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Abstract— In this paper, we present an Extended Kalman
Filter (EKF)-based algorithm for real-time vision-aided inertial
navigation. The primary contribution of this work is the
derivation of a measurement model that is able to express
the geometric constraints that arise when a static feature is
observed from multiple camera poses. This measurement model
does not require including the 3D feature position in the state
vector of the EKF and is optimal, up to linearization errors.
The vision-aided inertial navigation algorithm we propose has
computational complexity only linear in the number of features,
and is capable of high-precision pose estimation in large-scale
real-world environments. The performance of the algorithm
is demonstrated in extensive experimental results, involving a
camera/IMU system localizing within an urban area.

I. INTRODUCTION

In the past few years, the topic of vision-aided inertial
navigation has received considerable attention in the re-
search community. Recent advances in the manufacturing of
MEMS-based inertial sensors have made it possible to build
small, inexpensive, and very accurate Inertial Measurement
Units (IMUs), suitable for pose estimation in small-scale
systems such as mobile robots and unmanned aerial vehicles.
These systems often operate in urban environments where
GPS signals are unreliable (the “urban canyon”), as well as
indoors, in space, and in several other environments where
global position measurements are unavailable. The low cost,
weight, and power consumption of cameras make them ideal
alternatives for aiding inertial navigation, in cases where GPS
measurements cannot be relied upon.

An important advantage of visual sensing is that images
are high-dimensional measurements, with rich information
content. Feature extraction methods can typically detect and
track hundreds of features in images, which, if properly
used, can result is excellent localization results. However,
the high volume of data also poses a significant challenge
for estimation algorithm design. When real-time localization
performance is required, one is faced with a fundamental
trade-off between the computational complexity of an algo-
rithm and the resulting estimation accuracy.

In this paper we present an algorithm that is able to
optimally utilize the localization information provided by
multiple measurements of visual features. Our approach is
motivated by the observation that, when a static feature is
viewed from several camera poses, it is possible to define
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geometric constraints involving all these poses. The primary
contribution of our work is a measurement model that
expresses these constraints without including the 3D feature
position in the filter state vector, resulting in computational
complexity only linear in the number of features. After a
brief discussion of related work in the next section, the de-
tails of the proposed estimator are presented in Section III. In
Section IV we describe the results of a large-scale experiment
in an uncontrolled urban environment, which demonstrate
that the proposed estimator enables accurate, real-time pose
estimation. Finally, in Section V the conclusions of this work
are drawn.

II. RELATED WORK

One family of algorithms for fusing inertial measurements
with visual feature observations follows the Simultaneous
Localization and Mapping (SLAM) paradigm. In these meth-
ods, the current IMU pose, as well as the 3D positions
of all visual landmarks are jointly estimated [1]–[4]. These
approaches share the same basic principles with SLAM-
based methods for camera-only localization (e.g., [5], [6],
and references therein), with the difference that IMU mea-
surements, instead of a statistical motion model, are used
for state propagation. The fundamental advantage of SLAM-
based algorithms is that they account for the correlations that
exist between the pose of the camera and the 3D positions of
the observed features. On the other hand, the main limitation
of SLAM is its high computational complexity; properly
treating these correlations is computationally costly, and
thus performing vision-based SLAM in environments with
thousands of features remains a challenging problem.

Several algorithms exist that, contrary to SLAM, estimate
the pose of the camera only (i.e., do not jointly estimate
the feature positions), with the aim of achieving real-time
operation. The most computationally efficient of these meth-
ods utilize the feature measurements to derive constraints
between pairs of images. For example in [7], an image-
based motion estimation algorithm is applied to consecutive
pairs of images, to obtain displacement estimates that are
subsequently fused with inertial measurements. Similarly,
in [8], [9] constraints between current and previous image are
defined using the epipolar geometry, and combined with IMU
measurements in an Extended Kalman Filter (EKF). In [10],
[11] the epipolar geometry is employed in conjunction with
a statistical motion model, while in [12] epipolar constraints
are fused with the dynamical model of an airplane. The use of
feature measurements for imposing constraints between pairs
of images is similar in philosophy to the method proposed in
this paper. However, one fundamental difference is that our



algorithm can express constraints between multiple camera
poses, and can thus attain higher estimation accuracy, in
cases where the same feature is visible in more than two
images.

