Probing “inside” quantum collapse with solid-state qubits

Alexander Korotkov
University of California, Riverside

Outline:

- What is “inside” collapse? Bayesian framework.
 - broadband meas. (double-dot qubit & QPC)
 - narrowband meas. (circuit QED setup)
- Realized experiments
 - partial collapse (null-result & continuous)
 - uncollapse (+ entanglement preservation)
 - persistent Rabi oscillations, quantum feedback
Quantum mechanics =
Schrödinger equation (evolution) +
collapse postulate (measurement)

1) Probability of measurement result
\[p_r = |\langle \psi | \psi_r \rangle|^2 \]

2) Wavefunction after measurement
\[= \psi_r \]

- State collapse follows from common sense
- Does not follow from Schrödinger Eq. (contradicts)

What is “inside” collapse?
What if collapse is stopped half-way?
What is the evolution due to measurement? (What is “inside” collapse?)

- controversial for last 80 years, many wrong answers, many correct answers
- solid-state systems are more natural to answer this question

Various approaches to non-projective (weak, continuous, partial, generalized, etc.) quantum measurements

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Walls, Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc.
(very incomplete list)

Key words: POVM, restricted path integral, quantum trajectories, quantum filtering, quantum jumps, stochastic master equation, etc.

Our limited scope:
(simplest system, experimental setups)

- solid-state qubit
- detector
- classical output
Quantum Bayesian framework
(slight technical extension of the collapse postulate)

1) **Quantum back-action** (spooky, physically unexplainable)
 simple: update the state using **information** from measurement and probability concept (Bayes rule)

2) Add “classical” back-action if any (anything with a physical mechanism)

3) Add noise/decoherence if any

4) Add Hamiltonian (unitary) evolution if any

 (Practically equivalent to many other approaches: POVM, quantum trajectory, quantum filtering, etc.)
“Typical” setup: double-quantum-dot qubit + quantum point contact (QPC) detector

Two levels of average detector current: I_1 for qubit state $|1\rangle$, I_2 for $|2\rangle$

Response: $\Delta I = I_1 - I_2$

Detector noise: white, spectral density S_I

For low-transparency QPC

$$H_{DET} = \sum_l E_l a_l^\dagger a_l + \sum_r E_r a_r^\dagger a_r + \sum_{l,r} T (a_r^\dagger a_l + a_l^\dagger a_r)$$

$$S_I = 2eI$$

(“broadband”)
Bayesian formalism for DQD-QPC system

\[H_{QB} = 0 \]

Qubit evolution due to measurement (quantum back-action):

\[\psi(t) = \alpha(t) |1\rangle + \beta(t) |2\rangle \quad \text{or} \quad \rho_{ij}(t) \]

1) \(|\alpha(t)|^2 \) and \(|\beta(t)|^2 \) evolve as probabilities, i.e. according to the Bayes rule (same for \(\rho_{ii} \))

2) phases of \(\alpha(t) \) and \(\beta(t) \) do not change (no dephasing!), \(\rho_{ij}/(\rho_{ii}\rho_{jj})^{1/2} = \text{const} \)

(A.K., 1998)

Bayes rule (1763, Laplace-1812):

\[
P(A_i | \text{res}) = \frac{P(A_i) P(\text{res} | A_i)}{\sum_k P(A_k) P(\text{res} | A_k)}
\]

So simple because:

1) no entanglement at large QPC voltage
2) QPC is ideal detector
3) zero qubit Hamiltonian
Now add classical back-action and decoherence

\[H_{\text{qb}} = 0 \]

\[\Delta I = I_1 - I_2 \]

\[I_m \equiv \frac{1}{\tau} \int_0^\tau I(t) \, dt \]

\[D = S_I / 2\tau \]

Example of classical (“physical”) backaction:

Each electron passed through QPC rotates qubit

\[\text{arg}(T^* \Delta T) \neq 0 \]

\[H_{\text{DET}} = \sum_l E_l a_l^\dagger a_l + \sum_r E_r a_r^\dagger a_r + \sum_{l,r} T(a_r^\dagger a_l + a_l^\dagger a_r) \]

\[H_{\text{INT}} = \sum_{l,r} \Delta T (c_1^\dagger c_1 - c_2^\dagger c_2) a_r^\dagger a_l + \text{h.c.} \]
Now add Hamiltonian evolution

