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Abstract

In this paper, we present an Extended Kalman Filter (EKF)-based algorithm for real-time vision-
aided inertial navigation. The primary contribution of this work is the derivation of a measurement
model that is able to express the geometric constraints that arise when a static feature is observed from
multiple camera poses. This measurement model does not require including the 3D feature position in
the state vector of the EKF and is optimal, up to linearization errors. The vision-aided inertial navi-
gation algorithm we propose has computational complexity only linear in the number of features, and
is capable of high-precision pose estimation in large-scale real-world environments. The performance
of the algorithm is demonstrated in extensive experimental results, involving a camera/IMU system
localizing within an urban area.

1 Introduction

In the past few years, the topic of vision-aided inertial navigation has received considerable attention in the
research community. Recent advances in the manufacturing of MEMS-based inertial sensors have made
it possible to build small, inexpensive, and very accurate Inertial Measurement Units (IMUs), suitable
for pose estimation in small-scale systems such as mobile robots and unmanned aerial vehicles. These
systems often operate in urban environments where GPS signals are unreliable (the “urban canyon”),
as well as indoors, in space, and in several other environments where global position measurements are
unavailable. The low cost, weight, and power consumption of cameras make them ideal alternatives for
aiding inertial navigation, in cases where GPS measurements cannot be relied upon.

An important advantage of visual sensing is that images are high-dimensional measurements, with
rich information content. Feature extraction methods can typically detect and track hundreds of features
in images, which, if properly used, can result is excellent localization results. However, the high volume
of data also poses a significant challenge for estimation algorithm design. When real-time localization
performance is required, one is faced with a fundamental trade-off between the computational complexity
of an algorithm and the resulting estimation accuracy.

In this paper we present an algorithm that is able to optimally utilize the localization information
provided by multiple measurements of visual features. Our approach is motivated by the observation that,
when a static feature is viewed from several camera poses, it is possible to define geometric constraints
involving all these poses. The primary contribution of our work is a measurement model that expresses
these constraints without including the 3D feature position in the filter state vector, resulting in compu-
tational complexity only linear in the number of features. After a brief discussion of related work in the
next section, the details of the proposed estimator are presented in Section 3. In Section 4 we describe
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the results of a large-scale experiment in an uncontrolled urban environment, which demonstrate that
the proposed estimator enables accurate, real-time pose estimation. Finally, in Section 5 the conclusions
of this work are drawn.

2 Related Work

One family of algorithms for fusing inertial measurements with visual feature observations follows the
Simultaneous Localization and Mapping (SLAM) paradigm. In these methods, the current IMU pose, as
well as the 3D positions of all visual landmarks are jointly estimated [1–4]. These approaches share the
same basic principles with SLAM-based methods for camera-only localization (e.g., [5, 6], and references
therein), with the difference that IMU measurements, instead of a statistical motion model, are used for
state propagation. The fundamental advantage of SLAM-based algorithms is that they account for the
correlations that exist between the pose of the camera and the 3D positions of the observed features. On
the other hand, the main limitation of SLAM is its high computational complexity; properly treating
these correlations is computationally costly, and thus performing vision-based SLAM in environments
with thousands of features remains a challenging problem.

Several algorithms exist that, contrary to SLAM, estimate the pose of the camera only (i.e., do
not jointly estimate the feature positions), with the aim of achieving real-time operation. The most
computationally efficient of these methods utilize the feature measurements to derive constraints between
pairs of images. For example in [7], an image-based motion estimation algorithm is applied to consecutive
pairs of images, to obtain displacement estimates that are subsequently fused with inertial measurements.
Similarly, in [8,9] constraints between current and previous image are defined using the epipolar geometry,
and combined with IMU measurements in an Extended Kalman Filter (EKF). In [10, 11] the epipolar
geometry is employed in conjunction with a statistical motion model, while in [12] epipolar constraints are
fused with the dynamical model of an airplane. The use of feature measurements for imposing constraints
between pairs of images is similar in philosophy to the method proposed in this paper. However, one
fundamental difference is that our algorithm can express constraints between multiple camera poses, and
can thus attain higher estimation accuracy, in cases where the same feature is visible in more than two
images.

Pairwise constraints are also employed in algorithms that maintain a state vector comprised of multiple
camera poses. In [13], an augmented-state Kalman filter is implemented, in which a sliding window of
robot poses is maintained in the filter state. On the other hand, in [14], all camera poses are simultaneously
estimated. In both of these algorithms, pairwise relative-pose measurements are derived from the images,
and used for state updates. The drawback of this approach is that when a feature is seen in multiple
images, the additional constraints between the multiple poses are discarded, thus resulting in loss of
information. Furthermore, when the same image measurements are processed for computing several
displacement estimates, these are not statistically independent, as shown in [15].

