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ABSTRACT
Heterogeneous systems that contain multiple types of re-
sources, such as CPUs and GPUs, are becoming increasingly
popular thanks to the potential of achieving high perfor-
mance and energy efficiency. In such systems, the problem
of data mapping and communication for time-sensitive ap-
plications while reducing power and energy consumption is
more challenging, since applications may have varied data
management and computing patterns on different types of
resources. In this paper, we propose power-aware map-
ping techniques for CPU/GPU heterogeneous system that
are able to meet applications’ timing requirements while re-
ducing power and energy consumption by applying DVFS
on both CPUs and GPUs. We have implemented the pro-
posed techniques in a real CPU/GPU heterogeneous system.
Experimental results with several data analytics workloads
show that compared to performance-driven mapping, our
power-efficient mapping techniques can often achieve a re-
duction of more than 20% in power and energy consump-
tion.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: design studies, modeling
techniques; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—
scheduling
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1. INTRODUCTION
Given the need to achieve higher performance without

driving up power consumption, energy usage and heat dis-
sipation, most chip manufacturers have shifted to multicore
architectures. An important subcategory of such architec-
tures are those that are heterogeneous in design. By in-
tegrating specific-purpose processing elements with general-
purpose computing elements, such architectures can provide
high performance and power efficiency [17, 21]. Hetero-
geneous architectures have been widely adopted in various
computing domains, ranging from embedded systems to high
performance computing systems.

One of the most prominent early examples of a
heterogeneous multicore architecture is the IBM/Sony
CellR©architecture, which consists of a Power processor and
eight synergistic processors on the same chip. More recently,
Graphic Processing Units (GPUs) have seen wide-spread use
in heterogeneous systems. GPUs are able to execute data-
parallel applications efficiently, due to their highly multi-
threaded architecture and high-bandwidth memory. Ma-
jor chip vendors have already released products that inte-
grate CPUs and GPUs on the same chip, such as AMD’s
FusionR© APU chip.

By providing heterogeneous processing elements with dif-
ferent performance and energy characteristics in the same
system, heterogeneous architectures are expected to provide
more flexibility for better energy efficiency[21, 17]. Indeed,
prior work [17] has shown that heterogeneous systems are
able to reduce power and energy consumption compared to
homogeneous systems. However, without power-aware ap-
plication and data mapping methods that explicitly consider
heterogeneity, such advantages cannot be fully exploited.
Such methods are of interest for other reasons as well. For



example, excessive power consumption may cause system
unreliability (due to power constraints and local hot spots).

In work on homogeneous systems, much work has been
directed at techniques that reduce power and energy con-
sumption by applying dynamic voltage/frequency scaling
(DVFS) techniques to lower CPUs’ voltages/frequencies.
With the growing prevalence of such heterogeneous architec-
tures, there is a need to evolve such techniques so they can
be applied in systems with different computing resources.
One important category of applications that could benefit
from such techniques is those that are time-sensitive; ex-
amples include data analytics, stock trading, avionics, real-
time scoring of bank transactions, live video processing, etc.
Such applications range from desktop-level systems to sys-
tems that require significant computational capacity. As an
example of the latter, systems processing time-sensitive busi-
ness transactions have been implemented by Azul Systems
on top of the highly-parallel Vega3 platform, which consists
of CPUs and GPUs with up to 864 cores [22]. In this paper,
such time-sensitive applications are our focus.

The driving problem that motivates our research is that
of determining how to run analytics workloads1efficiently
in terms of timing guarantees and power/energy efficiency
on heterogeneous architectures. This can be very benefi-
cial to systems design in the era of “Big Data” analytics
[14]. “Big Data” analytics thrives to monetize insights in
both structured and unstructured data generated from all
sorts of sources 2, and make businesses more agile. On-
going research [24] has shown that running such analytics
workloads on GPUs often provides much better performance
with respect to response times and power/energy efficiency.
Analytics workloads often have strict response time require-
ments in order to make business decisions in realtime. As
an example, IBM recently released a new multicore-based
stream computing platform called IBM InfoSphere Streams
SystemR©, which enables massive amounts of data from “liv-
ing entities” to be analyzed in real time, delivering fast, ac-
curate insights to enable smarter business decision-making.
Yet another example is IBM InfoSphere BigInsightsR©that
brings the power of Hadoop to the enterprise for peta-scale
Big Data analytics.

Motivated by the above observations, in this paper, we
address the problem of devising power-efficient mappings of
time-sensitive applications onto CPU/GPU heterogeneous
systems. This problem can be divided into two subprob-
lems. First, since applications may have different perfor-
mance characteristics when executed on CPUs than GPUs,
efficient mapping techniques are needed to provide perfor-
mance guarantees3while considering heterogeneity. It has
been shown that the general problem of mapping applica-
tions with deadlines onto heterogeneous systems consisting
of at least two types of resources (e.g., CPUs and GPUs) is
NP-hard in the strong sense [5]. Thus, it is important to

1The term “application” used in this paper refers to such analyt-
ics workloads. In the evaluation section (Sec. 7), we implement
several such analytics workloads to evaluate the performance.
2Everyday, 2.5 quintillion bytes of data are created [14], coming
from many sources: from sensors used to gather climate infor-
mation, posts to social media sites, digital pictures and videos
posted online, transaction records of online purchases, and cell
phone GPS signals to name a few.
3In this paper, the required performance guarantee is meeting
applications’ deadlines.

design efficient mapping heuristics that can provide a mea-
surable guarantee (such as a speed-up factor, as shown in
Sec. 4) to meet applications’ deadlines. Secondly, in order to
reduce power and energy consumption, power-efficient tech-
niques such as DVFS are needed that can be applied on both
CPUs and GPUs. Our proposed strategy is to first map ap-
plications onto CPUs and GPUs, and to then apply DVFS
on each CPU and GPU.

More specifically, our mapping techniques consider the
characteristics of both resources and applications to make
mapping decisions. An application is always mapped to a
resource that can execute it with the fastest speed while
meeting its deadline. We propose mapping techniques that
can be applied both initially and when applications dynami-
cally arrive at run-time. Additionally, by leveraging the fact
that at run-time some applications typically exhibit actual
execution times that are lower than their worst-case execu-
tion time, we propose and apply techniques to dynamically
and aggressively reduce voltages/frequencies on CPUs and
GPUs. Note that our strategy should generally apply to
other heterogeneous systems containing two different types
of computing resources, such as systems with CPUs and
FPGAs, CPU with on-chip accelerators, etc. Our overall
strategy is based on several components:

1. An offline scheme for mapping the initial set of
applications and computing the appropriate volt-
age/frequency to minimize power and energy con-
sumption while meeting all deadlines (Sec. 4).

2. An online scheme for dynamically mapping applica-
tions arriving at run-time and re-evaluating the volt-
age/frequency settings (Sec. 5).

3. A speculative voltage/frequency scaling scheme that
aggressively reduces voltage/frequency by exploiting
average-case execution time information (Sec. 6).

We evaluated the above strategy by implementing it on a
real CPU/GPU heterogeneous system and running several
analytics workloads, such as Non-Negative Matrix Factor-
ization (NMF)4[18] implemented using OpenCL [8]. Exper-
imental results using real power measurements demonstrate
that our proposed algorithms can achieve much better power
and energy efficiency than performance-driven mapping al-
gorithms that always map applications to resources with the
fastest response time. Our experiments show that power
and energy consumption can be further reduced by exploit-
ing earlier-than-worst-case completions and by aggressively
reducing voltages/frequencies by exploiting average-case ex-
ecution time information.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 presents our system model.
Sections 4-6 describe the proposed power-efficient mapping
techniques in detail. Section 7 discusses our implementation
methodology and experimental results. Section 8 concludes.

2. RELATED WORK
Kumar et al. [17] were among the first work to demon-

strate that heterogeneous architectures have advantages over

4NMF has been used in many data analyzing problems such as
text mining, spectral data analysis, and scalable Internet distance
prediction [18].



homogeneous ones in terms of throughput and power effi-
ciency. In work on throughput-oriented systems, Luk et al.
[21] proposed an adaptive mapping technique to map ap-
plications onto a heterogeneous system consisting of CPUs
and GPUs. This mapping algorithm has been implemented
in an experimental system called Qilin for programming
CPUs and GPUs. Evaluation results show that compared
to manual mapping (e.g., manually done by the program-
mer), their adaptive mapping performs close in both exe-
cution time and energy consumption, but can better adapt
to changes in input sizes, and hardware and software con-
figurations. In [4], Augonnet et al. proposed an efficient
mapping technique that overlaps communication with com-
putation to support application graphs in heterogeneous sys-
tems consisting of CPUs and GPUs. Moreover, several [13,
15] propose scheduling techniques in heterogeneous systems
in order to improve performance and/or energy efficiency,
at either user-level and operating system kernel-level. Also
much work (see [20] for a survey) has been done on DVFS-
based power-aware scheduling techniques for homogeneous
systems.

In real-time and embedded systems, much work has been
done on power- and energy-efficient scheduling on DVFS-
enabled platforms, including uniprocessor and multiproces-
sor systems. An overview of such work can be found in
[6]. However, none of this prior work targets heterogeneous
systems consisting of CPUs and GPUs. In contrast to our
work, where power/energy measurements were obtained in
a real heterogeneous system by running real workloads, in
most prior work, a simulation-based evaluation approach
was used.