- Time derivative of the quantum Bayes rule
- Add unitary evolution of the qubit

\[
\rho_{11} = -\rho_{22} = -2 \frac{H}{\hbar} \text{Im} \rho_{12} + \rho_{11}\rho_{22} \frac{2\Delta I}{S_I} [I(t) - I_0]
\]

\[
\rho_{12} = i \epsilon \rho_{12} + i \frac{H}{\hbar} (\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] - \gamma \rho_{12}
\]

\[\Delta I = I_1 - I_2, \quad I_0 = (I_1 + I_2)/2, \quad S_I \text{ – detector noise}\]

\[\gamma = 0 \text{ for QPC}\]

For simulations: \[I = I_0 + \frac{\Delta I}{2} (\rho_{11} - \rho_{22}) + \xi\]

Evolution of qubit \textit{wavefunction} can be monitored if $\gamma=0$ (quantum-limited)
Relation to “conventional” master equation

\[\dot{\rho}_{11} = -\rho_{22} = -2H \text{Im} \rho_{12} + \rho_{11} \rho_{22} \frac{2\Delta I}{S_I} [I(t) - I_0] \]

\[\dot{\rho}_{12} = i \varepsilon \rho_{12} + iH (\rho_{11} - \rho_{22}) + \rho_{12} (\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] + iK[I(t) - I_0] \rho_{12} - \gamma \rho_{12} \]

Averaging over measurement result \(I(t) \) leads to usual master equation:

\[\dot{\rho}_{11} = -\rho_{22} / dt = -2H \text{Im} \rho_{12} \]

\[\dot{\rho}_{12} = i \varepsilon \rho_{12} + iH (\rho_{11} - \rho_{22}) - \Gamma \rho_{12} \]

\(\Gamma \) – ensemble decoherence, \(\Gamma = (\Delta I)^2 / 4S_I + K^2 S_I / 4 + \gamma \)

Quantum efficiency: \(\eta = \frac{(\Delta I)^2}{4S_I} \Gamma \) or \(\tilde{\eta} = 1 - \frac{\gamma}{\Gamma} \)
Quantum measurement in POVM formalism

Davies, Kraus, Holevo, etc.
(Nielsen-Chuang, pp. 85, 100)

Measurement (Kraus) operator M_r (any linear operator in H.S.):

Probability: $P_r = \frac{M_r \psi}{\|M_r \psi\|}$ or $P_r = \text{Tr}(M_r \rho M^\dagger_r)$

Completeness: $\sum_r M^\dagger_r M_r = 1$ (People often prefer linear evolution and non-normalized states)

Relation between POVM and quantum Bayesian formalism:

decomposition $M_r = U_r \sqrt{M^\dagger_r M_r}$ (almost equivalent)
Narrowband linear measurement
(circuit QED setup)

Difference from broadband: **two quadratures**
(two signals: $A(t) \cos \omega t + B(t) \sin \omega t$)

$H = \frac{1}{2} \omega_{qb} \sigma_z + \omega_r a^\dagger a + \chi a^\dagger a \sigma_z$

- qubit state changes resonator freq.,
- number of photons affects qubit freq.

Blais et al., 2004
Gambetta et al., 2006, 2008

Schoelkopf et al.
Phase-sensitive (degenerate) paramp

get some information ($\sim \cos^2 \varphi$) about qubit state and some information ($\sim \sin^2 \varphi$) about photon fluctuations

$$\rho_{gg}(\tau) = \frac{\rho_{gg}(0) \exp[-(\bar{I} - I_g)^2 / 2D]}{\rho_{ee}(0) \exp[-(\bar{I} - I_e)^2 / 2D]}$$

$$\rho_{ge}(\tau) = \rho_{ge}(0) \frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)} \exp(i\bar{I}\tau)$$

Bayes

$$\bar{I} = \frac{1}{\tau} \int_0^\tau I(t) \, dt \quad D = S_I / 2\tau$$

$$I_g - I_e = \Delta I \cos \varphi$$

$$K = \frac{\Delta I}{S_I} \sin \varphi$$

$$\Gamma = \frac{(\Delta I \cos \varphi)^2}{4S_I} + \frac{K^2 S_I}{4} = \frac{\Delta I^2}{4S_I} = \frac{8\chi^2 \bar{n}}{\kappa}$$

Same as for QPC, but φ controls trade-off between quantum & classical back-actions (we choose if photon number fluctuates or not)

A.K., arXiv:1111.4016
Phase-preserving (nondegenerate) paramp

Now information in both \(I(t) \) and \(Q(t) \).

