Non-projective quantum measurement of solid-state qubits: Bayesian formalism (what is “inside” collapse)

Alexander Korotkov
University of California, Riverside

Outline:
• Very long introduction (incl. EPR, solid-state qubits)
• Basic Bayesian formalism for quantum measurement and its derivations
• Non-ideal detectors
• Bayesian formalism in circuit QED setup

Acknowledgements
Many useful discussions and collaborations
Quantum mechanics is weird…

Niels Bohr:
“If you are not confused by quantum physics then you haven’t really understood it”

Richard Feynman:
“I think I can safely say that nobody understands quantum mechanics”

Weirdest part is quantum measurement
Quantum mechanics =
Schrödinger equation (evolution) +
collapse postulate (measurement)

1) Probability of measurement result \(p_r = |\langle \psi | \psi_r \rangle|^2 \)

2) Wavefunction after measurement = \(\psi_r \)

- State collapse follows from common sense
- Does not follow from Schrödinger equation (contradicts, random vs. deterministic, “philosophy”)

Collapse postulate is controversial since 1920s (needs an observer, contradicts causality)

Our focus: what is “inside” collapse, but first discuss EPR
Einstein-Podolsky-Rosen (EPR) paradox

Phys. Rev., 1935

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system.

\[\psi(x_1, x_2) = \sum_n \psi_n(x_2) u_n(x_1) \] (nowadays we call it entangled state)

\[\psi(x_1, x_2) = \int_{-\infty}^{\infty} \exp\left[\left(\frac{i}{\hbar}\right)(x_1 - x_2)p\right] dp \sim \delta(x_1 - x_2) \]

Measurement of particle 1 cannot affect particle 2, while QM says it affects (contradicts causality)

=> Quantum mechanics is incomplete

Bohr’s reply (Phys. Rev., 1935) (seven pages, one formula: \(\Delta p \Delta q \sim \hbar \)) (except in footnotes)

It is shown that a certain “criterion of physical reality” formulated … by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena.

Very crudely: No need to understand QM, just use the result
Bell’s inequality (John Bell, 1964)

\[\psi = \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \]

Perfect anticorrelation of results for same meas. directions, \(\vec{a} = \vec{b} \)

Is it possible to explain the QM result assuming local realism and hidden variables (without superluminal collapse)? **No!!!**

Assume: \(A(\vec{a}, \lambda) = \pm 1, \quad B(\vec{b}, \lambda) = \pm 1, \quad \) (perfect anticorr. for \((\vec{a}, \vec{a})\))

Then: \[|P(\vec{a}, \vec{b}) - P(\vec{a}, \vec{c})| \leq 1 + P(\vec{b}, \vec{c}) \]

where \(P \equiv P(++) + P(--) - P(+-) - P(-+) \)

QM: \(P(\vec{a}, \vec{b}) = -\vec{a} \cdot \vec{b} \)
For \(0^\circ, 90^\circ, \) and \(45^\circ: \quad 0.71 \not\leq 1 - 0.71 \) violation!

Experiment (Aspect et al., 1982; photons instead of spins, CHSH):

yes, “spooky action-at-a-distance”
CHSH paper (Clauser, Horne, Shimony, Holt, 1969)

Problem with original Bell ineq.: need **perfect** anticorrelation for same directions ⇒ not practical!

In CHSH perfect anticorrelation not required ⇒ practical

\[|S| \leq 2, \text{ where } S = P(a,b) - P(a,b') + P(a',b) + P(a',b') \]

(Apsect’s version)

\[P \equiv p(++) + p(--) - p(+-) - p(-+) \]

Maximum violation by QM:

\[S = \pm 2\sqrt{2} \]

\[\begin{align*}
P(a,b) &= -\cos(a,b) \\
S &= 2\sqrt{2} \quad & a=0^\circ, \quad a'=270^\circ, \\
S &= -2\sqrt{2} \quad & a=0^\circ, \quad a'=90^\circ,
\end{align*} \]

\begin{align*}
b &= 135^\circ, \quad b'=45^\circ \\
b &= 45^\circ, \quad b'=135^\circ
\end{align*}
What about causality?

Actually, not too bad: you cannot transmit your own information choosing a particular measurement direction a

Result of the other measurement does not depend on direction a

Randomness saves causality

Collapse is still instantaneous: OK, just our recipe, not an “objective reality”, not a “physical” process

Consequence of causality: **No-cloning theorem**

Wootters-Zurek, 1982; Dieks, 1982; Yurke

You cannot copy an unknown quantum state

Proof: Otherwise get information on direction a (and causality violated)

Application: quantum cryptography

Information is an important concept in quantum mechanics
Quantum measurement in solid-state systems

No violation of locality – too small distances

However, interesting issue of continuous measurement (weak coupling, noise \Rightarrow gradual collapse)

Same origin of paradoxes as in EPR (Schr. Eq. not enough)

Starting point:

What happens to a solid-state qubit (two-level system) during its continuous measurement by a detector?
Superconducting “charge” qubit

\[\hat{H} = \frac{(2e)^2}{2C} (\hat{n} - n_g)^2 - \frac{E_J}{2} (|n\rangle\langle n+1| + |n+1\rangle\langle n|) \]

Vion et al. (Devoret’s group); Science, 2002
Q-factor of Ramsey oscillations = 25,000

Quantum coherent (Rabi) oscillations

Vion et al. (Devoret’s group); Science, 2002
Q-factor of Ramsey oscillations = 25,000

n
n+1

\(E_J \)

n: number of Cooper pairs on the island
Charge qubits with SET readout

Duty, Gunnarsson, Bladh, Delsing, PRB 2004
Guillaume et al. (Echternach’s group), PRB 2004

Cooper-pair box measured by single-electron transistor (rf-SET)

Setup can be used for continuous measurements

All results are averaged over many measurements (not “single-shot”)
Some other superconducting qubits

Flux qubit
Mooij et al. (Delft)

Phase qubit
J. Martinis et al. (UCSB and NIST)

Charge qubit with circuit QED
R. Schoelkopf et al. (Yale)
Some other superconducting qubits

Flux qubit

J. Clarke et al. (Berkeley)

![Flux qubit circuit diagram](image)

(a)

Scaled switching probability

- Scaled switching probability vs. pulse width (ns)

<table>
<thead>
<tr>
<th>Pulse width (ns)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

“Quantronium” qubit

I. Siddiqi, R. Schoelkopf, M. Devoret, et al. (Yale)

![Quantronium qubit diagram](image)

![Graph](image)

- [Graph showing](image) - P_{switch} vs. τ (ns)

0.2 | 0.4 | 0.6 | 0.8
0 | 100 | 200 | 300 | 400 | 500

University of California, Riverside
Semiconductor (double-dot) qubit

T. Hayashi et al. (NTT), PRL 2003

Detector is not separated from qubit, also possible to use a separate detector
Some other semiconductor qubits

Spin qubit (QPC meas.)
C. Marcus et al. (Harvard)

Spin qubit
L. Kouwenhoven et al. (Delft)

Double-dot qubit
Gorman, Hasko, Williams (Cambridge)
“Which-path detector” experiment

Dephasing rate: \[\Gamma = \frac{eV}{h} \frac{(\Delta T)^2}{T(1-T)} = \frac{(\Delta I)^2}{4S_I} \]

\(\Delta I\) – detector response, \(S_I\) – shot noise

The larger noise, the smaller dephasing!!!

\[(\Delta I)^2/4S_I \sim \text{rate of “information flow”}\]
What is the evolution due to measurement? (What is “inside” collapse?)

• controversial for last 80 years, many wrong answers, many correct answers
• solid-state systems are more natural to answer this question

Various approaches to non-projective (weak, continuous, partial, generalized, etc.) quantum measurements

Names: Davies, Kraus, Holevo, Mensky, Caves, Knight, Plenio, Walls, Carmichael, Milburn, Wiseman, Gisin, Percival, Belavkin, etc. (very incomplete list)

Key words: POVM, restricted path integral, quantum trajectories, quantum filtering, quantum jumps, stochastic master equation, etc.

Our limited scope: (simplest system, experimental setups)

solid-state qubit

detector

$I(t)$, noise S
“Typical” setup: double-quantum-dot (DQD) qubit + quantum point contact (QPC) detector

$H = H_{QB} + H_{DET} + H_{INT}$

$H_{QB} = \frac{\varepsilon}{2} \sigma_z + H \sigma_x$

$I(t) = I_0 + \frac{\Delta I}{2} z(t) + \xi(t)$

const + signal + noise

Two levels of average detector current: I_1 for qubit state $|1\rangle$, I_2 for $|2\rangle$

Response: $\Delta I = I_1 - I_2$

Detector noise: white, spectral density S_I

For low-transparency QPC

$H_{DET} = \sum_l E_l a_l^\dagger a_l + \sum_r E_r a_r^\dagger a_r + \sum_{l,r} T(a_r^\dagger a_l + a_l^\dagger a_r)$

$H_{INT} = \sum_{l,r} \Delta T (c_1^\dagger c_1^\dagger - c_2^\dagger c_2^\dagger)(a_r^\dagger a_l + a_l^\dagger a_r)$

$S_I = 2eI$
What happens to a qubit state during measurement?

Start with density matrix evolution due to measurement only ($H = \varepsilon = 0$)

```
\begin{pmatrix}
1 & 1 \\
2 & 2 \\
1 & 1 \\
2 & 2
\end{pmatrix} \xrightarrow{\text{“Orthodox” answer}} \begin{pmatrix}
1 & 0 \\
0 & 0 \\
1 & 2 \\
0 & 1
\end{pmatrix}
```

```
\begin{pmatrix}
1 & 1 \\
2 & 2 \\
1 & 1 \\
2 & 2
\end{pmatrix} \xrightarrow{\text{“Decoherence” answer}} \begin{pmatrix}
1 & \exp(-\Gamma t) \\
2 & \exp(-\Gamma t) \\
1 & 2 \\
0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 \\
2 & 0 \\
1 & 1 \\
2 & 0
\end{pmatrix}
```

|1> or |2>, depending on the result

no measurement result! (ensemble averaged)

Decoherence has nothing to do with collapse!

