Response and sensitivity of a normal-metal RF-SET

V.O. Turin and A.N. Korotkov

UC, Riverside
Abstract

We have analyzed the response and noise-limited sensitivity of the radio-frequency single-electron transistor (RF-SET), extending the previously developed theory to the case of arbitrary large quality factor Q of the RF-SET tank circuit.

It is shown that while the RF-SET response reaches the maximum at Q roughly corresponding to the impedance matching condition, the RF-SET sensitivity monotonically worsens with the increase of Q.

Also, we propose an operation mode, in which an overtone of the incident rf wave is in resonance with the tank circuit.
\[Q_L = (1/Q + 1/Q_{SET})^{-1} \]

\[Q = \sqrt{\frac{L_T}{C_T}/R_0} \]

Matching: \[Q \approx \sqrt{\frac{R_{SET}}{R_0}} \]

Previous theoretical papers:
- Korotkov-Paalanen, 1999
- Blencowe-Wybourne, 2000
- Zhang-Blencowe, 2002

All of them assumed low Q-factor (<< matching)

RF-SET response is maximal close to matching condition; however, large Q-factor worsens RF-SET sensitivity (shot-noise-limited)
Temperature dependence

Model:
- full nonlinear analysis
- several overtones
- normal metal SET only
- no cotunneling
- low frequency signal
- no backaction analyzed

Optimizations of response and sensitivity are different (rf amplitude is much smaller for optimal sensitivity)

MR – maximum response mode
OS – optimized sensitivity mode
Dependence on SET resistance

Effect of asymmetric rf biasing

Asymmetric rf biasing does not worsen the RF-SET performance

MR – maximum response mode
OS – optimized sensitivity mode
Dependence on rf detuning

- sensitivity does not worsen with detuning
- monitoring by rectification is as good as homodyne detection

Proposal of resonant overtone mode

- $\omega = \omega_0/n$, reflected wave due to SET nonlinearity, in resonance with tank
- Advantage: different frequencies of incident and reflected waves
- RF-SET performance in the mode of resonant overtone is comparable to performance in the usual regime
- Recent experimental realization: Keith Schwab, similar performance in the proposed and usual modes