Choose

\[
I(t) \leftrightarrow \cos(\omega_d t) \quad \text{(qubit information)} \\
Q(t) \leftrightarrow \sin(\omega_d t) \quad \text{(photon fluct. info)}
\]

Small \(\delta\omega \Rightarrow \) can follow \(\varphi(t) \)

Large \(\delta\omega \ (>> \Gamma) \Rightarrow \) averaging over \(\varphi \) (phase-preserving)

\[
\begin{align*}
\rho_{gg}(\tau) &= \frac{\rho_{gg}(0) \exp[-(\bar{I} - I_g)^2/2D]}{\rho_{ee}(0) \exp[-(\bar{I} - I_e)^2/2D]} \\
\rho_{ge}(\tau) &= \rho_{ge}(0) \exp(iK\bar{Q} \tau) \\
\rho_{ee}(\tau) &= \rho_{ee}(0) \exp(iK\bar{Q} \tau)
\end{align*}
\]

\[
\begin{align*}
\bar{I} &= \frac{1}{\tau} \int_0^\tau I(t) \, dt \\
\bar{Q} &= \frac{1}{\tau} \int_0^\tau Q(t) \, dt \\
D &= \frac{S_I}{2\tau} \\
I_g - I_e &= \frac{\Delta I}{\sqrt{2}} \\
K &= \frac{\Delta I}{\sqrt{2S_I}} \\
\Gamma &= \frac{\Delta I^2}{8S_I} + \frac{\Delta I^2}{8S_I} = 8\chi^2n
\end{align*}
\]

Equal contributions to ensemble dephasing from quantum & classical back-actions

A.K., arXiv:1111.4016

Understanding important for quantum feedback
Why not just use Schrödinger equation for the whole system?

Impossible in principle!

Technical reason: Outgoing information makes it an open system

Philosophical reason: Random measurement result, but deterministic Schrödinger equation

Einstein: God does not play dice (actually plays!)
Heisenberg: unavoidable quantum-classical boundary
Superconducting experiments “inside” quantum collapse

- UCSB-2006 Partial collapse
- UCSB-2008 Reversal of partial collapse (uncollapse)
- Saclay-2010 Continuous measurement of Rabi oscillations (+violation of Leggett-Garg inequality)
- Berkeley-2012 Quantum feedback of persistent Rabi osc. (phase-sensitive paramp)
- Yale-2012 Partial (continuous) measurement (phase-preserving paramp)
Partial collapse of a Josephson phase qubit

Main idea:

What happens if no tunneling?

\[\psi(t) = \begin{cases}
|\text{out}\rangle, & \text{if tunneled} \\
\frac{\alpha |0\rangle + \beta e^{-\Gamma t/2} e^{i\varphi} |1\rangle}{\sqrt{|\alpha|^2 + |\beta|^2 e^{-\Gamma t}}}, & \text{if not tunneled}
\end{cases} \]

Non-trivial:
- amplitude of state \(|0\rangle\) grows without physical interaction
- finite linewidth only after tunneling

continuous null-result collapse

(idea similar to Dalibard-Castin-Molmer, PRL-1992)
Partial collapse: experimental results

N. Katz et al., Science-06

- In case of no tunneling, phase qubit evolves
- Evolution is described by the Bayesian theory without fitting parameters
- Phase qubit remains coherent in the process of continuous collapse (expt. ~80% raw data, ~96% corrected for T_1, T_2)

quantum efficiency $\eta_0 > 0.8$

Good confirmation of the theory
Uncollapsing for qubit-QPC system (theory)

First “accidental” measurement
Uncollapsing measurement

Simple strategy: continue measuring until $r(t)$ becomes zero!
Then any unknown initial state is fully restored.