3. SYSTEM MODEL
We consider the problem of mapping n independent ap-

plications J = {J1, J2, J3, ..., Jn} arriving at time 0, and a
number of dynamically arriving applications, onto m pro-
cessors {P1, P2, ..., Pm}. Each processor is either a CPU or
a GPU. Each application Ji has an arrival time ri, a dead-
line di, and a worst-case execution time of eci (resp., egi ) if
executed on a CPU (resp., GPU) under the maximum volt-
age/frequency. The execution time and deadline can range
from milliseconds to hours, depending on the specific ap-
plication. We can obtain the worst-case execution time of
an application by either using a worst-case execution time
analysis tool [12] or by sampling runs.5Any application Ji
must complete its execution by time di. We require that for
any application Ji, e

c
i + ri ≤ di and egi + ri ≤ di hold; other-

wise, deadlines cannot be met. Our techniques can also be
extended to be applied to more generalized real-time execu-
tion models. A summary of important notations is given in
Table 1.

Power model. Prior work has shown that the
power/energy consumption of a processor is a monotoni-
cally increasing superlinear function of the supply voltage
[23]. The dominant components of power consumption in
widely adopted CMOS technology are active and idle power
dissipation. Similar to previous work [7, 11, 16], we can ap-
proximate the power consumption ptotal of an on-chip sys-
tem by the following:

5Sampling techniques have been commonly used to obtain worst-
case execution times in prior related work (see [12] for a survey).

Table 1: Notation Summary.
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n number of applications arriving at time 0

m number of processors

Ji ith application

Pi ith processor (either a CPU or a GPU)

ri arrival time of Ji

di deadline of Ji

eic
worst-case execution time of Ji executed on a 

CPU under its maximum voltage

eig
worst-case execution time of Ji executed on a 

GPU under its maximum voltage

vk kth voltage level on a processor

vmaxi maximum voltage level on Pi

ptotal = pidle +

m∑
i=1

λi · f3
i .

In this expression, pidle denotes the idle power dissipation,
which is assumed to include the base power consumption of
the CPU and the power consumption of all other compo-
nents. Additionally, each processor Pi also consumes power
λi · f3

i that depends on the processor’s operating frequency
fi. (Note that frequency is proportional to voltage [23] with
a small offset.) Thus, the active energy consumed by pro-
cessor Pi during a time interval with length t is given by
λi · f3

i · t, where λi is a coefficient term that includes power
loss due to power supply inefficiency. Furthermore, the ex-
ecution time of an application is inversely proportional to
voltage and frequency [11, 23]. As seen from this model,
DVFS is able to reduce power/energy consumption by re-
ducing the voltage/frequency.

We assume that both CPUs and GPUs have a fixed
number of voltage steps, which is often the case in prac-
tice. Moreover, most modern processors specify volt-
age/frequency pairs (referred to as a P-state) instead of
separate voltage and frequency values. Thus, for concise-
ness, we use voltage in this paper to represent the volt-
age/frequency pair. Let {v1, v2, ..., 1.0} (vj ≤ vj+1 ≤ 1.0)
denote the normalized voltage levels of processor Pi (the
maximum normalized voltage level on any processor is 1.0).
Each workload Ji has a worst-case execution time eci on a
CPU under the maximum voltage level, or egi on a GPU un-
der the maximum voltage level. Since the execution time of
an application is inversely proportional to voltage, the exe-
cution time of Ji executed on any CPU (respectively, GPU)

Pi under a specific voltage level vk is thus given by
eci
vk

(re-

spectively,
e
g
i

vk
).

Preemptive vs. non-preemptive execution. Preemp-
tive execution is allowed on CPUs. However, on GPUs, ex-
ecutions are often non-preemptive [10]. That is, once an
application starts execution on a GPU, it cannot be pre-
empted by other applications until its completion. We thus
assume that executions are preemptive on CPUs but non-
preemptive on GPUs.



Earliest-deadline-first. As shown in Sec. 4, we use
earliest-deadline-first (EDF) to order applications on each
processor. Under EDF, applications are prioritized by their
deadlines, and any ties are broken by application ID.

4. STATIC MAPPING
In this section, we present the offline mapping algorithm

for the initial set of applications arriving at time 0, assuming
that each application’s worst-case execution time is known.
In later sections, we show how to adapt to the dynamic case
where workloads arrive at run-time.

The algorithm contains an assignment phase, a load-
balancing phase, and a voltage scaling phase. The assign-
ment phase assigns applications to processors (i.e., CPUs
and GPUs), the load-balancing phase balances loads among
processors, and the voltage scaling phase adjusts the volt-
age/frequency on each processor. The goal is to reduce
power and energy consumption (i.e., adjust each processor’s
voltage/frequency to the lowest possible level) while meet-
ing all deadlines. A feasible mapping is one that meets all
deadlines.

Assignment. The problem of assigning applications to het-
erogeneous systems containing at least two types of proces-
sors while meeting all deadlines has been shown to be NP-
hard in the strong sense [5]. An assignment algorithm for
such systems named FF-3C , recently proposed by Ander-
sson et. al [3], provides provable quantitive performance
guarantee on meeting deadlines. FF-3C was designed for
assigning real-time periodic 6applications onto two different
types of processors. As shown in [3], FF-3C has a speed-
competitive ratio of 2, which implies that if any feasible
mapping algorithm exists for a set of applications over A,
then FF-3C can provide a feasible mapping for the same set
of applications over a computing platform A’ each of whose
processors has at least twice the speed of the corresponding
processor in A. A low speed-competitive ratio of 2 indicates
high performance of the FF-3C algorithm.

Our proposed assignment phase is designed based upon
FF-3C. Compared to the original FF-3C algorithm, the only
modification is to order applications in a certain way before
making the assignment decisions (as shown later). The in-
tuition behind the ordering process is to increase the like-
lihood that applications that run faster on a specific type
of processor are mapped onto processors of that type. The
pseudo-code of the assignment algorithm is shown in Fig. 1.
Before describing the algorithm, we give several necessary
definitions.

Definition 1. The load of an application Ji executed on
CPU (resp., GPU) under the maximum voltage is given by

loadci =
eci

di − ri
(resp., loadgi =

egi
di − ri

). An application Ji

is termed to be heavy on a CPU (resp., a GPU) if loadci >
1/2 (resp., loadgi > 1/2).

Definition 2. The heterogeneity ratio of an application

Ji is defined to be Hi = max(
eci
egi
,
egi
eci

). For any application

6A periodic application generates a potentially infinite sequence
of jobs with deadlines. Jobs arrive exactly p time units apart
where p is often called period. Note that the periodic task model
generalizes the application model used in this paper. This is
because each application under our model can be deemed as a
periodic task that only releases one job.

meets all deadlines.

Assignment. The problem of assigning applications to het-
erogeneous systems containing at least two types of proces-
sors while meeting all deadlines has been shown to be NP-
hard in the strong sense [6]. An assignment algorithm for
such systems named FF-3C , recently proposed by Andersson
et. al [3], provides provable quantitive performance guaran-
tee on meeting deadlines. FF-3C was designed for assigning
real-time periodic 6 applications onto two different types of
processors. As shown in [3], FF-3C has a speed-competitive
ratio of 2, which implies that if any feasible mapping algo-
rithm exists for a set of applications over A, then FF-3C can
provide a feasible mapping for the same set of applications
over a computing platform A’ each of whose processors has
at least twice the speed of the corresponding processor in A.

Our proposed assginment phase is designed based upon
FF-3C. Compared to the original FF-3C algorithm, the only
modification is to order applications in a certain way before
making the assignment decisions (as shown later). The intu-
ition behind the ordering process is to increase the likelihood
that applications that run faster on a specific type of processor
are mapped onto processors of that type. The psuedo-code of
the assignment algorithm is shown in Fig. 1. Before describ-
ing the algorithm, we give several necessary definitions.

Definition 1. The load of an application Ji executed on CPU
(resp., GPU) under the maximum voltage is given by loadci =
eci

di − ri
(resp., loadgi =

egi
di − ri

). An application Ji is termed

to be heavy on a CPU (resp., a GPU) if loadci >
1

2
(resp.,

loadgi >
1

2
).

Definition 2. The heterogeneity ratio of an application Ji is

defined to be Hi = max(
eci
egi
,
egi
eci

). For any application Ji,

eci
egi

> 1 implies that Ji is more suitable to be executed on a

GPU than on a CPU. The favorite processor type of an appli-

cation Ji is a GPU if
eci
egi

> 1 and a CPU otherwise.

Definition 3. Let J1, J2, ..., Jqi denote applications that are
assigned to processor Pi, ordered by EDF (i.e., dk ≤ dk+1)
that are not completed at time t. Then, the processor
load on CPU (respectively, GPU) Pi at time t is given

by load(Pi, t) = maxqik=1

(∑k
o=1 e

c
o

dk − t
)

(resp., load(Pi) =

maxqik=1

(∑k
o=1 e

g
o

dk − t
)

), where eco (ego) denotes the remaining

execution time of Jo at time t on CPU (resp., GPU). At time

6A periodic application generates a potentially infinite sequence of jobs
with deadlines. Jobs arrive exactly p time units apart where p is often called
period. Note that the periodic task model generalizes the application model
used in this paper. This is because each application under our model can be
deemed as a periodic task that only releases one job.
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CPU: load(P1)= 1/3

GPU: load(P2)=7/15
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Ugpu: 0.1
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task Ucpu: 0.3

Ugpu: 0.3

J3

Figure 1. The psuedo-code of Algorithm As-
signment.

