. This effectively reduces the
time to complete such kernels when multiple processing units
become available. Moreover, for computation-intensive ker-
nels, applying data partitioning does not incur much data
transfer penalty. Another interesting observation is that
when workloads become data-intensive, ad-part yields the
worst performance, as shown in Figs. 5(c) and (f).
alyzing the mapping traces of these experiments, we ob-
serve that partitioning data-intensive applications may incur
significant data transfer time, which negatively impact the
completion time performance. Unlike prior work considering
single application scenario where data partitioning should
be applied in most cases, our results suggest that data par-

By an-

titioning should only be selectively applied, in particularly
when workloads become more data-intensive. Figs. 5(d)-(f)

show the results under the system configuration with the
CPU and only one GPU (removing the less powerful GT
620 GPU). Compared to the case where all three processing
units are used (shown in Figs 5(a)-(c)), the observation is
that the speedup decreases. This is intuitive because less
resources are available in this case.

Comparison against IP. We have also conducted experi-
ments to compare our proposed algorithms against IP. Since
solving the IP given in Sec. 2.2 is quite expensive as we ex-
perience in these experiments, we choose to only conduct
experiments using a relatively small set of applications. Ta-
ble 3 shows the application set used in the experiments and
the results under IP and our algorithm (we select the best
result produced under the three algorithms). As seen, our al-
gorithm achieves comparable performance to IP while yield-
ing a much lower runtime complexity.



Table 3: Comparison against IP.

Exp. set 1 Exp. set 2 Exp. set 3
case study | va+xgemm-+inc | xgemm-+fblock+pi
X 5 X 5 X 2
IL 318.52 ms 758.19 7176.68
Ours | 330.28 ms 868.61 9975.14

6. RELATED WORK

Scheduling algorithms for heterogeneous systems.
The general problem of scheduling in heterogeneous sys-
tems has received much attention. A number of scheduling
heuristics have been proposed for scheduling directed acyclic
graph-based (DAG) applications in heterogeneous systems
[28, 6, 31, 1, 26, 9]. These algorithms schedule a single
DAG (Directed Acyclic Graph) of tasks onto heterogeneous
processing units with varying speed for minimizing the com-
pletion time. Zhao et.[32] proposed multi-DAG scheduling
by merging multiple DAGs into one DAG. However, such al-
gorithms do not specifically target the CPU/GPU platform,
and thus ignore several critical factors when making schedul-
ing decisions, including non-preemptivity, data transfer cost
among CPUs and GPUs, data partitioning. Moreover, these
existing algorithms are mostly greedy in nature and do not
provide a theoretical understanding of the mapping prob-
lem considered herein. Furthermore, such algorithms use
simulation-based evaluation approach and have not been
tested in real systems.

Runtime system support and execution engines for
heterogeneous CPU/GPU processors. For heteroge-
neous CPU/GPU platforms, a number of runtime systems
have been developed to perform task scheduling. PTask
[25] focuses on eliminating performance interference of GPU
sharing. TimeGraph [20] and others [29] provides prioritiza-
tion and isolation capabilities in GPU resource management.
Harmony [13] schedules translated CUDA code on various
devices. Qilin [23] provides an adaptive mapping to auto-
matically partition tasks on a CPU and a GPU. SKMD [21]
transparently translate single OpenCL [10] kernel into vari-
ations and execute them on multiple GPUs simultaneously.
The aforementionned runtime systems either focus on sin-
gle kernel or did not consider kernel affinities. Some other
runtime systems focus on task dataflow parallelism: OmpSs
[7], DirectShow [22], Hydra [30], Streamlt [27], IDEA [11],
Liquid Metal [17], Lime [2]. However, these systems do not
focus on scheduling multiple graphs onto heterogeneous pro-
cessors for minimizing the completion time.

StarPU runtime system. The StarPU [8] runtime system
provides programmers with a portable interface for dynam-
ically mapping tasks onto heterogeneous processors(CPUs
and GPUs). It integrates development tuning and sampling
with several pre-defined task scheduling strategies [19] as
plugins. These include the eager scheduler that uses the
minimum-completion-time-first policy[28], the dm scheduler
that performs an HEFT-based scheduling policy, and several
variations of the dm scheduler. Among all pre-defined sched-
ulers, the best one is the dmdar (deque model data aware
ready) scheduler. The dmdar scheduler similar to the dm
scheduler, but taking data transfer time into account and
sorting tasks on a per-worker queue basis. Sc_hypervisor

[18] is an extension based on StarPU, which supports co-
execution of multiple applications each using the StarPU
runtime system. It focuses on partitioning approaches,
which split computing resources into isolated sets, and then
apply existing StarPU schedulers on each set. However, the
StarPU runtime system does not focus on designing efficient
mapping algorithms to minimize the completion time, but
rather contributes in providing a portable interface for pro-
grammers to easily utilize GPUs. The StarPU pre-defined
schedulers are mainly designed to handle the single applica-
tion scenario and use simplified criterion to make mapping
decisions.

7. CONCLUSION

In this paper, we investigate the problem of mapping
multiple applications implemented using kernel graphs in
a heterogeneous system consisting of CPUs and GPUs. To
achieve fast competition time, we present a fine-grain map-
ping framework that explores a set of critical factors that
are suggested by several measurements-based case studies.
We present a theoretical framework that formulates this
problem as an integer program and a set of practically effi-
cient mapping algorithms. We implement the proposed al-
gorithms in a real heterogeneous system and conduct exten-
sive experiments using a set of popular benchmarks. Exper-
imental results demonstrate that our proposed algorithms
can achieve up to 30% faster completion time compared to
the state-of-the-art mapping techniques, and can perform
consistently well across different workloads. An interest-
ing future work is to extend the problem space to allow
applications to have pre-defined completion time require-
ments, which is often seen in embedded systems in practice.
This would make the problem even more challenging be-
cause greedy mapping choices may easily cause applications
to miss their timing requirements.
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