(same for an entangled qubit)

It may happen though that $r=0$ never happens; then uncollapsing is unsuccessful.

Somewhat similar to quantum eraser of Scully and Druhl (1982)
Experiment on wavefunction uncollapse

Uncollapse protocol:
- partial collapse
- π-pulse
- partial collapse (same strength)

If no tunneling for both measurements, then initial state is fully restored

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle + e^{i\phi} \frac{\beta e^{-\Gamma t/2}}{\text{Norm}} |1\rangle \rightarrow$$

$$\frac{e^{i\phi} \alpha e^{-\Gamma t/2}}{\text{Norm}} |0\rangle + e^{i\phi} \frac{\beta e^{-\Gamma t/2}}{\text{Norm}} |1\rangle = e^{i\phi} (\alpha |0\rangle + \beta |1\rangle)$$

phase is also restored ("spin echo")
Experimental results on the Bloch sphere

Both spin echo (azimuth) and uncollapsing (polar angle)

Difference: spin echo – undoing of an unknown unitary evolution, uncollapsing – undoing of a known, but non-unitary evolution

N. Katz et al.
Suppression of T_1-decoherence by uncollapse

A.K. & Keane, PRA-2010

Protocol:

ρ_{11} storage period t

| ψ_f ⟩ = ψ_{in} ⟩ with probability $(1-p) e^{-t/T_1}$

| ψ_f ⟩ = |0⟩ with $(1-p)^2 |\beta|^2 e^{-t/T_1} (1-e^{-t/T_1})$

Ideal case (T_1 during storage only)

for initial state $|\psi_{\text{in}}⟩ = \alpha |0⟩ + \beta |1⟩$

F_{av}, F_χ fidelity

Realistic case (T_1 and T_ϕ at all stages)

Uncollapse seems to be the only way to protect against T_1-decoherence without encoding in a larger Hilbert space (QEC, DFS)

Trade-off: fidelity vs. probability
Realization with photons

- Works perfectly (optics, not solid state!)
- Amplitude damping (“energy relaxation”) decoherence is imitated in a clever way

\[p = 0.9 \]
\[\gamma \text{ is purity} \]

Alexander Korotkov
University of California, Riverside
Uncollapsing preserves entanglement

- Extension of 1-qubit experiment
- Revives entanglement even from “sudden death”

Alexander Korotkov
University of California, Riverside
Recent experiment in Michel Devoret’s group

Courtesy of Michel Devoret (Yale Univ., manuscript in preparation)

MEASUREMENT PROTOCOL

State preparation

\(R_x(\pi/2) \)

Variable strength measurement

\(\bar{n} \) varies

(\(X_f, Y_f, Z_f \))

Tomography

\(R_x(\pi/2), R_y(\pi/2), \) or \(Id \)

\(\bar{n} = 5 \)

outcome (\(I_m, Q_m \))

\(\bar{n} = 5 \)

z

y

x

(phase-preserving paramp)

Repeat 10,000,000 times

\(x_f = \pm 1 \) or \(y_f = \pm 1 \) or \(z_f = \pm 1 \)

Alexander Korotkov

University of California, Riverside

Recent experiment in Michel Devoret’s group

Courtesy of Michel Devoret (Yale Univ., manuscript in preparation)

MEASUREMENT PROTOCOL

State preparation

\(R_x(\pi/2) \)

Variable strength measurement

\(\bar{n} \) varies

(\(X_f, Y_f, Z_f \))

Tomography

\(R_x(\pi/2), R_y(\pi/2), \) or \(Id \)

\(\bar{n} = 5 \)

outcome (\(I_m, Q_m \))

\(\bar{n} = 5 \)

z

y

x

(phase-preserving paramp)

Repeat 10,000,000 times

\(x_f = \pm 1 \) or \(y_f = \pm 1 \) or \(z_f = \pm 1 \)

Alexander Korotkov

University of California, Riverside
MEASUREMENT WITH $\bar{n} = 5 \times 10^{-4}$

Cavity Drive = 5.0×10^{-4} photons

$(I_m^g - I_m^e)/(2\sigma) = 0.046$

Courtesy of Michel Devoret (manuscript in preparation)
MEASUREMENT WITH \(\bar{n} = 1.1 \times 10^{-1} \)