One algorithm that, similarly to the method proposed in this paper, directly uses the landmark
measurements for imposing constraints between multiple camera poses is presented in [16]. This is a
visual odometry algorithm that temporarily initializes landmarks, uses them for imposing constraints
on windows of consecutive camera poses, and then discards them. This method, however, does not
incorporate inertial measurements. Moreover, the correlations between the landmark estimates and the
camera trajectory are not properly accounted for, and as a result, the algorithm does not provide any
measure of the covariance of the state estimates.

A window of camera poses is also maintained in the Variable State Dimension Filter (VSDF) [17].
The VSDF is a hybrid batch/recursive method, that (i) uses delayed linearization to increase robustness
against linearization inaccuracies, and (ii) exploits the sparsity of the information matrix, that naturally
arises when no dynamic motion model is used. However, in cases where a dynamic motion model is
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Algorithm 1 Multi-State Constraint Filter
Propagation: For each IMU measurement received, propagate the filter state and covariance (cf.
Section 3.2).

Image registration: Every time a new image is recorded,

• augment the state and covariance matrix with a copy of the current camera pose estimate (cf. Sec-
tion 3.3).

• image processing module begins operation.

Update: When the feature measurements of a given image become available, perform an EKF update
(cf. Sections 3.4 and 3.5).

available (such as in vision-aided inertial navigation) the computational complexity of the VSDF is at
best quadratic in the number of features [18].

In contrast to the VSDF, the multi-state constraint filter that we propose in this paper is able to exploit
the benefits of delayed linearization while having complexity only linear in the number of features. By
directly expressing the geometric constraints between multiple camera poses it avoids the computational
burden and loss of information associated with pairwise displacement estimation. Moreover, in contrast
to SLAM-type approaches, it does not require the inclusion of the 3D feature positions in the filter state
vector, but still attains optimal pose estimation. As a result of these properties, the described algorithm
is very efficient, and as shown in Section 4, is capable of high-precision vision-aided inertial navigation in
real time.

3 Estimator Description

The goal of the proposed EKF-based estimator is to track the 3D pose of the IMU-affixed frame {I}
with respect to a global frame of reference {G}. In order to simplify the treatment of the effects of the
earth’s rotation on the IMU measurements (cf. Eqs. (7)-(8)), the global frame is chosen as an Earth-
Centered, Earth-Fixed (ECEF) frame in this paper. An overview of the algorithm is given in Algorithm 1.
The IMU measurements are processed immediately as they become available, for propagating the EKF
state and covariance (cf. Section 3.2). On the other hand, each time an image is recorded, the current
camera pose estimate is appended to the state vector (cf. Section 3.3). State augmentation is necessary
for processing the feature measurements, since during EKF updates the measurements of each tracked
feature are employed for imposing constraints between all camera poses from which the feature was seen.
Therefore, at any time instant the EKF state vector comprises (i) the evolving IMU state, XIMU, and (ii)
a history of up to Nmax past poses of the camera. In the following, we describe the various components
of the algorithm in detail.

3.1 Structure of the EKF state vector

The evolving IMU state is described by the vector:

XIMU =
[
I
Gq̄T bg

T GvI
T ba

T GpT
I

]T (1)

where I
Gq̄ is the unit quaternion [19] describing the rotation from frame {G} to frame {I}, GpI and

GvI are the IMU position and velocity with respect to {G}, and finally bg and ba are 3 × 1 vectors
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that describe the biases affecting the gyroscope and accelerometer measurements, respectively. The IMU
biases are modeled as random walk processes, driven by the white Gaussian noise vectors nwg and nwa,
respectively. Following Eq. (1), the IMU error-state is defined as:

X̃IMU =
[
δθT

I b̃T
g

GṽT
I b̃T

a
Gp̃T

I

]T
(2)

For the position, velocity, and biases, the standard additive error definition is used (i.e., the error in the
estimate x̂ of a quantity x is defined as x̃ = x− x̂). However, for the quaternion a different error definition
is employed. In particular, if ˆ̄q is the estimated value of the quaternion q̄, then the orientation error is
described by the error quaternion δq̄, which is defined by the relation q̄ = δq̄⊗ ˆ̄q. In this expression, the
symbol ⊗ denotes quaternion multiplication. The error quaternion is

δq̄ ' [
1
2δθT 1

]T (3)

Intuitively, the quaternion δq̄ describes the (small) rotation that causes the true and estimated attitude
to coincide. Since attitude corresponds to 3 degrees of freedom, using δθ to describe the attitude errors
is a minimal representation.