(respectively, load(Pi) = maxqik=1(

∑k
o=1 e

g
o

dk − t
)), where

eco (ego) denotes the remaining execution time of Jo
at time t on CPU (respectively, GPU). At time

0, load(Pi, 0) = maxqik=1(

∑k
o=1 e

c
o

dk
) (respectively,

load(Pi) = maxqik=1

(∑k
o=1 e

g
o

dk

)
) if Pi is a CPU (GPU).

Example 1. Consider assigning two applications J1 and J2
onto a CPU P1, where ec1 = 1, d1 = 4 and ec2 = 3, d2 = 12.

Thus, we have load(P1, 0) = max
(1
4
,
1 + 3

12

)
= 1/3. Intu-

itively, it implies that at most 1/3 of the processor capacity
can be occupied at any time point by applications arriving
at time 0.

Now we describe the psuedo-code of the assignment al-
gorithm. Note that the first-fit policy used in this algorithm
represents the classical first-fit bin-packing policy, which
assigns an application to the first processor that can acco-
modate it. In our problem context, a processor can accomo-
date an application if and only if the application’s deadline
can be met (which can be checked by Theorem 1 shown
later). Let Jh denote the set of applications that are heavy
on their non-favorite processors. Let Jnh denote a set of
applications that are non-heavy on both CPUs and GPUs.

ASSIGNMENT

1 Sort applications in Jh and Jnh by
largest-heterogeneity-ratio-first

2 for each application Jk in Jh do
3 Assign Jk to its favourite processors by first-fit
4 for each application Jk in Jnh do
5 Assign Jk to its favourite processors by first-fit
6 for each remaining application Jk in Jnh do
7 Assign Jk to its non-favourite processors by first-fit
8 for each processor Pi do
9 Sort applications assigned to Pi by EDF

Algorithm description. Algorithm Assignment assigns
applications onto processors. First applications are di-
vided into two sets: a set Jh in which applications are

heavy on their non-favorite processors and a set Jnh in
which applications are non-heavy on both CPUs and GPUs.
Then within each set, applications are sorted by largest-
heterogeneity-ratio-first (Line 1). This is to give applica-
tions with a larger heterogeneity ratios a greater chance to
be assigned to their favorite processors. Then applications
in Jh and Jnh in order are assigned to their favorite type
of processor by first-fit (Lines 2-5). Any remaining applica-
tions in Jnh are assigned to their non-favourite type of pro-
cessor by first fit (Lines 6-7). Finally applications on each
processor are ordered by EDF (Lines 8-9). Note that if an
application cannot be assigned to a processor (while meet-
ing its deadline) in Lines 3, 5, and 7, then the algorithm fails
to produce a feasible assignment.

Notice that we have yet not discussed the criteria for suc-
cessfully assigning an application to a processor such that
the deadline can be met. To provide such a criteria, we
apply a well-known result on scheduling independent jobs
with deadlines on a uniprocessor, as stated in the following
theorem.

Theorem 1. [18] For executing applications on CPU
(GPU) Pi in EDF order starting from time t, all dead-
lines are guaranteed to be met if load(Pi, t) ≤ 1, where
load(Pi, t) is the processor load as defined in Def. 3.

By Theorem 1, when assigning an application to a pro-
cessor in Lines 4, 6, and 8, its deadline can be met (thus
a successful assignment) if load(Pi) ≤ 1 holds. Note that
performing the test stated in Theorem 1 on any processor
has a time complexity ofO(n), since computing load(Pi, 0)
has a time complexity of O(n).

Time complexity. Algorithm Assignment has a
polynomial-time complexity with respect to the number of
tasks n and the number of processors m. Specifically, its
time complexity is dominated by the first-fit assignment
step on Line 3, or 5, or 7, which has a time complexity of
O(n2 ·m).

Performance guarantee provided by the assignment al-
gorithm. It has been shown in [3] that FF-3C has a
speed competitive ratio of 2. There are only two differ-
ences between our assignment algorithm and FF-3C. First,
we sort applications within sets Jh and Jnh by largest-
heterogeneity-first where FF-3C does not assume any spe-
cific ordering among tasks. Second, we target at indepen-
dent applications with deadlines where FF-3C targets at
real-time periodic applications. Due to the facts that the
order of applications used in our algorithm can be viewed
as a specific case of all possible orders supported by FF-
3C and the real-time periodic application model generalizes
the independent application model, our mapping algorithm
also yields a speed competitive ratio of 2. (Note that the

5

Figure 1. The psuedo-code of Algorithm As-
signment.

execution time of Jo at time t on CPU (resp., GPU). At time

0, load(Pi, 0) = maxqik=1

(∑k
o=1 e

c
o

dk

)
(resp., load(Pi) =

maxqik=1

(∑k
o=1 e

g
o

dk

)
) if Pi is a CPU (resp., GPU).

Example 1. Consider assigning two applications J1 and J2
onto a CPU P1, where (ec1, d1 = 1, 4) and (ec2, d2 = 3, 12).

Thus, we have load(P1, 0) = max
(1
4
,
1 + 3

12

)
= 1/3.

Now we describe the psuedo-code of the assignment al-
gorithm. Note that the first-fit policy used in this algorithm
represents the classical first-fit bin-packing policy, which
assigns an application to the first processor that can acco-
modate it. In our problem context, a processor can accomo-
date an application if and only if the application’s deadline
can be met (which can be checked by Theorem 1 shown
later). Let Jh denote the set of applications that are heavy
on their non-favorite processors. Let Jnh denote a set of
applications that are non-heavy on both CPUs and GPUs.

ASSIGNMENT

1 Sort applications in Jh and Jnh by
largest-heterogeneity-ratio-first

2 for each application Jk in Jh do
3 Assign Jk to its favorite processors by first-fit
4 for each application Jk in Jnh do
5 Assign Jk to its favorite processors by first-fit
6 for each remaining application Jk in Jnh do
7 Assign Jk to its non-favorite processors by first-fit
8 for each processor Pi do
9 Sort applications assigned to Pi by EDF

Algorithm description. Algorithm Assignment assigns
applications to processors. First, applications are di-
vided into two sets: a set Jh in which applications are
heavy on their non-favorite processors and a set Jnh in

which applications are non-heavy on both CPUs and GPUs.
Then, within each set, applications are sorted by largest-
heterogeneity-ratio-first (Line 1). This is to give applica-
tions with a larger heterogeneity ratio a greater chance to be
assigned to their favorite processors. Then applications in
Jh and Jnh in order are assigned to their favorite type of
processor by first-fit (Lines 2-5). Any remaining applica-
tions in Jnh are assigned to their non-favorite type of pro-
cessor by first fit (Lines 6-7). Finally applications on each
processor are ordered by EDF (Lines 8-9). Note that if an
application cannot be assigned to a processor (while meet-
ing its deadline) in Lines 3, 5, and 7, then the algorithm fails
to produce a feasible assignment.

Notice that we have yet not discussed the criteria for suc-
cessfully assigning an application to a processor such that
the deadline can be met. To provide such a criteria, we
apply a well-known result on scheduling independent jobs
with deadlines on a uniprocessor under preemptive EDF, as
stated in the following theorem.

Theorem 1. [22] For executing applications arriving at
time 0 on CPU (or GPU) Pi in EDF order, all deadlines are
guaranteed to be met if load(Pi, 0) ≤ 1, where load(Pi, 0)
is the processor load at time 0 as defined in Def. 3.

By Theorem 1, when assigning an application to a pro-
cessor in Lines 4, 6, and 8, its deadline can be met (thus
a successful assignment) if load(Pi) ≤ 1 holds. Note that
performing the test stated in Theorem 1 on any processor
has a time complexity ofO(n), since computing load(Pi, 0)
has a time complexity of O(n).

Time complexity. Algorithm Assignment has a
polynomial-time complexity with respect to the number of
tasks n and the number of processors m. Specifically, its
time complexity is dominated by the first-fit assignment
step on Line 3, or 5, or 7, which has a time complexity of
O(n2 ·m).

Performance guarantee provided by the assignment al-
gorithm. It has been shown in [3] that FF-3C has a
speed competitive ratio of 2. There are only two differ-
ences between our assignment algorithm and FF-3C. First,
we sort applications within sets Jh and Jnh by largest-
heterogeneity-first where FF-3C does not assume any spe-
cific ordering among tasks. Second, we target at indepen-
dent applications with deadlines where FF-3C targets at
real-time periodic applications. Due to the facts that the
order of applications used in our algorithm can be viewed
as a specific case of all possible orders supported by FF-
3C and the real-time periodic application model generalizes
the independent application model, our mapping algorithm
also yields a speed competitive ratio of 2. (Note that the
load-balancing and the voltage/frequency scaling schemes
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Figure 1. The psuedo-code of Algorithm Assign-
ment.
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)
) if Pi is a CPU (resp., GPU).