<table>
<thead>
<tr>
<th>applicable for:</th>
<th>single quant. system</th>
<th>continuous meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthodox</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Decoherence (ensemble)</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Bayesian, POVM, quant. traject., etc.</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Bayesian (POVM, quant. traj., etc.) formalism describes gradual collapse of a single quantum system, **taking into account measurement result**
Bayesian formalism for DQD-QPC system

\[H_{QB} = 0 \]

Qubit evolution due to measurement (quantum back-action):

\[\psi(t) = \alpha(t) |1\rangle + \beta(t) |2\rangle \quad \text{or} \quad \rho_{ij}(t) \]

1) \(|\alpha(t)|^2\) and \(|\beta(t)|^2\) evolve as probabilities, i.e. according to the Bayes rule (same for \(\rho_{ii}\))

2) phases of \(\alpha(t)\) and \(\beta(t)\) do not change (no dephasing!), \(\rho_{ij}/(\rho_{ii}\rho_{jj})^{1/2} = \text{const}\)

Bayes rule (1763, Laplace-1812):

\[
P(A_i | \text{res}) = \frac{P(A_i) P(\text{res} | A_i)}{\sum_k P(A_k) P(\text{res} | A_k)}
\]

\[
\frac{1}{\tau} \int_0^\tau I(t) \, dt
\]

So simple because:

1) no entanglement at large QPC voltage
2) QPC happens to be an ideal detector
3) no Hamiltonian evolution of the qubit
“Quantum Bayes theorem“ (ideal detector assumed)

\[|1\rangle \xrightarrow{H} |2\rangle \]

\[H = \varepsilon = 0 \]
("frozen" qubit)

Initial state:
\[
\begin{pmatrix}
\rho_{11}(0) & \rho_{12}(0) \\
\rho_{21}(0) & \rho_{22}(0)
\end{pmatrix}
\]

Measurement (during time \(\tau \)):

\[I(t) \]

\[\bar{I} = \frac{1}{\tau} \int_{0}^{\tau} I(t) \, dt \]

\[P(\bar{I}, \tau) = \rho_{11}(0) P_1(\bar{I}, \tau) + \rho_{22}(0) P_2(\bar{I}, \tau) \]

\[P_i(\bar{I}, \tau) = \frac{1}{\sqrt{2\pi D}} \exp\left[-(\bar{I} - I_i)^2 / 2D\right], \]

\[D = S_I / 2\tau, \quad |I_1 - I_2| \ll I_i, \quad \tau \gg S_I / I_i^2 \]

After the measurement during time \(\tau \), the probabilities should be updated using the standard Bayes formula:

\[P(B_i \mid A) = \frac{P(B_i) P(A \mid B_i)}{\sum_k P(B_k) P(A \mid B_k)} \]

Quantum Bayes formulas:

\[\rho_{11}(\tau) = \frac{\rho_{11}(0) \exp[-(\bar{I} - I_1)^2 / 2D]}{\rho_{11}(0) \exp[-(\bar{I} - I_1)^2 / 2D] + \rho_{22}(0) \exp[-(\bar{I} - I_2)^2 / 2D]} \]

\[\rho_{12}(\tau) = \frac{\rho_{12}(0)}{[\rho_{11}(\tau) \rho_{22}(\tau)]^{1/2}} \], \quad \rho_{22}(\tau) = 1 - \rho_{11}(\tau) \]
Bayesian formalism for a single qubit

- Time derivative of the quantum Bayes rule
- Add unitary evolution of the qubit
- Add decoherence γ (if any)

\[
\begin{align*}
\dot{\rho}_{11} &= -\rho_{22} = -2 \frac{H}{\hbar} \text{Im} \rho_{12} + \rho_{11} \rho_{22} \frac{2\Delta I}{S_I} [I(t) - I_0] \\
\dot{\rho}_{12} &= i \varepsilon \rho_{12} + i \frac{H}{\hbar} (\rho_{11} - \rho_{22}) + \rho_{12} (\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] - \gamma \rho_{12}
\end{align*}
\]

$\Delta I = I_1 - I_2$, $I_0 = (I_1 + I_2)/2$, S_I – detector noise

$\gamma = 0$ for QPC

For simulations: $I = I_0 + \frac{\Delta I}{2} (\rho_{11} - \rho_{22}) + \xi$

Evolution of qubit wavefunction can be monitored if $\gamma=0$ (quantum-limited)

Natural generalizations: • add classical back-action
• entangled qubits

(A.K., 1998)
Relation to “conventional” master equation

\[
\rho_{11} = -\rho_{22} = -2H \text{Im} \rho_{12} + \rho_{11} \rho_{22} \frac{2\Delta I}{S_I} [I(t) - I_0]
\]

\[
\rho_{12} = i\varepsilon \rho_{12} + iH(\rho_{11} - \rho_{22}) + \rho_{12}(\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] - \gamma \rho_{12}
\]