Pairwise constraints are also employed in algorithms that
maintain a state vector comprised of multiple camera poses.
In [13], an augmented-state Kalman filter is implemented,
in which a sliding window of robot poses is maintained in
the filter state. On the other hand, in [14], all camera poses
are simultaneously estimated. In both of these algorithms,
pairwise relative-pose measurements are derived from the
images, and used for state updates. The drawback of this
approach is that when a feature is seen in multiple images,
the additional constraints between the multiple poses are
discarded, thus resulting in loss of information. Further-
more, when the same image measurements are processed
for computing several displacement estimates, these are not
statistically independent, as shown in [15].

One algorithm that, similarly to the method proposed
in this paper, directly uses the landmark measurements
for imposing constraints between multiple camera poses is
presented in [16]. This is a visual odometry algorithm that
temporarily initializes landmarks, uses them for imposing
constraints on windows of consecutive camera poses, and
then discards them. This method, however, does not in-
corporate inertial measurements. Moreover, the correlations
between the landmark estimates and the camera trajectory
are not properly accounted for, and as a result, the algorithm
does not provide any measure of the covariance of the state
estimates.

A window of camera poses is also maintained in the
Variable State Dimension Filter (VSDF) [17]. The VSDF
is a hybrid batch/recursive method, that (i) uses delayed
linearization to increase robustness against linearization in-
accuracies, and (ii) exploits the sparsity of the information
matrix, that naturally arises when no dynamic motion model
is used. However, in cases where a dynamic motion model
is available (such as in vision-aided inertial navigation) the
computational complexity of the VSDF is at best quadratic
in the number of features [18].

In contrast to the VSDF, the multi-state constraint filter
that we propose in this paper is able to exploit the benefits of
delayed linearization while having complexity only linear in
the number of features. By directly expressing the geometric
constraints between multiple camera poses it avoids the
computational burden and loss of information associated with
pairwise displacement estimation. Moreover, in contrast to
SLAM-type approaches, it does not require the inclusion
of the 3D feature positions in the filter state vector, but
still attains optimal pose estimation. As a result of these
properties, the described algorithm is very efficient, and as
shown in Section IV, is capable of high-precision vision-
aided inertial navigation in real time.

III. ESTIMATOR DESCRIPTION

The goal of the proposed EKF-based estimator is to track
the 3D pose of the IMU-affixed frame {I} with respect to
a global frame of reference {G}. In order to simplify the

Algorithm 1 Multi-State Constraint Filter
Propagation: For each IMU measurement received,
propagate the filter state and covariance (cf. Section III-B).

Image registration: Every time a new image is recorded,

• augment the state and covariance matrix with a copy of
the current camera pose estimate (cf. Section III-C).

• image processing module begins operation.

Update: When the feature measurements of a given image
become available, perform an EKF update (cf. Sections III-D
and III-E).

treatment of the effects of the earth’s rotation on the IMU
measurements (cf. Eqs. (7)-(8)), the global frame is chosen as
an Earth-Centered, Earth-Fixed (ECEF) frame in this paper.
An overview of the algorithm is given in Algorithm 1. The
IMU measurements are processed immediately as they be-
come available, for propagating the EKF state and covariance
(cf. Section III-B). On the other hand, each time an image
is recorded, the current camera pose estimate is appended
to the state vector (cf. Section III-C). State augmentation
is necessary for processing the feature measurements, since
during EKF updates the measurements of each tracked
feature are employed for imposing constraints between all
camera poses from which the feature was seen. Therefore,
at any time instant the EKF state vector comprises (i) the
evolving IMU state, XIMU, and (ii) a history of up to Nmax

past poses of the camera. In the following, we describe the
various components of the algorithm in detail.