Assuming that N camera poses are included in the EKF state vector at time-step k, this vector has
the following form:

X̂k =
[
X̂T

IMUk

C1
G

ˆ̄q
T Gp̂T

C1
. . . CN

G
ˆ̄q
T Gp̂T

CN

]T
(4)

where Ci
G

ˆ̄q and Gp̂Ci , i = 1 . . . N are the estimates of the camera attitude and position, respectively. The
EKF error-state vector is defined accordingly:

X̃k =
[
X̃T

IMUk
δθT

C1

Gp̃T
C1

. . . δθT
CN

Gp̃T
CN

]T
(5)

3.2 Propagation

The filter propagation equations are derived by discretization of the continuous-time IMU system model,
as described in the following:

3.2.1 Continuous-time system modeling

The time evolution of the IMU state is described by [20]:

I
G

˙̄q(t) = 1
2Ω

(
ω(t)

)
I
Gq̄(t), ḃg(t) = nwg(t)

Gv̇I(t) = Ga(t), ḃa(t) = nwa(t), ˙GpI(t) = GvI(t)
(6)

In these expressions Ga is the body acceleration in the global frame, ω = [ωx ωy ωz]T is the rotational
velocity expressed in the IMU frame, and

Ω(ω) =
[−bω×c ω
−ωT 0

]
, bω×c =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




The gyroscope and accelerometer measurements, ωm and am respectively, are given by [20]:

ωm = ω + C(I
Gq̄)ωG + bg + ng (7)

am = C(I
Gq̄)(Ga− Gg + 2bωG×cGvI + bωG×c2 GpI) + ba + na (8)
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where C(·) denotes a rotational matrix, and ng and na are zero-mean, white Gaussian noise processes
modeling the measurement noise. It is important to note that the IMU measurements incorporate the
effects of the planet’s rotation, ωG. Moreover, the accelerometer measurements include the gravitational
acceleration, Gg, expressed in the local frame.

Applying the expectation operator in the state propagation equations (Eq. (6)) we obtain the equations
for propagating the estimates of the evolving IMU state:

I
G

˙̄̂q = 1
2Ω(ω̂)I

G
ˆ̄q, ˙̂bg = 03×1,

G ˙̂vI = CT
q̂ â− 2bωG×cGv̂I − bωG×c2 Gp̂I + Gg

˙̂ba = 03×1,
G ˙̂pI = Gv̂I

(9)

where for brevity we have denoted Cq̂ = C(I
G

ˆ̄q), â = am − b̂a and ω̂ = ωm − b̂g −Cq̂ωG. The linearized
continuous-time model for the IMU error-state is:

˙̃XIMU = FX̃IMU + GnIMU (10)

where nIMU =
[
nT

g nT
wg nT

a nT
wa

]T is the system noise. The covariance matrix of nIMU, QIMU, depends
on the IMU noise characteristics and is computed off-line during sensor calibration. Finally, the matrices
F and G that appear in Eq. (10) are given by:

F =




−bω̂×c −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−CT
q̂ bâ×c 03×3 −2bωG×c −CT

q̂ −bωG×c2
03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3




where I3 is the 3× 3 identity matrix, and

G =




−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −CT
q̂ 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3




3.2.2 Discrete-time implementation

The IMU samples the signals ωm and am with a period T , and these measurements are used for state
propagation in the EKF. Every time a new IMU measurement is received, the IMU state estimate is
propagated using 5th order Runge-Kutta numerical integration of Eqs. (9). Moreover, the EKF covariance
matrix has to be propagated. For this purpose, we introduce the following partitioning for the covariance:

Pk|k =

[
PIIk|k PICk|k
PT

ICk|k PCCk|k

]
(11)

where PIIk|k is the 15×15 covariance matrix of the evolving IMU state, PCCk|k is the 6N×6N covariance
matrix of the camera pose estimates, and PICk|k is the correlation between the errors in the IMU state
and the camera pose estimates. With this notation, the covariance matrix of the propagated state is
given by:

Pk+1|k =

[
PIIk+1|k Φ(tk + T, tk)PICk|k

PT
ICk|kΦ(tk + T, tk)T PCCk|k

]
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where PIIk+1|k is computed by numerical integration of the Lyapunov equation:

ṖII = FPII + PIIFT + GQIMUGT (12)

Numerical integration is carried out for the time interval (tk, tk + T ), with initial condition PIIk|k . The
state transition matrix Φ(tk + T, tk) is similarly computed by numerical integration of the differential
equation

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T ] (13)

with initial condition Φ(tk, tk) = I15.