ΔI – detector response, S_I – detector noise

Averaging over result $I(t)$ leads to conventional master equation:

\[
\dot{\rho}_{11} = \frac{-\rho_{22}}{dt} = -2H \text{Im} \rho_{12}
\]

\[
\dot{\rho}_{12} = i\varepsilon \rho_{12} + iH(\rho_{11} - \rho_{22}) - \Gamma \rho_{12}
\]

Γ – ensemble decoherence, $\Gamma = \gamma + (\Delta I)^2 / 4S_I$

Ensemble averaging includes averaging over measurement result

Quantum efficiency:

\[
\eta = \frac{(\Delta I)^2 / 4S_I}{\Gamma} = \frac{\text{quantum}}{\text{total}} = 1 - \frac{\text{decoherence}}{\text{total}}
\]
Assumptions needed for the Bayesian formalism:

- Detector voltage is much larger than the qubit energies involved
 $$eV \gg \hbar\Omega, \ eV \gg \hbar\Gamma, \ \hbar/eV \ll (1/\Omega, 1/\Gamma),$$
 $$\Omega=(4H^2+\epsilon^2)^{1/2}$$
 (no coherence in the detector, classical output, Markovian approximation)

- Simpler if weak response, $$|\Delta I| \ll I_0, \ (coupling \ C \sim \Gamma/\Omega \ \text{is arbitrary})$$

Derivations:

1) “logical”: via correspondence principle and comparison with decoherence approach (A.K., 1998)

2) “microscopic”: Schr. eq. + collapse of the detector (A.K., 2000)

3) from “quantum trajectory” formalism developed for quantum optics
 (Goan-Milburn, 2001; also: Wiseman, Sun, Oxtoby, etc.)

4) from POVM formalism (Jordan-A.K., 2006)

5) from Keldysh formalism (Wei-Nazarov, 2007)
“Informational” derivation of the Bayesian formalism

(A.K., 1998)

Step 1. Assume $H = \varepsilon = 0$ (“frozen” qubit).
Since ρ_{12} is not involved, evolution of ρ_{11} and ρ_{22} should be the same as in the classical case, i.e. Bayes formula (correspondence principle).

Step 2. Assume $H = \varepsilon = 0$ and pure initial state: $\rho_{12}(0) = [\rho_{11}(0) \rho_{22}(0)]^{1/2}$.
For any realization $|\rho_{12}(t)| \leq [\rho_{11}(t) \rho_{22}(t)]^{1/2}$. Then averaging over realizations gives $|\rho_{12}^{av}(t)| \leq \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I) t]$. Compare with conventional (ensemble) result (Gurvitz-1997, Aleiner et al.-97) for QPC: $\rho_{12}^{av}(t) = \rho_{12}^{av}(0) \exp[-(\Delta I^2/4S_I) t]$. Exactly the upper bound! **Therefore, pure state remains pure**: $\rho_{12}(t) = [\rho_{11}(t) \rho_{22}(t)]^{1/2}$.

Step 3. Account of a mixed initial state
Result: the degree of purity $\rho_{12}(t) / [\rho_{11}(t) \rho_{22}(t)]^{1/2}$ is conserved.

Step 4. Add qubit evolution due to H and ε.

Step 5. Add extra dephasing due to detector nonideality (i.e., for SET).
“Microscopic” derivation of the Bayesian formalism

(A.K., 2000)

Schrödinger evolution of “qubit + detector” for a low-\(T \) QPC as a detector (Gurvitz, 1997)

\[
\frac{d}{dt} \rho_{11}^n = -\frac{I_1}{e} \rho_{11}^n + \frac{I_1}{e} \rho_{11}^{n-1} - 2 \frac{H}{\hbar} \text{Im} \rho_{12}^n
\]

\[
\frac{d}{dt} \rho_{22}^n = -\frac{I_2}{e} \rho_{22}^n + \frac{I_2}{e} \rho_{22}^{n-1} + 2 \frac{H}{\hbar} \text{Im} \rho_{12}^n
\]

\[
\frac{d}{dt} \rho_{12}^n = i \frac{\varepsilon}{\hbar} \rho_{12}^n + i \frac{H}{\hbar} (\rho_{11}^n - \rho_{22}^n) - \frac{I_1 + I_2}{2e} \rho_{12}^n + \frac{\sqrt{I_1 I_2}}{e} \rho_{12}^{n-1}
\]

If \(H = \varepsilon = 0 \), this leads to

\[
\rho_{11}(t) = \frac{\rho_{11}(0) P_1(n)}{\rho_{11}(0) P_1(n) + \rho_{22}(0) P_2(n)}, \quad \rho_{22}(t) = \frac{\rho_{22}(0) P_2(n)}{\rho_{11}(0) P_1(n) + \rho_{22}(0) P_2(n)}
\]

\[
\rho_{12}(t) = \rho_{12}(0) \left| \frac{\rho_{11}(t) \rho_{22}(t)}{\rho_{11}(0) \rho_{22}(0)} \right|^{1/2}, \quad P_i(n) = \frac{(I_i t / e)^n}{n!} \exp(-I_i t / e),
\]

which are exactly quantum Bayes formulas
Derivation via POVM

(Jordan, A.K., 2006)