A. Structure of the EKF state vector

The evolving IMU state is described by the vector:

XIMU =
[
I
Gq̄T bg

T GvI
T ba

T GpT
I

]T
(1)

where I
Gq̄ is the unit quaternion [19] describing the rotation

from frame {G} to frame {I}, GpI and GvI are the IMU
position and velocity with respect to {G}, and finally bg

and ba are 3 × 1 vectors that describe the biases affecting
the gyroscope and accelerometer measurements, respectively.
The IMU biases are modeled as random walk processes,
driven by the white Gaussian noise vectors nwg and nwa,
respectively. Following Eq. (1), the IMU error-state is defined
as:

X̃IMU =
[
δθT

I b̃T
g

GṽT
I b̃T

a
Gp̃T

I

]T

(2)

For the position, velocity, and biases, the standard additive
error definition is used (i.e., the error in the estimate x̂
of a quantity x is defined as x̃ = x − x̂). However, for
the quaternion a different error definition is employed. In
particular, if ˆ̄q is the estimated value of the quaternion q̄,
then the orientation error is described by the error quaternion
δq̄, which is defined by the relation q̄ = δq̄ ⊗ ˆ̄q. In this
expression, the symbol ⊗ denotes quaternion multiplication.
The error quaternion is

δq̄ � [
1
2δθT 1

]T
(3)



Intuitively, the quaternion δq̄ describes the (small) rotation
that causes the true and estimated attitude to coincide. Since
attitude corresponds to 3 degrees of freedom, using δθ to
describe the attitude errors is a minimal representation.

Assuming that N camera poses are included in the EKF
state vector at time-step k, this vector has the following form:

X̂k =
[
X̂T

IMUk

C1
G

ˆ̄q
T Gp̂T

C1
. . . CN

G
ˆ̄q
T Gp̂T

CN

]T

(4)

where Ci

G
ˆ̄q and Gp̂Ci

, i = 1 . . . N are the estimates of the
camera attitude and position, respectively. The EKF error-
state vector is defined accordingly:

X̃k =
[
X̃T

IMUk
δθT

C1
Gp̃T

C1
. . . δθT

CN

Gp̃T
CN

]T

(5)

B. Propagation

The filter propagation equations are derived by discretiza-
tion of the continuous-time IMU system model, as described
in the following:

1) Continuous-time system modeling: The time evolution
of the IMU state is described by [20]:

I
G

˙̄q(t) = 1
2Ω

(
ω(t)

)
I
Gq̄(t), ḃg(t) = nwg(t)

Gv̇I(t) = Ga(t), ḃa(t) = nwa(t), ˙GpI(t) = GvI(t)
(6)

In these expressions Ga is the body acceleration in the global
frame, ω = [ωx ωy ωz]T is the rotational velocity expressed
in the IMU frame, and

Ω(ω) =
[−�ω×� ω
−ωT 0

]
, �ω×� =


 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




The gyroscope and accelerometer measurements, ωm and
am respectively, are given by [20]:

ωm = ω + C(I
Gq̄)ωG + bg + ng (7)

am = C(I
Gq̄)(Ga− Gg + 2�ωG×�GvI + �ωG×�2 GpI)

+ ba + na (8)

where C(·) denotes a rotational matrix, and ng and na are
zero-mean, white Gaussian noise processes modeling the
measurement noise. It is important to note that the IMU
measurements incorporate the effects of the planet’s rotation,
ωG. Moreover, the accelerometer measurements include the
gravitational acceleration, Gg, expressed in the local frame.

Applying the expectation operator in the state propagation
equations (Eq. (6)) we obtain the equations for propagating
the estimates of the evolving IMU state:

I
G

˙̄̂q = 1
2Ω(ω̂)I

G
ˆ̄q, ˙̂bg = 03×1,

G ˙̂vI = CT
q̂ â− 2�ωG×�Gv̂I − �ωG×�2 Gp̂I + Gg

˙̂ba = 03×1,
G ˙̂pI = Gv̂I

(9)

where for brevity we have denoted Cq̂ = C(I
G

ˆ̄q), â = am−
b̂a and ω̂ = ωm − b̂g −Cq̂ωG. The linearized continuous-
time model for the IMU error-state is:

˙̃XIMU = FX̃IMU + GnIMU (10)

where nIMU =
[
nT

g nT
wg nT

a nT
wa

]T
is the system

noise. The covariance matrix of nIMU, QIMU, depends on
the IMU noise characteristics and is computed off-line during
sensor calibration. Finally, the matrices F and G that appear
in Eq. (10) are given by:

F =



−�ω̂×� −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−CT
q̂ �â×� 03×3 −2�ωG×� −CT

q̂ −�ωG×�2
03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3




where I3 is the 3× 3 identity matrix, and

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −CT
q̂ 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3




2) Discrete-time implementation: The IMU samples the
signals ωm and am with a period T , and these measurements
are used for state propagation in the EKF. Every time a new
IMU measurement is received, the IMU state estimate is
propagated using 5th order Runge-Kutta numerical integra-
tion of Eqs. (9). Moreover, the EKF covariance matrix has to
be propagated. For this purpose, we introduce the following
partitioning for the covariance:

Pk|k =
[
PIIk|k PICk|k
PT

ICk|k PCCk|k

]
(11)

where PIIk|k is the 15×15 covariance matrix of the evolving
IMU state, PCCk|k is the 6N ×6N covariance matrix of the
camera pose estimates, and PICk|k is the correlation between
the errors in the IMU state and the camera pose estimates.
With this notation, the covariance matrix of the propagated
state is given by:

Pk+1|k =
[

PIIk+1|k Φ(tk + T, tk)PICk|k
PT

ICk|kΦ(tk + T, tk)T PCCk|k

]
where PIIk+1|k is computed by numerical integration of the
Lyapunov equation:

ṖII = FPII + PIIFT + GQIMUGT (12)

Numerical integration is carried out for the time interval
(tk, tk+T ), with initial condition PIIk|k . The state transition
matrix Φ(tk + T, tk) is similarly computed by numerical
integration of the differential equation

Φ̇(tk + τ, tk) = FΦ(tk + τ, tk), τ ∈ [0, T ] (13)

with initial condition Φ(tk, tk) = I15.

C. State Augmentation

Upon recording a new image, the camera pose estimate is
computed from the IMU pose estimate as:

C
G

ˆ̄q = C
I q̄ ⊗ I

G
ˆ̄q, and Gp̂C = Gp̂I + CT

q̂
IpC (14)

where C
I q̄ is the quaternion expressing the rotation between

the IMU and camera frames, and IpC is the position of



the origin of the camera frame with respect to {I}, both of
which are known. This camera pose estimate is appended
to the state vector, and the covariance matrix of the EKF is
augmented accordingly:

Pk|k ←
[
I6N+15

J

]
Pk|k

[
I6N+15

J

]T

(15)

where the Jacobian J is derived from Eqs. (14) as:

J =
[

C
(
C
I q̄

)
03×9 03×3 03×6N

�CT
q̂

IpC ×� 03×9 I3 03×6N

]
(16)

D. Measurement Model

We now present the measurement model employed for up-
dating the state estimates, which is the primary contribution
of this paper. Since the EKF is used for state estimation,
for constructing a measurement model it suffices to define
a residual, r, that depends linearly on the state errors, X̃,
according to the general form:

r = HX̃ + noise (17)

In this expression H is the measurement Jacobian matrix, and
the noise term must be zero-mean, white, and uncorrelated
to the state error, for the EKF framework to be applied.

To derive our measurement model, we are motivated by the
fact that viewing a static feature from multiple camera poses
results in constraints involving all these poses. In our work,
the camera observations are grouped per tracked feature,
rather than per camera pose where the measurements were
recorded (the latter is the case, for example, in methods that
compute pairwise constraints between poses [7], [13], [14]).
All the measurements of the same 3D point are used to define
a constraint equation (cf. Eq. (24)), relating all the camera
poses at which the measurements occurred. This is achieved
without including the feature position in the filter state vector.

We present the measurement model by considering the
case of a single feature, fj , that has been observed from a
set of Mj camera poses (Ci

G q̄, GpCi
), i ∈ Sj . Each of the

Mj observations of the feature is described by the model:

z(j)
i =

1
CiZj

[
CiXj
CiYj

]
+ n(j)

i , i ∈ Sj (18)

where n(j)
i is the 2× 1 image noise vector, with covariance

matrix R(j)
i = σ2

imI2. The feature position expressed in the
camera frame, Cipfj

, is given by:

Cipfj
=


CiXj

CiYj
CiZj


 = C(Ci

G q̄)(Gpfj
− GpCi

) (19)

where Gpfj
is the 3D feature position in the global frame.