3.3 State Augmentation

Upon recording a new image, the camera pose estimate is computed from the IMU pose estimate as:

C
G

ˆ̄q = C
I q̄ ⊗ I

G
ˆ̄q, and Gp̂C = Gp̂I + CT

q̂
IpC (14)

where C
I q̄ is the quaternion expressing the rotation between the IMU and camera frames, and IpC is the

position of the origin of the camera frame with respect to {I}, both of which are known. This camera pose
estimate is appended to the state vector, and the covariance matrix of the EKF is augmented accordingly:

Pk|k ←
[
I6N+15

J

]
Pk|k

[
I6N+15

J

]T

(15)

where the Jacobian J is derived from Eqs. (14) as:

J =
[

C
(
C
I q̄

)
03×9 03×3 03×6N

bCT
q̂

IpC ×c 03×9 I3 03×6N

]
(16)

3.4 Measurement Model

We now present the measurement model employed for updating the state estimates, which is the primary
contribution of this paper. Since the EKF is used for state estimation, for constructing a measurement
model it suffices to define a residual, r, that depends linearly on the state errors, X̃, according to the
general form:

r = HX̃ + noise (17)

In this expression H is the measurement Jacobian matrix, and the noise term must be zero-mean, white,
and uncorrelated to the state error, for the EKF framework to be applied.

To derive our measurement model, we are motivated by the fact that viewing a static feature from
multiple camera poses results in constraints involving all these poses. In our work, the camera observations
are grouped per tracked feature, rather than per camera pose where the measurements were recorded (the
latter is the case, for example, in methods that compute pairwise constraints between poses [7,13,14]). All
the measurements of the same 3D point are used to define a constraint equation (cf. Eq. (26)), relating
all the camera poses at which the measurements occurred. This is achieved without including the feature
position in the filter state vector.

We present the measurement model by considering the case of a single feature, fj , that has been
observed from a set of Mj camera poses (Ci

G q̄, GpCi), i ∈ Sj . Each of the Mj observations of the feature
is described by the model:

z(j)
i =

1
CiZj

[
CiXj
CiYj

]
+ n(j)

i , i ∈ Sj (18)
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where n(j)
i is the 2 × 1 image noise vector, with covariance matrix R(j)

i = σ2
imI2. The feature position

expressed in the camera frame, Cipfj
, is given by:

Cipfj
=




CiXj
CiYj
CiZj


 = C(Ci

G q̄)(Gpfj
− GpCi) (19)

where Gpfj is the 3D feature position in the global frame. Since this is unknown, in the first step of
our algorithm we employ least-squares minimization to obtain an estimate, Gp̂fj , of the feature position.

This is achieved using the measurements z(j)
i , i ∈ Sj , and the filter estimates of the camera poses at the

corresponding time instants (cf. Appendix).
Once the estimate of the feature position is obtained, we compute the measurement residual:

r(j)
i = z(j)

i − ẑ(j)
i (20)

where

ẑ(j)
i =

1
CiẐj

[
CiX̂j
Ci Ŷj

]
,




CiX̂j
Ci Ŷj
CiẐj


 = C(Ci

G
ˆ̄q)(Gp̂fj

− Gp̂Ci)

Linearizing about the estimates for the camera pose and for the feature position, the residual of Eq. (20)
can be approximated as:

r(j)
i ' H(j)

Xi
X̃ + H(j)

fi

Gp̃fj + n(j)
i (21)

In the preceding expression H(j)
Xi

and H(j)
fi

are the Jacobians of the measurement z(j)
i with respect to the

state and the feature position, respectively, and Gp̃fj is the error in the position estimate of fj . The
Jacobians are given by:

H(j)
Xi

=

[
02×15 02×6 . . . J(j)

i bCiX̂fj ×c − J(j)
i C(Ci

G
ˆ̄q)︸ ︷︷ ︸

Jacobian wrt pose i

. . .
]

(22)

and

H(j)
fi

= J(j)
i C(Ci

G
ˆ̄q) (23)

In the preceding expressions J(j)
i is the Jacobian matrix

J(j)
i = ∇Ci p̂fj

z(j)
i =

1
CiẐj


1 0 −CiX̂j

Ci Ẑj

0 1 − Ci Ŷj
Ci Ẑj




By stacking the residuals of all Mj measurements of this feature, we obtain:

r(j) ' H(j)
X X̃ + H(j)

f
Gp̃fj + n(j) (24)

where r(j), H(j)
X , H(j)

f , and n(j) are block vectors or matrices with elements r(j)
i , H(j)

Xi
, H(j)

fi
, and n(j)

i , for
i ∈ Sj . Since the feature observations in different images are independent, the covariance matrix of n(j)

is R(j) = σ2
imI2Mj .