Quantum measurement in POVM formalism *(Nielsen-Chuang, p. 85,100):*

Measurement (Kraus) operator M_r (any linear operator in H.S.):

$$\psi \rightarrow \frac{M_r \psi}{\|M_r \psi\|} \quad \text{or} \quad \rho \rightarrow \frac{M_r \rho M_r^\dagger}{\text{Tr}(M_r \rho M_r^\dagger)}$$

Probability: $P_r = \|M_r \psi\|^2$ or $P_r = \text{Tr}(M_r \rho M_r^\dagger)$

Completeness: $\sum_r M_r^\dagger M_r = 1$ (People often prefer linear evolution and non-normalized states)

For each incident electron:

- $|\text{in}\rangle (\alpha |1\rangle + \beta |2\rangle) \rightarrow \alpha (r_1 |L\rangle + t_1 |R\rangle) |1\rangle$

- $+ \beta (r_2 |L\rangle + t_2 |R\rangle) |2\rangle$

$$M_{\text{refl}} = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix}, \quad M_{\text{trans}} = \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix}$$

For many incident electrons \Rightarrow Bayesian formalism

Relation between POVM and quantum Bayesian formalism:

decomposition $M_r = U_r \sqrt{M_r^\dagger M_r}$

(almost equivalent) unitary Bayes

Alexander Korotkov
University of California, Riverside
Where POVM measurement comes from

Initial state
$$|\psi_{in}\rangle = \sum_{k} c_k |k\rangle$$

Interaction with ancilla
$$|k\rangle |0\rangle \rightarrow \sum_{l,a} U_{k,la} |l\rangle |a\rangle$$

$$|\psi_{in}\rangle |0\rangle \rightarrow \sum_{k,l,a} c_k U_{k,la} |l\rangle |a\rangle = \sum_{l} |l\rangle \left(\sum_{k,a} c_k U_{k,la} |a\rangle \right)$$

Project ancilla onto
$$|r\rangle = \sum_{a} r_a |a\rangle$$

$$|\psi_{in}\rangle |0\rangle \rightarrow \frac{1}{\text{Norm}} \sum_{l} |l\rangle \left(\sum_{k,a} c_k U_{k,la} \langle r|a\rangle \right) |r\rangle = \frac{1}{\text{Norm}} \sum_{l} \sum_{k} c_k \left(\sum_{a} r_a^* U_{k,la} \right) |r\rangle$$

So, as a result:

ancilla
$$|0\rangle \rightarrow |r\rangle$$

system
$$\sum_{k} c_k |k\rangle \rightarrow \frac{\sum_{k,l} M_{r,lk} c_k |l\rangle}{\text{Norm}}$$

i.e.
$$|\psi_{in}\rangle \rightarrow \frac{M_r |\psi_{in}\rangle}{\text{Norm}}$$
Quantum trajectory formalism for the same system

Goan, Milburn, Wiseman, Sun, 2000
Goan, Milburn, 2001

Looks different, but equivalent to Bayesian formalism

\[
\dot{\rho}_c(t) = -\frac{i}{\hbar} [H_{CQD}, \rho_c(t)] + \mathcal{D}[T + \lambda n_1] \rho_c(t) + \xi(t) \frac{\sqrt{\xi}}{T} [T^* \lambda n_1 \rho_c(t) + \lambda^* T \rho_c(t) n_1] - 2 \text{Re}(T^* \lambda \langle n_1 \rangle_c(t) \rho_c(t)).
\]

\[
\mathcal{D}[B] \rho = \mathcal{J}[B] \rho - \mathcal{A}[B] \rho,
\]
\[
\mathcal{J}[B] \rho = B \rho B^\dagger,
\]
\[
\mathcal{A}[B] \rho = (B^\dagger B \rho + \rho B^\dagger B)/2.
\]

\[
|T_\pm|^2 = D_\pm = 2 \pi e |T_{00}|^2 g_{LR} V_\pm /\hbar,
\]
\[
|T_\pm + \chi_\pm|^2 = D'_\pm = 2 \pi e |T_{00} + \chi_{00}|^2 g_{LR} V_\pm /\hbar.
\]

\[
\dot{\rho}_{aa}(t) = i \Omega [\rho_{ab}(t) - \rho_{ba}(t)] - \sqrt{8 \Gamma} d \rho_{aa}(t) \rho_{bb}(t) \xi(t),
\]
\[
\dot{\rho}_{ab}(t) = i \epsilon \rho_{ab}(t) + i \Omega [\rho_{aa}(t) - \rho_{bb}(t)] - \Gamma d \rho_{ab}(t)
\]
\[
+ \sqrt{2} \Gamma d \rho_{ab}(t) [\rho_{aa}(t) - \rho_{bb}(t)] \xi(t).
\]

\[\xi(t)\] - white noise
Stratonovich and Ito forms for nonlinear stochastic differential equations