Since this is unknown, in the first step of our algorithm
we employ least-squares minimization to obtain an estimate,
Gp̂fj

, of the feature position. This is achieved using the
measurements z(j)

i , i ∈ Sj , and the filter estimates of
the camera poses at the corresponding time instants (cf.
Appendix).

Once the estimate of the feature position is obtained, we

compute the measurement residual:

r(j)
i = z(j)

i − ẑ(j)
i (20)

where

ẑ(j)
i =

1
CiẐj

[
CiX̂j
Ci Ŷj

]
,


CiX̂j

Ci Ŷj
CiẐj


 = C(Ci

G
ˆ̄q)(Gp̂fj

− Gp̂Ci
)

Linearizing about the estimates for the camera pose and
for the feature position, the residual of Eq. (20) can be
approximated as:

r(j)
i � H(j)

Xi
X̃ + H(j)

fi

Gp̃fj
+ n(j)

i (21)

In the preceding expression H(j)
Xi

and H(j)
fi

are the Jacobians

of the measurement z(j)
i with respect to the state and the

feature position, respectively, and Gp̃fj
is the error in the

position estimate of fj . The exact values of the Jacobians in
this expression are provided in [21]. By stacking the residuals
of all Mj measurements of this feature, we obtain:

r(j) � H(j)
X X̃ + H(j)

f
Gp̃fj

+ n(j) (22)

where r(j), H(j)
X , H(j)

f , and n(j) are block vectors or matrices

with elements r(j)
i , H(j)

Xi
, H(j)

fi
, and n(j)

i , for i ∈ Sj . Since
the feature observations in different images are independent,
the covariance matrix of n(j) is R(j) = σ2

imI2Mj
.

Note that since the state estimate, X, is used to compute
the feature position estimate (cf. Appendix), the error Gp̃fj

in Eq. (22) is correlated with the errors X̃. Thus, the residual
r(j) is not in the form of Eq. (17), and cannot be directly
applied for measurement updates in the EKF. To overcome
this problem, we define a residual r(j)

o , by projecting r(j) on
the left nullspace of the matrix H(j)

f . Specifically, if we let
A denote the unitary matrix whose columns form the basis
of the left nullspace of Hf , we obtain:

r(j)
o = AT (z(j) − ẑ(j)) � AT H(j)

X X̃ + AT n(j) (23)

= H(j)
o X̃(j) + n(j)

o (24)

Since the 2Mj × 3 matrix H(j)
f has full column rank, its

left nullspace is of dimension 2Mj − 3. Therefore, r(j)
o is

a (2Mj − 3) × 1 vector. This residual is independent of
the errors in the feature coordinates, and thus EKF updates
can be performed based on it. Eq. (24) defines a linearized
constraint between all the camera poses from which the
feature fj was observed. This expresses all the available
information that the measurements z(j)

i provide for the Mj

states, and thus the resulting EKF update is optimal, except
for the inaccuracies caused by linearization.

It should be mentioned that in order to compute the
residual r(j)

o and the measurement matrix H(j)
o , the unitary

matrix A does not need to be explicitly evaluated. Instead,
the projection of the vector r and the matrix H(j)

X on the
nullspace of H(j)

f can be computed very efficiently using
Givens rotations [22], in O(M2

j ) operations. Additionally,
since the matrix A is unitary, the covariance matrix of the



noise vector n(j)
o is given by:

E{n(j)
o n(j)T

o } = σ2
imAT A = σ2

imI2Mj−3

The residual defined in Eq. (23) is not the only possible
expression of the geometric constraints that are induced by
observing a static feature in Mj images. An alternative
approach would be, for example, to employ the epipolar
constraints that are defined for each of the Mj(Mj − 1)/2
pairs of images. However, the resulting Mj(Mj − 1)/2
equations would still correspond to only 2Mj − 3 indepen-
dent constraints, since each measurement is used multiple
times, rendering the equations statistically correlated. Our
experiments have shown that employing linearization of the
epipolar constraints results in a significantly more complex
implementation, and yields inferior results compared to the
approach described above.