Example 1. Consider assigning two applications J1 and J2
onto a CPU P1, where (ec1, d1 = 1, 4) and (ec2, d2 = 3, 12).

Thus, we have load(P1, 0) = max
(1
4
,
1 + 3

12

)
= 1/3.

Now we describe the psuedo-code of the assignment algo-
rithm. Note that the first-fit policy used in this algorithm rep-
resents the classical first-fit bin-packing policy, which assigns
an application to the first processor that can accomodate it. In
our problem context, a processor can accomodate an applica-
tion if and only if the application’s deadline can be met (which
can be checked by Theorem 1 shown later). Let Jh denote the
set of applications that are heavy on their non-favorite proces-
sors. Let Jnh denote a set of applications that are non-heavy
on both CPUs and GPUs.

ASSIGNMENT

1 Sort applications in Jh and Jnh by
largest-heterogeneity-ratio-first

2 for each application Jk in Jh do
3 Assign Jk to its favorite processors by first-fit
4 for each application Jk in Jnh do
5 Assign Jk to its favorite processors by first-fit
6 for each remaining application Jk in Jnh do
7 Assign Jk to its non-favorite processors by first-fit
8 for each processor Pi do
9 Sort applications assigned to Pi by EDF

Algorithm description. Algorithm Assignment assigns ap-
plications to processors. First, applications are divided into
two sets: a set Jh in which applications are heavy on their
non-favorite processors and a set Jnh in which applications
are non-heavy on both CPUs and GPUs. Then, within each
set, applications are sorted by largest-heterogeneity-ratio-first
(Line 1). This is to give applications with a larger hetero-
geneity ratio a greater chance to be assigned to their favorite
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Figure 1: The psuedo-code of Algorithm Assignment.

Ji,
eci
egi

> 1 implies that Ji is more suitable to be executed on

a GPU than on a CPU. The favorite processor type of an

application Ji is a GPU if
eci
egi

> 1 and a CPU otherwise.

Definition 3. Let J1, J2, ..., Jqi denote applications that
are assigned to processor Pi, ordered by EDF (i.e., dk ≤
dk+1) that are not completed at time t. Then, the pro-
cessor load on CPU (respectively, GPU) Pi at time t is

given by load(Pi, t) = maxqik=1

(∑k
o=1 e

c
o

dk − t
)

(resp., load(Pi) =

maxqik=1

(∑k
o=1 e

g
o

dk − t
)

), where eco (ego) denotes the remaining

execution time of Jo at time t on CPU (resp., GPU). At

time 0, load(Pi, 0) = maxqik=1

(∑k
o=1 e

c
o

dk

)
(resp., load(Pi) =

maxqik=1

(∑k
o=1 e

g
o

dk

)
) if Pi is a CPU (resp., GPU).

Example Consider assigning two applications J1 and J2
onto a CPU P1, where (ec1, d1 = 1, 4) and (ec2, d2 = 3, 12).
Thus, we have load(P1, 0) = max

(
1/4, (1 + 3)/12

)
= 1/3.

Now we describe the pseudo-code of the assignment algo-
rithm. Note that the first-fit policy used in this algorithm
represents the classical first-fit bin-packing policy, which as-
signs an application to the first processor that can accommo-
date it. In our problem context, a processor can accommo-
date an application if and only if the application’s deadline
can be met (which can be checked by Theorem 1 shown
later).

Algorithm description. Algorithm Assignment assigns
applications to processors. First, applications are divided
into two sets: a set Jh in which applications are heavy on
their non-favorite processors and a set Jnh in which applica-
tions are non-heavy on both CPUs and GPUs. Then, within
each set, applications are sorted by largest-heterogeneity-
ratio-first (Line 1). This is to give applications with a larger
heterogeneity ratio a greater chance to be assigned to their
favorite processors. Then applications in Jh and Jnh in or-
der are assigned to their favorite type of processor by first-fit
(Lines 2-5). Any remaining applications in Jnh are assigned
to their non-favorite type of processor by first fit (Lines 6-7).
Finally applications on each processor are ordered by EDF
(Lines 8-9). Note that if an application cannot be assigned
to a processor (while meeting its deadline) in Lines 3, 5, and
7, then the algorithm fails to produce a feasible assignment.



So far we have not yet discussed the criteria for success-
fully mapping an application to a processor to meet its dead-
line. To provide such a criteria, we apply a well-known result
on scheduling independent applications with deadlines on a
uniprocessor under EDF, as stated in the following theorem.

Theorem 1. [19] For executing applications arriving at
time 0 on CPU (or GPU) Pi in EDF order, all deadlines are
guaranteed to be met if load(Pi, 0) ≤ 1, where load(Pi, 0) is
the processor load at time 0 as defined in Def. 3.

Time complexity. It can be shown that Algorithm As-
signment has a time complexity of O(n2 ·m), where n is the
number of applications and m is the number of processors.7

Performance guarantee provided by the assignment
algorithm. It has been shown in [3] that FF-3C has a
speed competitive ratio of 2. There are only two differ-
ences between our assignment algorithm and FF-3C. First,
we sort applications within sets Jh and Jnh by largest-
heterogeneity-first where FF-3C does not assume any spe-
cific ordering among tasks. Second, we target independent
applications with deadlines where FF-3C targets periodic
applications with deadlines. Due to the facts that the order
of applications used in our algorithm can be viewed as a spe-
cific case of all possible orders supported by FF-3C and the
periodic application model generalizes the independent ap-
plication model, our mapping algorithm also yields a speed
competitive ratio of 2. (Note that the load-balancing and
the voltage/frequency scaling schemes as presented next do
not invalidate this speed competitive ratio result since they
are executed after the assignment process.)

Example Consider assigning a set of six applications onto
a heterogeneous system with a CPU P1 and a GPU P2.
The parameters of these applications are: J1(6, 2, 10),
J2(2, 1, 5), J3(4, 3, 15), J4(6, 1, 8), J5(3, 4, 12), J6(1, 3, 4),
where Ji(a, b, c) denotes that eci = a, egi = b, and di = c. The
heterogeneity ratios of these applications can be calculated
by Def. 2 as follows: H1 = 3, H2 = 2, H3 = 4/3, H4 = 6,
H5 = 4/3, and H6 = 3. By the definitions of Jh and Jnh,
in this example, Jh = {J1, J4, J6} and Jnh = {J2, J3, J5}.
By Algorithm Assignment shown in Fig. 1, applications J5
and J6 are assigned to CPU P1, and the other four appli-
cations are assigned to GPU P2. All deadlines are guar-
anteed to be met since under this assignment, by Def. 3,
load(P1) = 1/3 < 1 and load(P2) = 7/15 < 1. (This exam-
ple system will be used throughput this paper.)

Load-balancing. After mapping applications onto proces-
sors, it may be the case that some processors have much
heavier loads than others. This is undesirable from the per-
spective of reducing the overall system power and energy
consumption because the whole system may need to run
longer due to the imbalanced load. This may cause other
system components such as disks and memory to consume
more energy. Thus, we propose to balance loads among pro-
cessors after the initial mapping to avoid such problems. We
set up a threshold denoted thr (0 ≤ thr ≤ 1) to trigger the
load-balancing process. That is, if the difference between

7Note that in order to apply the mapping algorithm in a large-
scale systems with many nodes and achieve minimal mapping
overheads, the algorithm can be loop unrolled and parallelized,
and hence introduces negligible overhead.
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J3 J1 J4

J2 CPU: demand(P1) = 6
      load(P1) = 3/5

GPU: demand(P2) = 6
          load(P2) = 6/15

Ucpu: 0.4
Ugpu: 0.1

Newly 
arrival 
task Ucpu: 0.3

Ugpu: 0.3

J3

Figure 4. Example load-balancing.

LOAD-BALANCING

1 while demandmax > (1 + thr) · demandavg do
2 Order applications on Pmax

by shortest-exeuction-time-first
3 for each application Jk on Pmax in order do
4 if ek < demmax − demandmin and

Jk can be assigned to Pmin then
5 Remove Jk from Pmax and assign it to Pmin

6 Update demandavg , demandmax, Pmax

7 if demandavg , demandmax, and Pmax

remain unchanged then
8 Terminate

Algorithm description. If the condition shown on Line 1
holds, then the loads on some processors exceed the average
load by more than thr. Lines 2-4 balance loads between Pmax
and Pmin. Specifically, Lines 2-4 try to re-assign some appli-
cation that is originally assigned to Pmax to Pmin while still
meeting all deadlines (Line 4). Lines 5-7 provide a termina-
tion condition if demandmax, demandavg , and Pmax remain
unchanged, which implies that the algorithm cannot further
balance the load. Note that a small value of thr can lead to
more balanced loads but at the expense of higher run-time
complexity.8

Example 3. Consider the example assignment shown in
Fig. 2. For this example, demand(P1) = 4, demandmax =
demand(P2) = 8, demandavg = 6. Let thr = 20%
for this example. By Algorithm Load-Balancing, since J2
has the smallest execution cost and can be assigned to P1,
J2 is removed from P1 and assigned to P2, as shown in
Fig. 4. This leads to more balanced loads between P1 and
P2, where demand(P1) = demand(P2) = demandmax =
demandavg = 6.