Note that since the state estimate, X, is used to compute the feature position estimate (cf. Appendix),
the error Gp̃fj in Eq. (24) is correlated with the errors X̃. Thus, the residual r(j) is not in the form of
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Eq. (17), and cannot be directly applied for measurement updates in the EKF. To overcome this problem,
we define a residual r(j)

o , by projecting r(j) on the left nullspace of the matrix H(j)
f . Specifically, if we let

A denote the unitary matrix whose columns form the basis of the left nullspace of Hf , we obtain:

r(j)
o = AT (z(j) − ẑ(j)) ' ATH(j)

X X̃ + ATn(j) (25)

= H(j)
o X̃(j) + n(j)

o (26)

Since the 2Mj×3 matrix H(j)
f has full column rank, its left nullspace is of dimension 2Mj−3. Therefore,

r(j)
o is a (2Mj − 3)× 1 vector. This residual is independent of the errors in the feature coordinates, and

thus EKF updates can be performed based on it. Eq. (26) defines a linearized constraint between all the
camera poses from which the feature fj was observed. This expresses all the available information that
the measurements z(j)

i provide for the Mj states, and thus the resulting EKF update is optimal, except
for the inaccuracies caused by linearization.

It should be mentioned that in order to compute the residual r(j)
o and the measurement matrix H(j)

o ,
the unitary matrix A does not need to be explicitly evaluated. Instead, the projection of the vector r and
the matrix H(j)

X on the nullspace of H(j)
f can be computed very efficiently using Givens rotations [21], in

O(M2
j ) operations. Additionally, since the matrix A is unitary, the covariance matrix of the noise vector

n(j)
o is given by:

E{n(j)
o n(j)T

o } = σ2
imATA = σ2

imI2Mj−3

The residual defined in Eq. (25) is not the only possible expression of the geometric constraints that
are induced by observing a static feature in Mj images. An alternative approach would be, for example,
to employ the epipolar constraints that are defined for each of the Mj(Mj−1)/2 pairs of images. However,
the resulting Mj(Mj − 1)/2 equations would still correspond to only 2Mj − 3 independent constraints,
since each measurement is used multiple times, rendering the equations statistically correlated. Our
experiments have shown that employing linearization of the epipolar constraints results in a significantly
more complex implementation, and yields inferior results compared to the approach described above.

3.5 EKF Updates

In the preceding section, we presented a measurement model that expresses the geometric constraints
imposed by observing a static feature from multiple camera poses. We now present in detail the update
phase of the EKF, in which the constraints from observing multiple features are used. EKF updates are
triggered by one of the following two events:

• When a feature that has been tracked in a number of images is no longer detected, then all the
measurements of this feature are processed using the method presented in Section 3.4. This case
occurs most often, as features move outside the camera’s field of view.

• Every time a new image is recorded, a copy of the current camera pose estimate is included in the
state vector (cf. Section 3.3). If the maximum allowable number of camera poses, Nmax, has been
reached, at least one of the old ones must be removed. Prior to discarding states, all the feature
observations that occurred at the corresponding time instants are used, in order to utilize their
localization information. In our algorithm, we choose Nmax/3 poses that are evenly spaced in time,
starting from the second-oldest pose. These are discarded after carrying out an EKF update using
the constraints of features that are common to these poses. We have opted to always keep the
oldest pose in the state vector, because the geometric constraints that involve poses further back in
time typically correspond to larger baseline, and hence carry more valuable positioning information.
This approach was shown to perform very well in practice.
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We hereafter discuss the update process in detail. Consider that at a given time step the constraints of
L features, selected by the above two criteria, must be processed. Following the procedure described in the
preceding section, we compute a residual vector r(j)

o , j = 1 . . . L, as well as a corresponding measurement
matrix H(j)

o , j = 1 . . . L for each of these features (cf. Eq. (25)). By stacking all residuals in a single
vector, we obtain:

ro = HXX̃ + no (27)

where ro and no are vectors with block elements r(j)
o and n(j)

o , j = 1 . . . L, respectively, and HX is a
matrix with block rows H(j)

X , j = 1 . . . L.
Since the feature measurements are statistically independent, the noise vectors n(j)

o are uncorrelated.
Therefore, the covariance matrix of the noise vector no is equal to Ro = σ2

imId, where d =
∑L

j=1(2Mj−3)
is the dimension of the residual ro. One issue that arises in practice is that d can be a quite large number.
For example, if 10 features are seen in 10 camera poses each, the dimension of the residual is 170. In
order to reduce the computational complexity of the EKF update, we employ the QR decomposition of
the matrix HX [9]. Specifically, we denote this decomposition as

HX =
[
Q1 Q2

] [
TH

0

]

where Q1 and Q2 are unitary matrices whose columns form bases for the range and nullspace of HX,
respectively, and TH is an upper triangular matrix. With this definition, Eq. (27) yields:

ro =
[
Q1 Q2

] [
TH

0

]
X̃ + no ⇒ (28)

[
QT

1 ro

QT
2 ro

]
=

[
TH

0

]
X̃ +

[
QT

1 no

QT
2 no

]
(29)