Definitions of the derivative:

\[
\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t/2) - f(t - \Delta t/2)}{\Delta t} \quad \text{(Stratonovich)}
\]

\[
\frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} \quad \text{(Ito)}
\]

Why matters? Usually \((f + df)^2 \approx f^2 + 2f df,\ (df)^2 \ll df\)

But if \(df = \xi dt\) (white noise \(\xi\)), then \((df)^2 = \xi^2 dt^2 \approx \frac{S_\xi}{2} dt\)

Simple translation rule:

\[
\frac{d}{dt} x_i(t) = G_i(\vec{x}, t) + F_i(\vec{x}, t) \xi(t) \quad \text{(Stratonovich)}
\]

\[
\frac{d}{dt} x_i(t) = G_i(\vec{x}, t) + F_i(\vec{x}, t) \xi(t) + \frac{S_\xi}{4} \sum_k \frac{\partial F_i(\vec{x}, t)}{dx_k} F_k(\vec{x}, t) \quad \text{(Ito)}
\]

Advantage of Stratonovich: usual calculus rules (intuition)
Advantage of Ito: simple averaging
Methods for calculations

Monte Carlo

- “Ideologically” simplest
- In many cases most efficient

Idea:
- use finite time step Δt
 - find probability distribution for $\bar{I}(\Delta t)$
 - pick a random number for $\bar{I}(\Delta t)$
 - do quantum Bayesian update

Analytics (or non-random numerics)

- Be very careful about Ito-Stratonovich issue
- Use Stratonovich form for derivations (derivatives, etc.)
- Convert into Ito for averaging over noise
- Very good idea to compare with Monte Carlo and/or check second order terms in dt
Fundamental limit for ensemble decoherence

\[\Gamma = \frac{(\Delta I)^2}{4S_I} + \gamma \]

ensemble decoherence rate

\[\gamma \geq 0 \Rightarrow \Gamma \geq \frac{(\Delta I)^2}{4S_I} \]

\[\eta = 1 - \frac{\gamma}{\Gamma} = \frac{(\Delta I)^2}{4S_I} \frac{\Gamma}{\Gamma} \]

detector ideality (quantum efficiency)

\[\eta \leq 100\% \]

\[\Gamma \tau_m \geq \frac{1}{2} \]

"measurement time" (S/N=1)

S. Pilgram et al., 2002
A. Clerk et al., 2002
D. Averin, 2000, 2003

\[\Delta I \sim \text{information flow [bit/s]} \]

\[\tau_m = 2S_I/(\Delta I)^2 \]

\[(\varepsilon_O \varepsilon_{BA})^{1/2} \geq \hbar/2 \]

Danilov, Likharev, Zorin, 1983

\[\varepsilon_O, \varepsilon_{BA}: \text{sensitivities [J/Hz] limited by output noise and back-action} \]

Known since 1980s (Caves, Clarke, Likharev, Zorin, Vorontsov, Khalili, etc.)

\[(\varepsilon_O \varepsilon_{BA} - \varepsilon_{O,BA}^2)^{1/2} \geq \hbar/2 \Leftrightarrow \Gamma \geq \frac{(\Delta I)^2}{4S_I} + K^2S_I/4 \]
Two ways to think about a non-ideal detector ($\eta<1$)

$$\Gamma_\Sigma = \frac{(\Delta I)^2}{4S_0}$$

$$\Gamma_\Sigma = \Gamma_0 + \Gamma_1$$

$$\Gamma_0 = \frac{(\Delta I)^2}{4S_\Sigma}$$

$$\Gamma_1$$

$$\Gamma_\Sigma = S_0 + S_1$$

$$\eta = \frac{(\Delta I)^2 / 4S_\Sigma}{\Gamma_\Sigma}$$

These ways are equivalent (same results for any expt.) ➞ matter of convenience
Nonideal detectors with input-output noise correlation

A.K., 2002

$$K = \frac{AS_1 + \theta S_0}{\hbar S_I}, \quad S_I = S_0 + S_1$$

$$\mathbf{K}$$ – correlation between output and ε–backaction noises

$$\frac{d}{dt} \rho_{11} = - \frac{d}{dt} \rho_{22} = -2H \text{Im} \rho_{12} + \rho_{11} \rho_{22} \frac{2 \Delta I}{S_I} [I(t) - I_0]$$

$$\frac{d}{dt} \rho_{12} = i \varepsilon \rho_{12} + i H (\rho_{11} - \rho_{22}) + \rho_{12} (\rho_{11} - \rho_{22}) \frac{\Delta I}{S_I} [I(t) - I_0] + i K [I(t) - I_0] \rho_{12} - \gamma \rho_{12}$$