Voltage/frequency scaling. After the assignment and the
load-balancing phase, we adjust the voltage level on each pro-
cessor in order to reduce power and energy consumption. The
following theorem computes the voltage level that should be
set at time 0 in order to achieve the best energy-efficiency.

Theorem 2. At time 0, the optimal voltage level on processor
Pi (either a CPU or a GPU) to minimize power and energy
consumption while meeting all the deadlines is constant and
equal to max(v1, v(load(Pi, 0))), where load(Pi, 0) is the

8Since both the assignment and the load-balancing can be executed of-
fline, in practice it might be desirable to have a small value of thr in order to
obtain a more balanced mapping.

processor load of Pi as defined in Def. 3 and v(load(Pi, 0))
denotes the lowest voltage level of Pi that is no less than
load(Pi, 0).

Proof. Since the power-voltage relationship is a monotonic
function (as discussed in Sec. 3), we can reduce the power
and energy consumption by maintaining a fixed voltage level
while fully utilizing the processor to the maximum extent.
Thus, power and energy consumption can be reduced to the
maximum extent under the lowest voltage level under which
deadlines can be guaranteed. Thus, to prove the theorem,
it is sufficient to prove that max(v1, v(load(Pi, 0))) is
the lowest voltage level under which all deadlines can be
guaranteed. Depending on the relationship between v1 and
v(load(Pi, 0)), we have two cases.

Case 1: v(load(Pi, 0)) ≤ v1. In this case,
max(v1, v(load(Pi, 0))) = v1, which is the lowest possible
voltage level on Pi. For conciseness, assume that Pi is a CPU
(the argument holds for the case where Pi is a GPU as well).
As discussed in Sec. 3, under v1, for any application Jo, its
execution time is given by eco

v1
. By Def. 3 and the definition of

v(load(Pi, 0)), we have

v1 ≥ v(load(Pi, 0)) ≥ load(Pi, 0). (1)

Thus, for Pi operated under voltage level v1, its processor

load can be re-calculated by maxqik=1

(∑k
o=1 e

c
o/v1

dk

)
=

load(Pi, 0)/v1
{by (1)}
≤ 1. Therefore, by Theorem 1, v1 is the

lowest voltage level under which all deadlines are met.

Case 2: v(load(Pi, 0)) > v1. In this case,
max(v1, v(load(Pi, 0))) = v(load(Pi, 0)), which from
the statement of the theorem is the lowest voltage level of Pi
that is no less than load(Pi, 0). That is,

v(load(Pi, 0)) ≥ load(Pi, 0) (2)

holds. Under v(load(Pi, 0)), for any application Jo, its ex-
ecution time is given by eco

v(load(Pi,0))
. Thus, for Pi oper-

ated under voltage level v(load(Pi, 0)), its processor load can

be re-calculated by maxqik=1

(∑k
o=1 e

c
o/v(load(Pi, 0))

dk

)
=

load(Pi, 0)/v(load(Pi, 0))
{by (2)}
≤ 1. Thus, under voltage

level v(load(Pi, 0)), all deadlines are met. Now we prove
that v(load(Pi, 0)) is the lowest voltage level that guaran-
tees to meet all deadlines. For Pi operated under any voltage
level v′ < load(Pi, 0), the execution time of any application
Jo is given by eco

v′ . Therefore, the processor load on Pi un-

der v′ becomes v(load(Pi, 0)) = maxqik=1

(∑k
o=1 e

c
o/v

′

dk

)
=

load(Pi, 0)/v
′ > 1, which by Theorem 1 implies that dead-

lines may be missed under v′.
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Figure 2: The psuedo-code of Algorithm Load-Balancing.

the maximum demand (as defined below) and the average
demand among processors becomes larger than thr, then
load-balancing is performed. The pseudo-code of the algo-
rithm is shown in Fig. 2.

Definition 4. The demand of CPU (resp., GPU) Pi is
defined to be demand(Pi) =

∑qi
k=1 e

c
k (resp.,

∑qi
k=1 e

g
i ). Let

demandmax, demandmin, and demandavg denote the max-
imum, the minimum, and the average demand among pro-
cessors respectively. Let Pmax (resp. Pmin ) denote the pro-
cessor that has the maximum (resp. minimum) demand.

Algorithm description. If the condition shown on Line 1
of the pseudo-code of the algorithm in Fig. 2 holds, then
the loads on some processors exceed the average load by
more than thr. Lines 2-4 balance loads between Pmax and
Pmin. Specifically, Lines 2-4 try to re-assign some applica-
tion that is originally assigned to Pmax to Pmin while still
meeting all deadlines (Line 4). Lines 5-7 provide a termina-
tion condition if demandmax, demandavg, and Pmax remain
unchanged, which implies that the algorithm cannot further
balance the load. Note that a small value of thr can lead to
more balanced loads but at the expense of higher complex-
ity.8

Example Consider the example assignment shown in Ex-
ample 2. For this example, demand(P1) = 4, demandmax =
demand(P2) = 7, demandavg = 5.5. Let thr = 20% for
this example. By Algorithm Load-Balancing, since J2 has
the smallest execution cost and can be assigned to P1, J2
is removed from P2 and assigned to P1. This leads to more
balanced loads between P1 and P2, where demand(P1) =
demand(P2) = demandmax = demandavg = 6.

Voltage/frequency scaling. After the assignment and
the load-balancing phase, we adjust the voltage level on each
processor in order to reduce power and energy consump-
tion. The following theorem computes the voltage level that
should be set at time 0 in order to achieve the best energy-
efficiency.

Theorem 2. At time 0, the optimal voltage level on pro-
cessor Pi (either a CPU or a GPU) to minimize power and
energy consumption while meeting all the deadlines is con-
stant and equal to max(v1, v(load(Pi, 0))), where load(Pi, 0)

8Since both the assignment and the load-balancing can be ex-
ecuted offline, in practice it might be desirable to have a small
value of thr in order to obtain a more balanced mapping.



is the processor load of Pi and v(load(Pi, 0)) denotes the
lowest voltage level of Pi that is no less than load(Pi, 0).

Proof. Since the power-voltage relationship is a mono-
tonic function (as discussed in Sec. 3), we can reduce the
power and energy consumption by maintaining a fixed
voltage level while fully utilizing the processor to the
maximum extent. Thus, power and energy consumption
can be reduced to the maximum extent under the lowest
voltage level under which deadlines can be guaranteed.
Thus, to prove the theorem, it is sufficient to prove that
max(v1, v(load(Pi, 0))) is the lowest voltage level under
which all deadlines can be guaranteed. Depending on the
relationship between v1 and v(load(Pi, 0)), we have two
cases.

Case 1: v(load(Pi, 0)) ≤ v1. In this case, max(v1, v(load(
Pi, 0))) = v1, which is the lowest possible voltage level on
Pi. For conciseness, assume that Pi is a CPU (the argument
holds for the case where Pi is a GPU as well). As discussed
in Sec. 3, under v1, for any application Jo, its execution time

is given by
eco
v1

. By Def. 3 and the definition of v(load(Pi, 0)),
we have

v1 ≥ v(load(Pi, 0)) ≥ load(Pi, 0). (1)

Thus, for Pi operated under voltage level v1, its processor

load can be re-calculated by maxqik=1

(∑k
o=1 e

c
o/v1

dk

)
=

load(Pi, 0)/v1
{by (1)}
≤ 1. Therefore, by Theorem 1, v1 is the

lowest voltage level under which all deadlines are met.

Case 2: v(load(Pi, 0)) > v1. In this case, max(v1, v(load(
Pi, 0))) = v(load(Pi, 0)), which from the statement of the
theorem is the lowest voltage level of Pi that is no less than
load(Pi, 0). That is,

v(load(Pi, 0)) ≥ load(Pi, 0) (2)

holds. Under v(load(Pi, 0)), for any application Jo, its ex-

ecution time is given by
eco

v(load(Pi,0))
. Thus, for Pi oper-

ated under voltage level v(load(Pi, 0)), its processor load

can be re-calculated bymaxqik=1

(∑k
o=1 e

c
o/v(load(Pi, 0))

dk

)
=

load(Pi, 0)/v(load(Pi, 0))
{by (2)}
≤ 1. Thus, under voltage

level v(load(Pi, 0)), all deadlines are met. Now we prove
that v(load(Pi, 0)) is the lowest voltage level that guaran-
tees to meet all deadlines. For Pi operated under any voltage
level v′ < load(Pi, 0), the execution time of any application

Jo is given by
eco
v′ . Therefore, the processor load on Pi un-

der v′ becomes v(load(Pi, 0)) = maxqik=1

(∑k
o=1 e

c
o/v
′

dk

)
=

load(Pi, 0)/v′ > 1, which by Theorem 1 implies that dead-
lines may be missed under v′.