Courtesy of Michel Devoret (manuscript in preparation)

Histogram of measurement outcomes

Cavity Drive = 1.1e-01 photons

\((I_m^g - I_m^e)/(2\sigma) = 0.543 \)
MEASUREMENT WITH $\bar{n} = 5 \times 10^{-1}$

Courtesy of Michel Devoret (manuscript in preparation)

Histogram of measurement outcomes

tomography along X, Y, Z after measurement

Cavity Drive = 5.1e-01 photons

$(l_m^g - l_m^e)/(2\sigma) = 1.223$
MEASUREMENT WITH $\bar{n} = 5$

Courtesy of Michel Devoret (manuscript in preparation)

Histogram of measurement outcomes

Cavity Drive = 5.0e+00 photons

$$\frac{(I_m^g - I_m^e)}{(2\sigma)} = 4.100$$

Tomography along X, Y, Z after measurement
Non-decaying (persistent) Rabi oscillations

- Relaxes to the ground state if left alone (low-\(T\))
- Becomes fully mixed if coupled to a high-\(T\) (non-equilibrium) environment
- Oscillates persistently between left and right if (weakly) measured continuously

\[
\frac{(\Delta I)^2}{4S_I} \ll \Omega
\]

(“reason”: attraction to left/right states)

Direct experiment is difficult

A.K., PRB-1999
Indirect experiment: spectrum of persistent Rabi oscillations

\[I(t) = I_0 + \frac{\Delta I}{2} z(t) + \xi(t) \]

(const + signal + noise)

peak-to-pedestal ratio = 4\(\eta\) \(\leq\) 4

perfect Rabi oscillations: \(\langle z^2 \rangle = \langle \cos^2 \rangle = 1/2\)

imperfect (non-persistent): \(\langle z^2 \rangle \ll 1/2\)

quantum (Bayesian) result: \(\langle z^2 \rangle = 1 \) (!!!)

integral under the peak ⇔ variance \(\langle z^2 \rangle\)

amplifier noise ⇒ higher pedestal, poor quantum efficiency, but the peak is the same!!!

\(\eta\) ≤ 1

\(S_I(\omega)/S_0\)

[Diagram showing the spectrum and parameters]

\(\Omega\) - Rabi frequency

\(C = (\Delta I)^2 / HS_I\)

C=13

\(\Omega = 2H\)

\(C\)

\(\omega / \Omega\)

\(S_I(\omega)\)

\(\eta\ll1\)

\(O\) - qubit

\(C\) - qubit

\(I\) - detector

\(I(t)\)

\(\xi(t)\)

\(\xi\) is Bloch coordinate

(demonstrated in Saclay expt.)
Saclay experiment

- superconducting charge qubit (transmon) in circuit QED setup
- microwave reflection from cavity: full collection, only phase modulation
- driven Rabi oscillations (z-basis is $|g\rangle$&$|e\rangle$)

Standard (not continuous) measurement here: ensemble-averaged Rabi starting from ground state
Now continuous measurement

Palacios-Laloy et al., 2010

\[\bar{n} = \frac{\Delta S}{4S} \sim 10^{-2} \]

Pre-amplifier noise temperature \(T_N = 4 \text{ K} \)

\[\frac{1}{1 + \frac{2T_N}{\hbar \omega}} \approx 0.03 \]

\[\bar{n} = 0.23 \]

\[\bar{n} = 1.56 \]

Theory by dashed lines, very good agreement
Violation of Leggett-Garg inequalities

In time domain

Rescaled to qubit z-coordinate \(K(\tau) \equiv \langle z(t) z(t + \tau) \rangle \)

\[
K(\tau_1) + K(\tau_2) - K(\tau_1 + \tau_2) \leq 1 \quad \Rightarrow \quad 2K(\tau) - K(2\tau) \leq 1
\]

\[
f_{\text{LG}}(0) = K(0) = \langle z^2 \rangle \quad \langle z^2 \rangle = 1.01 \pm 0.15
\]

\[
f_{\text{LG}}(17 \text{ ns}) = 1.44 \pm 0.12 \quad \text{Ideal } f_{\text{LG,max}} = 1.5
\]