Quantum efficiency:

$$\tilde{\eta} = 1 - \frac{\tilde{\gamma}}{\Gamma} = \frac{(\Delta I)^2}{4S_I} + \frac{K^2 S_I}{4}$$

or

$$\eta = \frac{(\Delta I)^2}{4S_I}$$
A simple general form for a broadband linear detector (QPC, SET, etc.)

\[
\begin{align*}
|1\rangle & \quad H_{qb} = 0 \\
|2\rangle & \quad \Delta I = I_1 - I_2 \\
\end{align*}
\]

\[
I(t) \\
\Delta I = I_1 - I_2 \\
\text{noise } S_I
\]

\[
\bar{I} = \frac{1}{\tau} \int_0^\tau I(t) \, dt
\]

\[
D = S_I / 2\tau
\]

\[
|1\rangle \otimes |2\rangle \\
|1\rangle \\
|2\rangle
\]

\[
\begin{align*}
\rho_{11}(\tau) &= \rho_{11}(0) \exp[-(\bar{I} - I_1)^2 / 2D] \\
\rho_{22}(\tau) &= \rho_{22}(0) \exp[-(\bar{I} - I_2)^2 / 2D] \\
\rho_{12}(\tau) &= \rho_{12}(0) \exp(iK\bar{I}\tau) \exp(-\gamma\tau) \\
\end{align*}
\]

Example of classical (“physical”) backaction:
Each electron passed through QPC rotates qubit (sensitivity of tunneling phase for an asymmetric barrier)

\[
\text{det}
\]

\[
\text{INT}
\]

\[
\text{classical backaction (unitary)}
\]

\[
\text{decoherence}
\]

\[
\text{quantum backaction (non-unitary, “spooky”, “unphysical”)}
\]

\[
\text{no self-evolution of qubit assumed}
\]

\[
\text{arg}(T^* \Delta T) \neq 0
\]

\[
H_{DET} = \sum_l E_l a_l^\dagger a_l + \sum_r E_r a_r^\dagger a_r + \sum_{l,r} T(a_r^\dagger a_l + a_l^\dagger a_r)
\]

\[
H_{INT} = \sum_{l,r} \Delta T (c_1^\dagger c_1 - c_2^\dagger c_2)(a_r^\dagger a_l + a_l^\dagger a_r)
\]
A simple general form for a broadband linear detector (QPC, SET, etc.)

\[H_{qb} = 0 \]

\[\rho_{11}(\tau) = \rho_{11}(0) \exp[-(\bar{I} - I_1)^2 / 2D] \]

\[\rho_{22}(\tau) = \rho_{22}(0) \exp[-(\bar{I} - I_2)^2 / 2D] \]

\[\rho_{12}(\tau) = \rho_{12}(0) \frac{\rho_{11}(\tau) \rho_{22}(\tau)}{\rho_{11}(0) \rho_{22}(0)} \exp(iK\bar{I}\tau) \exp(-\gamma\tau) \]

\[\Delta I = I_1 - I_2 \]

\[\bar{I} = \frac{1}{\tau} \int_{0}^{\tau} I(t) \, dt \]

\[D = S_I / 2\tau \]

\[\rho = \] no self-evolution of qubit assumed

\[\text{decoherence} \]

\[\text{classical backaction (unitary)} \]

\[\text{quantum backaction (non-unitary, "spooky", "unphysical")} \]

Another example of classical backaction:

Correlation between voltage and current noises in SET

\[S_{I\varphi} \neq 0 \]

\[\frac{S_{I\varphi}(0)}{\sqrt{S_{II}(0)S_{\varphi\varphi}(0)}} = \frac{\Gamma_L - \Gamma_R}{\sqrt{2(\Gamma_L^2 + \Gamma_R^2)}} \]

A.K., 1994

(easy to understand when \(\Gamma_L << \Gamma_R \))
Narrowband linear measurement

Difference from broadband: two quadratures

System: qubit in cQED setup + parametric amplifier

Paramp traditionally discussed in terms of noise temperature

\[\theta \geq 0 \] for phase-sensitive (degenerate, homodyne) paramp

\[\theta \geq \frac{\hbar \omega}{2} \] for phase-preserving (non-degenerate, heterodyne) paramp

Haus, Mullen, 1962

Giffard, 1976

Ackn.: Likharev, Devoret

We will discuss it in terms of qubit evolution due to measurement
Simplest case

\[
H = \frac{\hbar \tilde{\omega}_q}{2} \sigma_z + \hbar \omega_r a^\dagger a + \hbar \chi a^\dagger a \sigma_z \quad \text{(dispersive)}
\]

\[
\frac{\omega_r}{Q} = \kappa \gg \max(\Gamma, \Omega_R) \quad \text{(Markovian, “bad cavity”)}
\]

\[
\kappa_{out} = \kappa \quad \text{(everything collected; i.e. reflection)}
\]

\[
\chi \ll \kappa \quad \text{(weak response)}
\]

\[
\omega_d = \omega_r \quad \text{(center of resonance, only phase change if transmission)}
\]

assume everything most ideal

Blais et al., 2004
Gambetta et al., 2006, 2008

\[
\cos(\omega_d t)
\]

\[
\sin(\omega_d t)
\]
Phase-sensitive (degenerate) paramp

pumps $\omega_a + \omega_b = 2\omega_d$

quadrature $\cos(\omega_d t + \varphi)$ is amplified,
quadrature $\sin(\omega_d t + \varphi)$ is suppressed