Example Again, reconsider the system given in Exam-
ple 4. Assume that both CPUs and GPUs have three volt-
age/frequency steps: v1 = 0.5, v2 = 0.8, and vmax = 1. By
Theorem 2, since load(P1, 0) = 3/5 and load(P2, 0) = 6/15,
we have v(load(P1, 0)) = v2 = 0.8 and v(load(P2, 0)) = v1 =
0.5. Thus, P1 can be operated under a voltage of v2 and P2

can be operated under a voltage of v1. All applications can
still meet their deadlines after reducing voltages.

our algorithm takes advantage of such budgets (i.e., the idle
slack period between the application’s actual completion
time and its worst-case completion time) and adjust the volt-
age on-the-fly to enable more power and energy savings.
Finally, if an incoming application with a large heterogene-
ity ratio cannot be assigned to its favorite processor, then
our algorithm swaps this incoming application with some
application with a small heterogeneity ratio that has been
assigned to one of the incoming application’s favorite pro-
cessors (as shown next).

Under the dynamic mapping algorithm, the voltage level
will be re-adjusted in two circumstances: (i) when a new
application arrives, and (ii) an early completion is detected.
The psuedo-code of the algorithm is given below. Assume
that an application Jk arrives at time t.

DYNAMIC-MAPPING

1 Assign Jk to its favorite processors by first-fit
2 if Jk cannot be assigned then
3 for each processor Pi of Jk’s favorite type do
4 Order applications on Pi by lowest-heterogeneity-ratio-first
5 for each application Jh on Pi in order do
6 for each processor Pa other than Pi do
7 if Jh can be assigned to Pa and Jk can be assigned

to Pi after removing Jh from Pi then
8 Assign Jh to Pa and assign Jk to Pi

9 Order applications on Pa and Pi by EDF
10 if Jk still cannot be assigned to any processor then
11 for each processor Pi of Jk’s non-favorite type do
12 Assign Jk to Pi

13 Order applications on Pi by EDF
14 for each processor Pi whose application queue is changed do
15 Re-adjust Pi’s voltage to be max(v1, v(load(Pi, t)))
16 if an early completion is detected on processor Pi at time t then
17 Re-adjust Pi’s voltage to be max(v1, v(load(Pi, t)))

Algorithm description. Algorithm Dynamic-Mapping as-
signs an application arriving at run-time to a processor and re-
adjusts the processor’s voltage accordingly. When an application
Jk arrives at run-time, Jk is assigned to some processor of its fa-
vorite type (Line 1). If none of Jk’s favorite processors can acco-
modate it, then the algorithm checks whether there exists an appli-
cation Jh queued on one of Jk’s favorite processors Pi such that
Jk can be assigned to Pi after removing Jh from Pi, and Jh can
be assigned to some other processor Pa (Lines 2-7). If Jk still can-
not be assigned to one of its favorite type of processors, then Jk

is assigned to one of its non-favorite type of processors (Lines 8-
10). Finally, if any processor’s queue has been changed or an early
completion is detected, then the voltage/frequency of this proces-
sor is re-adjusted (Lines 11-14). Note that the algorithm fails if the
application cannot be assigned on Lines 1, 8, and 12.

Time complexity. The time complexity of Algorithm
Dynamic-Mapping is dominated by the three loops on Lines 3-7,
which have a complexity of O(m2 · n2).

Example 5. Consider the same example as presented in Exam-
ples 2-4. Now assume that an application J7 arrives at time 4 at
run-time, whose ec7 = 4, eg7 = 6, and d7 = 11. By Def. 2, CPU
is the favorite type of processor of J7. By Theorem 1, it cannot be
assigned to P1. By Algorithm Dynamic-Mapping, J5 is removed
from P1 and assigned to P2, and J7 can be assigned to P1. Af-
ter the assignment, load(P1, 4) = 4/7 and load(P2, 4) = 0.79.
Thus, by Theorem 2, both P1 and P2 can be operated with a volt-
age of v2.

So far we have described the proposed offline and online map-
ping schemes that both make mapping decisions assuming worst-
case execution time information. Due to the fact that in practice,
many applications exhibit average-case execution behaviors (i.e.,
run-time execution times are often shorter than the worst-case), we
will desribe in the next section how to utilize this fact to further
improve power and energy efficiency.

6 Aggressive Voltage Reduction

Although the static and dynamic mapping algorithms provide
sound assignment and voltage scaling schemes, they all assume
the worst-case workloads. This assumption is conservative and
pessimistic since the run-time execution time is often shorter than
the worst-case. In this section, we propose an aggressive volt-
age reduction scheme by speculating that the current and future
workloads will most likely present an average-case computational
demand that is lower than the worst-case demand.

The mapping scheme is the same as the algorithm presented in
previous sections, except that voltages are set assuming average-
case execution times instead of the worst-case.9 Since we assume
average-case execution times, we may need to adjust the volt-
age/frequency when an early or late completion is detected. We
apply similar schemes as used in Algorithm Dynamic-Mapping
for the adjustment. Specifically, when an early or late compeletion
is detected on processor Pi at time t, load(Pi, t) is re-computed
and Pi’s voltage is adjusted to be max(v1, v(load(Pi, t))). Note
that some applications may not be able to meet their deadlines if
late completions occur. Thus, the aggerssive voltage reduction al-
gorithm may further reduce power and energy consumption at the
expense of missing deadlines.

Example 6. For the example application system as presented in
Example 2, assume that the average execution time for all six ap-
plications is 0.5 time unit less than the corresponding worst-case
execution time. Then, by the above aggressive voltage reduction
algorithm, both P1 and P2 can be operated under a voltage of v3
since by using the average-case execution times, load(P1, 0) =
0.3 and load(P2, 0) = 0.4. This further reduces the voltage com-
pared to the case where the static or the dynamic mapping algo-
rithm is used.

In order to balance the tradeoff between performance and en-
ergy efficiency, we introduce a parameter K for each processor
to determine the aggressiveness level. On any processor, K can
be set to be

vavg
vworst

≤ K ≤ 1, where vavg is the voltage level

9The average-case information may not need to be accurate, as we shall
discuss later.
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Figure 6. The psuedo-code of Algorithm
Dynamic-Mapping.

DYNAMIC-MAPPING

1 Assign Jk to its favorite processors by first-fit
2 if Jk cannot be assigned then
3 for each processor Pi of Jk’s favorite type do
4 Order applications on Pi by

lowest-heterogeneity-ratio-first
5 for each application Jh on Pi in order do
6 for each processor Pa other than Pi do
7 if Jh can be assigned to Pa and Jk can be

assigned to Pi after removing Jh from Pi then
8 Assign Jh to Pa and assign Jk to Pi
9 Order applications on Pa and Pi by EDF

10 if Jk still cannot be assigned to any processor then
11 for each processor Pi of Jk’s non-favorite type do
12 Assign Jk to Pi
13 Order applications on Pi by EDF
14 for each processor Pi whose application queue

is changed do
15 Re-adjust Pi’s voltage to be max(v1, v(load(Pi, t)))
16 if an early completion is detected on processor Pi

at time t then
17 Re-adjust Pi’s voltage to be max(v1, v(load(Pi, t)))

Algorithm description. Algorithm Dynamic-Mapping
assigns an application arriving at run-time to a processor
and re-adjusts the processor’s voltage accordingly. When
an application Jk arrives at run-time, Jk is assigned to some
processor of its favorite type (Line 1). If none of Jk’s
favorite processors can accomodate it, then the algorithm

checks whether there exists an application Jh queued8 on
one of Jk’s favorite processors Pi such that Jk can be as-
signed to Pi after removing Jh from Pi, and Jh can be as-
signed to some other processor Pa (Lines 2-7). If Jk still
cannot be assigned to one of its favorite type of processors,
then Jk is assigned to one of its non-favorite type of pro-
cessors (Lines 8-10). Finally, if any processor’s queue has
been changed or an early completion is detected, then the
voltage/frequency of this processor is re-adjusted (Lines 11-
14). Note that the algorithm fails if the application cannot
be assigned on Lines 1, 8, and 12.

As discussed in Sec. 3, executions on GPUs are non-
preemptive. Thus, we are not able to apply Theorem 1 as a
criteria for successful assignment since it assumes preemp-
tive EDF and targets at applications that arrive at time 0.
The following theorem privides such a criteria for the dy-
namic arrival case. Consider the case where an application
Jk comes at time t at run-time on processor Pi. Let Jx de-
note the application that is executing or just completes at t.
Let e′x denote the remaining execution time of Jx after t.

Theorem 3. An application Jk arriving at time t at
run-time can be successfully assigned to processor Pi if
load(Pi, t) ≤ 1 and load(Pi, t+ e′x) ≤ 1.

Proof. If Jx completes at t or Jk has a late deadline than
Jx, then by Theorem 1 load(Pi, t) ≤ 1 is a sufficient con-
dition for Jk to be successfully assigned to Pi because in
these cases no preemption may occur after t. The other
case is that Jx is executing at t but has a deadline later than
Jk. Under this case, Jk has an earlier deadline than Jx but
cannot preempt Jx. Thus, we need to check the processor
load again when Jx completes. When Jx completes at time
t+ e′x, applications queued on Pi including Jk can be exe-
cuted in the EDF order and no preemption may occur after
t + e′x. That is, load(Pi, t + e′x) ≤ 1 provides a sufficient
condition for Jk to be successfully assigned to Pi.

Time complexity. The time complexity of Algorithm
Dynamic-Mapping is dominated by the three loops on
Lines 3-7, which have a complexity of O(m2 · n2).