From the last equation it becomes clear that by projecting the residual ro on the basis vectors of the
range of HX, we retain all the useful information in the measurements. The residual QT

2 ro is only noise,
and can be completely discarded. For this reason, instead of the residual shown in Eq. (27), we employ
the following residual for the EKF update:

rn = QT
1 ro = THX̃ + nn (30)

In this expression nn = QT
1 no is a noise vector whose covariance matrix is equal to Rn = QT

1 RoQ1 =
σ2

imIr, with r being the number of columns in Q1. The EKF update proceeds by computing the Kalman
gain:

K = PTT
H

(
THPTT

H + Rn

)−1
(31)

while the correction to the state is given by the vector

∆X = Krn (32)

Finally, the state covariance matrix is updated according to:

Pk+1|k+1 = (Iξ −KTH)Pk+1|k (Iξ −KTH)T + KRnKT (33)

where ξ = 6N + 15 is the dimension of the covariance matrix.
It is interesting to examine the computational complexity of the operations needed during the EKF

update. The residual rn, as well as the matrix TH , can be computed using Givens rotations in O(r2d)
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operations, without the need to explicitly form Q1. On the other hand, Eq. (33) involves multiplica-
tion of square matrices of dimension ξ, an O(ξ3) operation. Therefore, the cost of the EKF update is
max(O(r2d), O(ξ3)). If, on the other hand, the residual vector ro was employed, without projecting it on
the range of HX, the computational cost of computing the Kalman gain would have been O(d3). Since
typically d À ξ, r, we see that the use of the residual rn results in substantial savings in computation.

3.6 Discussion

We now study some of the properties of the described algorithm. As shown in the previous section, the
filter’s computational complexity is linear in the number of observed features, and at most cubic in the
number of states that are included in the state vector. Thus, the number of poses that are included in
the state is the most significant factor in determining the computational cost of the algorithm. Since this
number is a selectable parameter, it can be tuned according to the available computing resources, and
the accuracy requirements of a given application. If required, the length of the filter state can be also
adaptively controlled during filter operation, to adjust to the varying availability of resources.

One source of difficulty in recursive state estimation with camera observations is the nonlinear nature
of the measurement model. Vision-based motion estimation is very sensitive to noise, and, especially
when the observed features are at large distances, false local minima can cause convergence to incon-
sistent solutions [22]. The problems introduced by nonlinearity have been addressed in the literature
using techniques such as Sigma-point Kalman filtering [23], particle filtering [4], and the inverse depth
representation for features [24]. Two characteristics of the described algorithm increase its robustness to
linearization inaccuracies: (i) the inverse feature depth parametrization used in the measurement model
(cf. Appendix) and (ii) the delayed linearization of measurements [17]. By the algorithm’s construction,
multiple observations of each feature are collected, prior to using them for EKF updates, resulting in
more accurate evaluation of the measurement Jacobians.

One interesting observation is that in typical image sequences, most features can only be reliably
tracked over a small number of frames (“opportunistic” features), and only few can be tracked for long
periods of time, or when re-visiting places (persistent features). This is due to the limited field of view of
cameras, as well as occlusions, image noise, and viewpoint changes, that result in failures of the feature
tracking algorithms. As previously discussed, if all the poses in which a feature has been seen are included
in the state vector, then the proposed measurement model is optimal, except for linearization inaccuracies.
Therefore, for realistic image sequences, the proposed algorithm is able to optimally use the localization
information of the opportunistic features. Moreover, we note that the state vector Xk is not required to
contain only the IMU and camera poses. If desired, the persistent features can be included in the filter
state, and used for SLAM. This would further improve the attainable localization accuracy, within areas
with lengthy loops.

4 Experimental results

The algorithm described in the preceding sections has been tested extensively both in simulation and
with real data. In this section, some representative results are discussed.

4.1 Simulation results

Several simulation tests have been carried out, in order to verify the performance of the proposed al-
gorithm. We here present results demonstrating the consistency of the multi-state constraint filter. In
Fig. 1(a), the estimated trajectory of the camera for a typical simulation run is plotted. For this partic-
ular trial, 1000 visual features are randomly placed on the walls of a 12m×12m simulated room, and the
camera is moving in a circular trajectory of radius 3m. The camera is recording images at 1Hz, while
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moving at a velocity of 0.1m/sec. In Figs. 1(b-d), the estimation errors for the IMU position, orientation,
and velocity are shown (blue lines), for 10 trials under this simulation setup. These errors are compared
against the corresponding ±3σ bounds computed using the estimated covariance (red enveloping lines).
From these plots it becomes clear that the errors are commensurate with the computed covariance, and
thus the estimator is consistent. Although the results shown in Fig. 1 pertain to this particular simulation
setup, the results are typical; through numerous simulations we have verified that the estimates produced
by the multiple-state constraint filter are generally consistent. Given the severe nonlinearities that arise
in vision-based estimation, this is a very significant property of the algorithm.