Standard deviation \(\sigma = 0.065 \Rightarrow \text{violation by } 5\sigma \)
Quantum feedback control of persistent Rabi oscillations

In simple monitoring the phase of persistent Rabi oscillations fluctuates randomly:

\[z(t) = \cos[\Omega t + \varphi(t)] \quad \text{for } \eta = 1 \]

Phase noise \(\Rightarrow \) finite linewidth of the spectrum

Goal: produce persistent Rabi oscillations without phase noise by synchronizing with a classical signal

\[z_{\text{desired}}(t) = \cos(\Omega t) \]

\[I(t) = I_0 + \frac{\Delta I}{2} z(t) + \xi(t) \]

\[S_I = S_0 + \frac{\Delta I^2}{4} S_{zz} + \frac{\Delta I}{2} S_{\xi z} \]

integral \(\langle z^2 \rangle = \frac{1}{2} + \frac{1}{2} = 1 \)

integral \(\langle z^2 \rangle = \frac{1}{2} \)
Several types of quantum feedback

Bayesian

Best but very difficult
(monitor quantum state and control deviation)

Direct

as in Wiseman-Milburn (1993)
(apply measurement signal to control with minimal processing)

“Simple”

Imperfect but simple
(do as in usual classical feedback)

Berkeley-2012 experiment: “direct” and “simple”

Ruskov & A.K., 2002

A.K., 2005

ΔH_{fb} / H = F \times \Delta \phi

ΔH_{fb} / H = F \sin(\Omega t) \times \left(\frac{I(t) - I_0}{\Delta I/2} - \cos \Omega t \right)

\eta_{eff} = \frac{1}{C} \eta \frac{\tau_a}{(2\pi/\Omega)^10}

C = 0.1

\tau_a = (2\pi/\Omega)^10

\eta = 1

C = 1

 average

feedback signal

control stage (barrier height)

comparison circuit

qubit

cos

detector

Bayesian equations

environment

feedback strength

feedback fidelity

relation phase

C = C_{det} = 1

C_{env} / C_{det} = 0, 0.1, 0.5

\tau_a = 0

feedback strength

Ruskov & A.K., 2002

control

\eta = 1

\Delta H_{fb} \sim \frac{F}{H} \times \phi_m

feedback strength

feedback fidelity

F/C (feedback strength)

F (feedback strength)

feedback fidelity

F (feedback strength)

feedback fidelity

feedback strength

feedback fidelity
Quantum feedback of Rabi oscillations

(Phase-sensitive paramp)
Paramp BW 10 MHz, Cavity LW 8 MHz, Rabi freq. 3 MHz,
Meas. dephasing 0.25 MHz, Env. dephasing 0.05 MHz

Courtesy of Irfan Siddiqi
STABILIZED RABI OSCILLATIONS

Feedback OFF

Feedback ON

Courtesy of Irfan Siddiqi
STILL GOING…

- Single quadrature measurement
- Operate with measurement dephasing dominant
- Appearance of narrow peak when PLL operational

Courtesy of Irfan Siddiqi
STATE TOMOGRAPHY

- Observe expected rotation in the X,Z plane
- Observe Bloch vector reduced to 50% of maximum

Courtesy of Irfan Siddiqi
FEEDBACK EFFICIENCY

\[D = \frac{2}{1 - \frac{F}{\eta \Gamma / \Omega_R}} + \frac{\Gamma / \Omega_R}{F} \]

- \(D \): “feedback efficiency”
- \(F \): feedback strength
- \(\eta \): detector efficiency (0-1)
- \(\Gamma \): dephasing rate
- \(\Omega_R \): Rabi frequency

- Analytics do not include delay time, finite bandwidth, \(T_1 \)
- Numerics include delay and bandwidth \(\rightarrow \) good agreement
Conclusions

● It is easy to see what is “inside” collapse: simple Bayesian framework works for many solid-state setups

● Measurement backaction necessarily has a “spooky” part (informational, without a physical mechanism); it may also have a “classical” part (with a physically understandable mechanism)

● Five superconducting experiments so far:
 - partial collapse,
 - uncollapse,
 - monitoring of non-decaying Rabi oscillations,
 - quantum feedback of persistent Rabi oscillations,
 - partial measurement with continuous result

● Hopefully something useful in future