Example 5. Consider the same example as presented in Ex-
amples 2-4. Now assume that an application J7 arrives at
time 4 at run-time, whose ec7 = 4, eg7 = 6, and d7 = 11.
By Def. 2, CPU is the favorite type of processor of J7.
By Theorem 1, it cannot be assigned to P1. By Algo-
rithm Dynamic-Mapping, J5 is removed from P1 and as-
signed to P2, and J7 can be assigned to P1. After the assign-
ment, load(P1, 4) = 4/7 and load(P2, 4) = 0.79. Thus, by
Theorem 2, both P1 and P2 can be operated with a voltage
of v2.

8Note that Jh must be queued but not being executes
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Figure 3: The pseudo-code of Algorithm Dynamic-Mapping.

5. DYNAMIC MAPPING WITH BUDGET
RECLAMATION

In practice, it is often the case that applications arrive at
run-time. Thus, in this section, we propose an algorithm
based upon the static mapping algorithm to handle the dy-
namic arrival case. In practice, applications may often com-
plete earlier than under the worst case. Thus, if an applica-
tion completes earlier, then our algorithm takes advantage
of processing capacity made available and adjusts the volt-
age on that application’s processor on-the-fly to enable more
power and energy savings. Finally, if an incoming applica-
tion with a large heterogeneity ratio cannot be assigned to
its favorite processor, then our algorithm swaps this applica-
tion with some application with a small heterogeneity ratio
that has been assigned to one of the incoming application’s
favorite processors.

Under the dynamic mapping algorithm, the voltage level
will be re-adjusted in two circumstances: (i) when a new
application arrives, and (ii) an early completion is detected.
The pseudo-code of the algorithm is shown in Fig. 3. Assume
that an application Jk arrives at time t.
Algorithm description. Algorithm Dynamic-Mapping as-
signs an application arriving at run-time to a processor and
re-adjusts the processor’s voltage accordingly. When an ap-
plication Jk arrives at run-time, Jk is assigned to some pro-
cessor of its favorite type (Line 1). If none of Jk’s favorite
processors can accommodate it, then the algorithm checks
whether there exists an application Jh queued9on one of Jk’s
favorite processors Pi such that Jk can be assigned to Pi af-
ter removing Jh from Pi, and Jh can be assigned to some
other processor Pa (Lines 2-7). If Jk still cannot be assigned
to one of its favorite type of processors, then Jk is assigned
to one of its non-favorite type of processors (Lines 8-10). Fi-
nally, if any processor’s queue has been changed or an early
completion is detected, then the voltage/frequency of this

9Note that Jh must be queued and is not executing



processor is re-adjusted (Lines 11-14). Note that the algo-
rithm fails if the application cannot be assigned in Lines 1, 8,
and 12. Also note that since compilation at run-time, which
is needed in order to dynamically map application, may cost
significant power and energy consumption, one optimization
step is to pre-compile all types of applications that arrive at
run-time.

As discussed in Sec. 3, executions on GPUs are non-
preemptive. Thus, we are not able to apply Theorem 1 as a
criteria for successful assignment since it assumes preemp-
tive EDF and targets applications that arrive at time 0.
The following theorem provides such a criteria for the dy-
namic arrival case. Consider the case where an application
Jk comes at time t at run-time and is mapped to proces-
sor Pi by Algorithm Dynamic-Mapping. Let Jx denote the
application that is executing or just completes at t. Let e′x
denote the remaining execution time of Jx after t.

Theorem 3. An application Jk arriving at time t at
run-time can be successfully assigned to processor Pi if
load(Pi, t) ≤ 1 and load(Pi, t+ e′x) ≤ 1.

Proof. If Jx completes at t or Jk has a later deadline
than Jx, then by Theorem 1, load(Pi, t) ≤ 1 is a sufficient
condition for Jk to be successfully assigned to Pi because in
these cases no preemption may occur after t. The other case
is that Jx is executing at t but has a deadline later than Jk.
Under this case, Jk has an earlier deadline than Jx but can-
not preempt Jx. Thus, we need to check the processor load
again when Jx completes. When Jx completes at time t+e′x,
applications queued on Pi including Jk can be executed in
the EDF order and no preemption may occur after t + e′x.
That is, load(Pi, t + e′x) ≤ 1 provides a sufficient condition
for Jk to be successfully assigned to Pi.

Time complexity. The time complexity of Algorithm
Dynamic-Mapping is dominated by the three loops in
Lines 3-7, which have a complexity of O(m2 · n2).

Example Consider the same system as presented in Exam-
ples 4-4. Now assume that an application J7 arrives at time
4 at run-time, whose ec7 = 4, eg7 = 6, and d7 = 11. By Def. 2,
CPU is the favorite type of processor of J7. By Theorem 1, it
cannot be assigned to P1. By Algorithm Dynamic-Mapping,
J5 is removed from P1 and assigned to P2, and J7 can be
assigned to P1. After the assignment, load(P1, 4) = 4/7 and
load(P2, 4) = 0.79. Thus, by Theorem 2, both P1 and P2

can be operated with a voltage of v2.

6. AGGRESSIVE VOLTAGE REDUCTION
Although the static and dynamic mapping algorithms pro-

vide sound assignment and voltage scaling schemes, they all
assume the worst-case workloads. This assumption is con-
servative and pessimistic since the run-time execution time is
often shorter than the worst-case. In this section, we propose
an aggressive voltage reduction scheme by speculating that
workloads will most likely present an average-case compu-
tational demand that is lower than the worst-case demand.

The mapping scheme is the same as the algorithm pre-
sented in previous sections, except that voltages are set as-
suming average-case execution times instead of the worst-
case.10Since we assume average-case execution times, we

10The average-case information may not need to be accurate, as
we shall discuss later.

may need to adjust the voltage/frequency when an early
or late completion is detected. We apply similar schemes
as used in Algorithm Dynamic-Mapping for the adjustment.
Specifically, when an early or late completion is detected
on processor Pi at time t, load(Pi, t) is re-computed and
Pi’s voltage is adjusted to be max(v1, v(load(Pi, t))). Note
that some applications may miss their deadlines if late com-
pletions occur. Thus, the aggressive voltage reduction al-
gorithm may reduce power and energy consumption at the
cost of missing deadlines.

Example For the example application system as presented
in Example 4, assume that the average execution time for all
six applications is 0.5 time unit less than the corresponding
worst-case execution time. Then, by the above aggressive
voltage reduction algorithm, both P1 and P2 can be oper-
ated under a voltage of v3 since by using the average-case
execution times, load(P1, 0) = 0.3 and load(P2, 0) = 0.4.
This further reduces the voltage compared to the case where
the static or the dynamic mapping algorithm is used.

In order to balance the tradeoff between performance and
energy efficiency, we introduce a parameter K for each pro-
cessor to determine the aggressiveness level. On any pro-

cessor, K can be set to be
vavg
vworst

≤ K ≤ 1, where vavg is

the voltage level calculated by assuming average-case execu-
tion times and vworst is the voltage level calculated by as-
suming worst-case execution times.11For applications whose
run-time execution times are often consistent, it is prefer-

able to set K =
vavg
vworst

in order to achieve maximal power

and energy efficiency. On the other hand, for applications
whose run-time execution times often vary, it is preferable

to set K to be a larger value than
vavg
vworst

in order to avoid

late completions that may cause deadline misses.

7. EVALUATION
In this section, we present the implementation methodol-

ogy and experimental results used to evaluate the effective-
ness of our proposed algorithms.

7.1 Methodology
We implemented the proposed algorithms in a real het-

erogeneous desktop computer consisting of a CPU and a
GPU. The hardware specification is given in Table 2. The
benchmarks used in the experiments are listed in Table 3.
Each benchmark set consists of the same corresponding ap-
plication but with multiple input sizes. For the GPU imple-
mentations of the benchmarks, we used the ones provided
by IBM or in the AMD OpenCL Software Development Kit
(SDK) [9] if available.

Regarding the software architecture of the implemented
experimental system, we provide an API to programmers
for writing GPU-parallelizable operations at the application
level. The API is built on top of C/C++ so that it can be
easily adopted. Beneath the API layer is the system layer,

11Note that since K can be considered as a run-time optimization
parameter, we do not require accurate information on a work-
load’s average-case execution time. If the actual run-time exe-
cution time is more or less than the assumed average-case ex-
ecution time, then we can adjust K and the voltage/frequency
accordingly.



Table 2: Experimental Hardware Specification.

Experimental Evaluation

43                                                                                                                                                           42

Dynamic Energy-Efficient Mapping and Voltage Scaling Techniques for CPU/GPU Heterogeneous Systems

CPU GPU

Architecture Intel Xeon 5160 AMD Radeon HD 5770

Voltage/Frequency 
levels

3GHz (1.5v) /
2GHz (1.2v)

850MHz(1.25v) / 
500MHz(1v) / 

148MHz(0.95v)

TDP 80W 108W

OS 64-bit Linux Ubuntu lucid64-bit Linux Ubuntu lucid

Table 3: Benchmarks.Experimental Evaluation
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Benchmarks Description Source

Non-negative Matrix 
Factorization (NMF)

OpenCL implementation of 
NMF

IBM

MatrixMultiplication 
(MM)

Dense matrix multiplication AMD OpenCL SDK

MatrixTranspose (MT) Dense matrix Transpose AMD OpenCL SDK

MatrixOperation (MO)
Mixed operations on dense 

matrix
AMD OpenCL SDK

which consists of a compiler and a scheduler. The com-
piler intercepts OpenCL function calls at compile, replac-
ing them with functionally equivalent calls into its heteroge-
neous scheduling runtime. It transforms an input OpenCL
program to use all OpenCL devices available. Our proposed
scheduling algorithms are implemented in the scheduler that
schedules applications to run on the CPU or GPU.