4.2 Real-world experiments

In order to verify the ability of the proposed algorithm to operate in a real-world setting, we have also
conducted experiments with real image sequences. We here present two experiments, one carried out
indoors, and one outdoors. In both cases, the system used is comprised of a Pointgrey FireFly camera,
registering images of resolution 640 × 480 pixels and an Inertial Science ISIS IMU, providing inertial
measurements at a rate of 100Hz. During both experiments, all data was stored on a computer, and
processing was done off-line. For the results shown here, feature extraction and matching was performed
using the SIFT algorithm [25]. In the filter state vector a maximum of 30 camera poses were maintained.
Since features were rarely tracked for more than 30 images, this number was sufficient for utilizing most
of the available constraints between states.

4.2.1 Indoor Experiment

For the indoor experiment, the camera/IMU system was moved manually inside a university office, on
a 84m-long trajectory. Some example images from the sequence of 688 frames (recorded at 2 Hz) are
shown in Fig. 2, while the complete dataset can be found online at [26]. The estimated trajectory of
the IMU can be seen in Fig. 3. In this plot, the initial position of the IMU is denoted by a red square,
while the final position estimate is denoted by a star. Even though ground truth for the entire duration
of the experiment is not available, it is known that during this motion the system was returned to its
initial position, Gpinit = [0 0 0]T m, twice: once at t = 220sec, and once at the end of the trajectory.
At these two time instants the position estimates are equal to Gp̂1 = [−0.12 0.20 − 0.02]T m and
Gp̂final = [−0.10 0.36 −0.03]T m, respectively. It is important to note that these estimates correspond to
errors smaller than 0.5% of the travelled distance. Moreover, the position errors agree with the estimated
3σ values, for the position estimate, which are shown in Fig. 4. In this figure, the 3σ values corresponding
to the estimated covariance for the IMU position, attitude, and velocity, are plotted.

4.2.2 Outdoor Experiment

In order to test the algorithm in an uncontrolled environment, we have also conducted an outdoor
experiment, during which the camera/IMU system was placed on a car, moving on the streets of a
residential area in Minneapolis, MN. Some example images from the image sequence (recorded at 3 Hz)
are shown in Fig. 5, and a video of all 1598 images, which were stored in about 9 minutes of driving,
can be found online at [26]. Even though images were only recorded at 3Hz due to limited hard disk
space on the test system, the estimation algorithm is able to process the dataset at 14Hz, on a single
core of an Intel T7200 processor (2GHz clock rate). During the experiment, a total of 142903 features
were successfully tracked and used for EKF updates, along a 3.2km-long trajectory. A GPS sensor was
not available during the experiment, and therefore no ground-truth trajectory data exists. However, the
quality of the position estimates can be evaluated using a map of the area.

In Fig. 6, the estimated trajectory is plotted on a map of the neighborhood where the experiment
took place. We observe that this trajectory follows the street layout quite accurately and, additionally,
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Figure 1: (a) The trajectory used for the simulation experiments. The solid red line denotes the actual
trajectory, the dash-dotted blue line represents the estimated trajectory for a single trial, while the
feature positions are shown with asterisks. (b-d) The position, attitude, and velocity errors (blue lines),
respectively, and the ±3σ bounds (red enveloping lines) for for 10 simulation trials.
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Figure 2: Some example images from the sequence recorded during the indoor experiment. Note the
severe distortion caused by the use of a 4mm-lens with a relatively wide field of view (55 degrees). This
lens also causes the image to be projected in the central part of the CCD sensor, resulting in ”blacked-out”
areas in outer parts of the images.
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Figure 4: The 3σ bounds for the errors in the position, attitude, and velocity, for the indoor experiment.
The plotted values are 3-times the square roots of the corresponding diagonal elements of the state
covariance matrix.
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the position errors that can be inferred from this plot agree with the 3σ bounds shown in Fig 7(a). The
final position estimate, expressed with respect to the starting pose, is X̂final = [−7.92 13.14 −0.78]T m.
From the initial and final parking spot of the vehicle it is known that the true final position expressed
with respect to the initial pose is approximately Xfinal = [0 7 0]T m. Thus, the final position error
is approximately 10m in a trajectory of 3.2km, i.e., an error of 0.31% of the travelled distance. This
is remarkable, given that the algorithm does not utilize loop closing, and uses no prior information (for
example, non-holonomic constraints or a street map) about the car motion. Moreover, it is worth pointing
out that the camera motion is almost parallel to the optical axis, a condition which is particularly adverse
for image-based motion estimation algorithms [22]. In Figs. 7(b) and 7(c), the 3σ bounds for the errors in
the IMU attitude and velocity along the three axes are shown. From these, we observe that the algorithm
obtains accuracy (3σ) better than 1o for attitude, and better than 0.35m/sec for velocity in this particular
experiment.