Assume $I(t)$ measures $\cos(\omega_d t + \varphi)$, then $Q(t)$ not needed

get some information ($\sim \cos^2 \varphi$) about qubit state and
some information ($\sim \sin^2 \varphi$) about photon fluctuations

\[
\left\{ \begin{array}{l}
\rho_{gg}(\tau) = \rho_{gg}(0) \exp\left[-\left(\bar{I} - I_g\right)^2 / 2D\right]
\\
\rho_{ee}(\tau) = \rho_{ee}(0) \exp\left[-\left(\bar{I} - I_e\right)^2 / 2D\right]
\\
\rho_{ge}(\tau) = \rho_{ge}(0) \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iK\bar{I} \tau)
\end{array} \right.
\]

(rotating frame)

\[
\bar{I} \equiv \frac{1}{\tau} \int_0^\tau I(t) \, dt \quad D = S_I / 2\tau
\]

 Same as for QPC/SET, but trade-off (φ)
between quantum & classical back-actions

$K = \frac{\Delta I}{S_I} \sin \varphi$

$\Gamma = \frac{(\Delta I \cos \varphi)^2}{4 S_I} + K^2 \frac{S_I}{4} = \frac{\Delta I^2}{4 S_I} = \frac{8 \chi^2 \bar{n}}{\kappa}$
Phase-preserving (nondegenerate) paramp

pumps $\omega_a + \omega_b = 2(\omega_d + \delta \omega)$ \quad $\varphi = \delta \omega t$

Now information in both $I(t)$ and $Q(t)$.

Small $\delta \omega \Rightarrow$ can follow $\varphi(t)$
Large $\delta \omega (>> \Gamma) \Rightarrow$ averaging over φ (phase-preserving)

\[
\frac{\rho_{gg}(\tau)}{\rho_{ee}(\tau)} = \frac{\rho_{gg}(0)}{\rho_{ee}(0)} \exp[-(\bar{I} - I_g)^2/2D] \\
\frac{\rho_{ge}(\tau)}{\rho_{ge}(0)} = \sqrt{\frac{\rho_{gg}(\tau) \rho_{ee}(\tau)}{\rho_{gg}(0) \rho_{ee}(0)}} \exp(iKQ\tau)
\]

(rotating frame)

Equal contributions to ensemble dephasing from quantum & classical back-actions

$\bar{I} = \frac{1}{\tau} \int_0^\tau I(t) \, dt$ \quad $\bar{Q} = \frac{1}{\tau} \int_0^\tau Q(t) \, dt$ \quad $D = \frac{S_I}{2\tau}$

$I_g - I_e = \frac{\Delta I}{\sqrt{2}}$ \quad $K = \frac{\Delta I}{\sqrt{2}S_I}$

$\Gamma = \frac{\Delta I^2}{8S_I} + \frac{\Delta I^2}{8S_I} = \frac{8\chi^2 n}{\kappa}$
Why not just use Schrödinger equation for the whole system?

Impossible in principle!

Technical reason: Outgoing information (measurement result) makes it an open system

Philosophical reason: Random measurement result, but deterministic Schrödinger equation

Einstein: God does not play dice
Heisenberg: unavoidable quantum-classical boundary
Measurement vs. decoherence

Widely accepted point of view:

measurement = decoherence (environment)

Is it true?

• Yes, if not interested in information from detector (ensemble-averaged evolution)

• No, if take into account measurement result (single quantum system)

Measurement result obviously gives us more information about the measured system, so we know its quantum state better (ideally, a pure state instead of a mixed state).
Can we verify the Bayesian formalism experimentally?

Direct way:

- prepare
- partial measur.
- control (rotation)
- projective measur.

However, difficult: bandwidth, control, efficiency (expt. realized only for supercond. phase qubits)

Tricks are needed for real experiments

A.K., 1998
Experimental predictions and proposals from Bayesian formalism

- Direct experimental verification (1998)
- Bell-type correlation experiment (2000)
- Entanglement by measurement (2002)
- Violation of Leggett-Garg inequality (2005)
- Partial collapse of a phase qubit (2005)
- Undoing of a weak measurement (2006, 2008)
- Decoherence suppression by uncollapsing (2010)
- Persistent Rabi revealed in noise (2010)

3 solid-state experiments realized so far
Conclusions

- Quantum measurement is the most controversial and fascinating part of quantum mechanics.
- It is easy to see what is “inside” collapse: simple Bayesian formalism works for many solid-state setups.
- Classical information plays a very important part in quantum measurement.
- Measurement backaction necessarily has a “spooky” part (“unphysical”, informational, without a mechanism); it may also have a “classical” part (with a physically understandable mechanism).