We compared the static mapping scheme, the dynamic
mapping scheme with budget reclamation, and the aggres-
sive voltage reduction scheme with each other. Moreover, we
compared these three proposed schemes with a performance-
driven mapping algorithm, which is called earliest-response-
time-first (ERF). ERF maps an application onto the re-
source that provides the shortest response time. In all exper-
imental results presented below, we denote our static map-
ping, dynamic mapping with budget reclamation, aggressive
voltage reduction schemes, and the ERF scheme as “Static,”
“Dynamic,”“Aggressive,” and “ERF” respectively.

Our evaluation metrics are the power and energy con-
sumption. We measured the entire system power (includ-
ing the CPU, GPU, memory, and disks) using the WT210
digital power meter [25]. Also we measured the wall-clock
execution time for each experiment. Then the total energy
consumption can be obtained by computing the product of
power and execution time.

Generate application parameters. In our experiments,
the benchmark sets were generated as follows. For each ex-
periment, we randomly generated a number of benchmarks
with different input matrix files. To obtain the execution
time of a benchmark, we ran the benchmark repeatedly for
thirty minutes and recorded the maximum execution time
among these runs as the measured execution time. The
worst-case execution time (WCET) of each benchmark was
then calculated based upon the corresponding measured exe-
cution time (MET):WCET = 120%·MET . Per-benchmark
loads were uniformly distributed in [0.001, 0.1]. Benchmark
deadlines were then calculated from worst-case execution
times and benchmark loads. For each experiment, the cap on
the sum of all benchmarks’ loads was varied by three values:
1 (light system load), 1.4 (medium system load), and 1.8

(heavy system load). Each benchmark set was generated by
creating benchmarks until the sum of all benchmarks’ loads
exceeded the corresponding system load cap, and by then
reducing the last benchmark’s load so that the sum of all
benchmarks’ loads equalled the system load cap.

Applying DVFS on CPUs and GPUs. To enable
voltage/frequency scaling on the CPU, we applied the
CPUFreq kernel infrastructure [2] that implements CPU
voltage/frequency scaling. It enables the operating system
to scale the CPU voltage/frequency up or down in order to
save power/energy. Most modern operating systems includ-
ing Linux Ubuntu Lucid support CPUFreq.

Unfortunately, voltage/frequency scaling on GPUs is not
easy. The major difficulty is that there is no OpenCL-
supported ATI GPU driver that supports voltage/frequency
scaling. The official ATI GPU driver supports OpenCL, but
does not support voltage/frequency scaling. On the other
hand, the open-source ATI GPU driver called RadeonDriver
[1] that comes with Ubuntu supports voltage/frequency scal-
ing via the Kernel Mode Setting (KMS). However, Radeon-
Driver does not support OpenCL. Therefore, we applied a
modeling approach to obtain the GPU power values under
different voltage levels, as explained below.

By using the RadeonDriver, we are able to obtain the
GPU power when running non-OpenCL applications under
different voltage/frequency levels. Let P (1, A) (respectively,
P (vi, A)) denote the GPU power when running non-OpenCL
application A under the maximum voltage level (respec-
tively, the ith voltage level vi). Moreover, by using the offi-
cial ATI GPU driver, we are able to obtain GPU power when
running OpenCL applications under the maximum volt-
age/frequency. Let P (vmax, ACL) denote the GPU power
when running OpenCL application ACL under the maxi-
mum voltage/frequency. Then, we can calculate the GPU
power when running ACL under the ith voltage/frequency
level, denoted P (vi, ACL), as follows.

P (vi, ACL) =
P (vmax, ACL)

P (vmax, A)
· P (vi, A).

7.2 Results
In this section, we present results on power and energy

consumption that compare different algorithms.

Power consumption. Figs. 4 (a)-(c) show the power con-
sumption results under light, medium, and heavy system
loads. Each box in each figure plots the normalized power
consumption under ERF, Static, Dynamic, and Aggressive
for running the four benchmarks. As seen, our proposed
algorithms can achieve a much better power efficiency com-
pared to ERF in all scenarios. For example, under the light
load, our algorithms can reduce the power consumption for
around 20%. Another observation is that under the light
system load, Static, Dynamic, and Aggressive achieve the
same power consumption. This is due to the fact that when
the system load is light, Static (as well as Dynamic and Ag-
gressive) can reduce the voltage on CPUs and GPUs to the
lowest level. While under medium and heavy system loads,
it is seen that Aggressive and Dynamic can reduce more
power consumption compared to static. This is because Ag-
gressive and Dynamic can utilize the budget due to the dif-
ference between the actual execution time and the worst-case
execution time to further reduce the voltage/frequency.
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Figure 4: Power and energy consumption results. In the first (resp., second and third) column of graphs, light (resp., medium
and heavy) loads are assumed. The first (resp., second) row shows the power (resp., energy) consumption results.
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Figure 5: (a)-(b). Results when the worst-case execution times equal 150% of the measured execution times. (a) and (b) show
the power and energy consumption results. (c)-(d). Results with CPU DVFS only. (c) and (d) show the power and energy
consumption results.

Energy consumption. Figs. 4 (d)-(f) show the energy
consumption results under light, medium, and heavy sys-
tem loads. Each box in each figure plots the normalized
energy consumption under ERF, Static, Dynamic, and Ag-
gressive for running the four benchmarks. It can be observed
that Static, Dynamic, and Aggressive can achieve a much
better energy efficiency compared to ERF in all scenarios.
For example, under the light system load, Static, Dynamic,
and Aggressive can reduce the energy consumption for more
than 27%. In certain scenarios, such improvement can reach
up to 40% (e.g., when running NMF under the heavy per-
application load distribution using Aggressive). An inter-
esting observation is that under medium and heavy system
loads, Aggressive consumes more energy than Static and Dy-
namic for certain benchmarks such as MatrixMultiply. This
is because when the voltage is reduced, the execution time
increases, which causes an increase on the energy consumed
by the whole system (including memory and disks).

More conservative worst-case execution times. As
seen in Fig. 4, in most cases, Aggressive achieves power and
energy consumption results that are close to those of Static
and Dynamic. In this experiment set, we want to evaluate
the effectiveness of Aggressive when the ratio of the worst-

case execution time over the measured execution time in-
creases. Intuitively, Aggressive is expected to reduce more
power/energy consumption when this ratio increases, since
in this case Aggressive is able to reduce the voltage to the
lowest possible level by assuming the average-case execution
time. Thus, in this experiment set, we set the worst-case exe-
cution times to equal 150% of the measured execution times.
Fig. 5 (a) and (b) show the power and energy consumption
under Static, Dynamic, and Aggressive for running the NMF
benchmark.12As seen, compared to the case shown in Fig. 4,
Aggressive is able to reduce power and energy consumption
more. For example, under the heavy system load, Aggressive
can reduce 13% more power and energy consumption com-
pared to Static and Dynamic. From these results, we claim
that for benchmarks whose worst-case execution times are
often longer than the average-case, Aggressive can achieve
better energy efficiency.

DVFS on CPUs only. Since we can only apply a mod-
eling approach to obtain the GPU power under different
voltage levels, it is important to know whether the proposed

12Note that ERF is not included in this experiment set since our
focus is to evaluate whether Aggressive can achieve better perfor-
mance by exploiting average-case execution time information.



algorithm can still save power/energy by applying DVFS on
CPUs only. Thus, we conducted an additional set of experi-
ments, in which voltages on CPUs are still scaled according
to the proposed algorithm, but GPUs are always set to run
under the maximum voltage level (i.e., the DVFS step of
the algorithms is not executed on GPUs). Fig. 5 (c) and (d)
show the power and energy under ERF, Static, Dynamic,
and Aggressive for running the NMF benchmark. As seen,
our proposed algorithms reduce the power and energy con-
sumption by a considerable amount compared to ERF in
all scenarios. For example, under the light load, our algo-
rithms can reduce 16% more power consumption and 25%
more energy consumption.

8. CONCLUSION
In this paper, we proposed power-efficient time-sensitive

mapping techniques for heterogeneous systems consisting of
CPUs and GPUs. These techniques were implemented in a
real CPU/GPU heterogeneous system. Experimental results
demonstrate the effectiveness of the proposed techniques in
reducing both power and energy consumption.

Several interesting avenues for further work exist. It would
be interesting to consider heterogeneous systems consisting
of more than two types of processors (e.g., a system con-
taining CPUs, GPUs, and FPGAs). Moreover, contrary
to our current strategy where each GPU and CPU has its
own scheduler and application queue, designing a central-
ized scheduler that captures the information on both CPUs
and GPUs at run-time may be able to make better mapping
decisions in terms of reducing power and energy consump-
tion.
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