The results shown here demonstrate that the proposed algorithm is capable of operating in a real-
world environment, and producing very accurate pose estimates in real-time. We should point out that
in the dataset presented here several moving objects appear, such as cars, pedestrians, and trees whose
leaves move in the wind. The algorithm is able to discard the outliers which arise from visual features
detected on these objects, using a simple Mahalanobis distance test. Robust outlier rejection is facilitated
by the fact that multiple observations of each feature are available, and thus visual features that do not
correspond to static objects become easier to detect. As a final remark, we note that the described
method can be used either as a stand-alone pose estimation algorithm, or combined with additional
sensing modalities to provide increased accuracy. For example, if a GPS sensor was available during this
experiment, its measurements could be used to compensate for position drift.

5 Conclusions

In this paper we have presented an EKF-based estimation algorithm for real-time vision-aided inertial
navigation. The main contribution of this work is the derivation of a measurement model that is able
to express the geometric constraints that arise when a static feature is observed from multiple camera
poses. This measurement model does not require including the 3D feature positions in the state vector
of the EKF, and is optimal, up to the errors introduced by linearization. The resulting EKF-based pose
estimation algorithm has computational complexity linear in the number of features, and is capable of
very accurate pose estimation in large-scale real environments. In this paper the presentation has only
focused on fusing inertial measurements with visual measurements from a monocular camera. However,
the approach is general and can be adapted to different sensing modalities both for the proprioceptive,
as well as for the exteroceptive measurements (e.g., for fusing wheel odometry and laser scanner data).
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Appendix

To compute an estimate of the position of a tracked feature fj we employ intersection [27]. To avoid local
minima, and for better numerical stability, during this process we use an inverse-depth parametrization
of the feature position [24]. In particular, if {Cn} is the camera frame in which the feature was observed
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Figure 5: Some images from the dataset used for the experiment. The entire video sequence can be found
at [26].
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Figure 6: The estimated trajectory overlaid on a map of the area where the experiment took place. The
initial position of the car is denoted by a red square, and the scale of the map is shown on the top left
corner.
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Figure 7: The 3σ bounds for the errors in the position, attitude, and velocity. The plotted values are
3-times the square roots of the corresponding diagonal elements of the state covariance matrix. Note
that the EKF state is expressed in ECEF frame, but for plotting we have transformed all quantities in
the initial IMU frame, whose x axis is pointing approximately south, and its y axis east.
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for the first time, then the feature coordinates with respect to the camera at the i-th time instant are:

Cipfj
= C(Ci

Cn
q̄)Cnpfj

+ CipCn , i ∈ Sj (34)

In this expression C(Ci
Cn

q̄) and CipCn are the rotation and translation between the camera frames at time
instants n and i, respectively. Eq. (34) can be rewritten as:

Cipfj = CnZj


C(Ci

Cn
q̄)




CnXj
CnZj
CnYj
CnZj

1


 +

1
CnZj

CipCn


 (35)

= CnZj


C(Ci

Cn
q̄)




αj

βj

1


 + ρj

CipCn


 (36)

= CnZj




hi1(αj , βj , ρj)
hi2(αj , βj , ρj)
hi3(αj , βj , ρj)


 (37)

In the last expression hi1, hi2 and hi3 are scalar functions of the quantities αj , βj , ρj , which are defined
as:

αj =
CnXj

CnZj
, βj =

CnYj

CnZj
, ρj =

1
CnZj

, (38)

Substituting from Eq. (37) into Eq. (18) we can express the measurement equations as functions of αj , βj

and ρj only:

z(j)
i =

1
hi3(αj , βj , ρj)

[
hi1(αj , βj , ρj)
hi2(αj , βj , ρj)

]
+ n(j)

i (39)

Given the measurements z(j)
i , i ∈ Sj , and the estimates for the camera poses in the state vector, we can

obtain estimates for α̂j , β̂j , and ρ̂j , using Gauss-Newton least-squares minimization. Then, the global
feature position is computed by:

Gp̂fj =
1
ρ̂j

CT (Cn
G

ˆ̄q)




α̂j

β̂j

1


 + Gp̂Cn (40)

We note that during the least-squares minimization process the camera pose estimates are treated as
known constants, and their covariance matrix is ignored. As a result, the minimization can be carried
out very efficiently, at the expense of the optimality of the feature position estimates. Recall, however,
that up to a first-order approximation, the errors in these estimates do not affect the measurement residual
(cf. Eq. (25)). Thus, no significant degradation of performance is inflicted.
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