E. EKF Updates

In the preceding section, we presented a measurement
model that expresses the geometric constraints imposed by
observing a static feature from multiple camera poses. We
now present in detail the update phase of the EKF, in which
the constraints from observing multiple features are used.
EKF updates are triggered by one of the following two
events:

• When a feature that has been tracked in a number of
images is no longer detected, then all the measurements
of this feature are processed using the method presented
in Section III-D. This case occurs most often, as features
move outside the camera’s field of view.

• Every time a new image is recorded, a copy of the
current camera pose estimate is included in the state
vector (cf. Section III-C). If the maximum allowable
number of camera poses, Nmax, has been reached,
at least one of the old ones must be removed. Prior
to discarding states, all the feature observations that
occurred at the corresponding time instants are used,
in order to utilize their localization information. In our
algorithm, we choose Nmax/3 poses that are evenly
spaced in time, starting from the second-oldest pose.
These are discarded after carrying out an EKF update
using the constraints of features that are common to
these poses. We have opted to always keep the oldest
pose in the state vector, because the geometric con-
straints that involve poses further back in time typically
correspond to larger baseline, and hence carry more
valuable positioning information. This approach was
shown to perform very well in practice.

We hereafter discuss the update process in detail. Consider
that at a given time step the constraints of L features, selected
by the above two criteria, must be processed. Following the
procedure described in the preceding section, we compute a
residual vector r(j)

o , j = 1 . . . L, as well as a corresponding
measurement matrix H(j)

o , j = 1 . . . L for each of these
features (cf. Eq. (23)). By stacking all residuals in a single
vector, we obtain:

ro = HXX̃ + no (25)

where ro and no are vectors with block elements r(j)
o and

n(j)
o , j = 1 . . . L, respectively, and HX is a matrix with

block rows H(j)
X , j = 1 . . . L.

Since the feature measurements are statistically indepen-
dent, the noise vectors n(j)

o are uncorrelated. Therefore,
the covariance matrix of the noise vector no is equal to
Ro = σ2

imId, where d =
∑L

j=1(2Mj − 3) is the dimension
of the residual ro. One issue that arises in practice is that d
can be a quite large number. For example, if 10 features are
seen in 10 camera poses each, the dimension of the residual
is 170. In order to reduce the computational complexity of
the EKF update, we employ the QR decomposition of the
matrix HX [9]. Specifically, we denote this decomposition
as

HX =
[
Q1 Q2

] [
TH

0

]
where Q1 and Q2 are unitary matrices whose columns
form bases for the range and nullspace of HX, respectively,
and TH is an upper triangular matrix. With this definition,
Eq. (25) yields:

ro =
[
Q1 Q2

] [
TH

0

]
X̃ + no ⇒ (26)[

QT
1 ro

QT
2 ro

]
=

[
TH

0

]
X̃ +

[
QT

1 no

QT
2 no

]
(27)

From the last equation it becomes clear that by projecting the
residual ro on the basis vectors of the range of HX, we retain
all the useful information in the measurements. The residual
QT

2 ro is only noise, and can be completely discarded. For
this reason, instead of the residual shown in Eq. (25), we
employ the following residual for the EKF update:

rn = QT
1 ro = THX̃ + nn (28)

In this expression nn = QT
1 no is a noise vector whose

covariance matrix is equal to Rn = QT
1 RoQ1 = σ2

imIr,
with r being the number of columns in Q1. The EKF update
proceeds by computing the Kalman gain:

K = PTT
H

(
THPTT

H + Rn

)−1
(29)

while the correction to the state is given by the vector

∆X = Krn (30)

Finally, the state covariance matrix is updated according to:

Pk+1|k+1 = (Iξ −KTH)Pk+1|k (Iξ −KTH)T + KRnKT

(31)

where ξ = 6N+15 is the dimension of the covariance matrix.
It is interesting to examine the computational complex-

ity of the operations needed during the EKF update. The
residual rn, as well as the matrix TH , can be computed
using Givens rotations in O(r2d) operations, without the
need to explicitly form Q1. On the other hand, Eq. (31)
involves multiplication of square matrices of dimension ξ,
an O(ξ3) operation. Therefore, the cost of the EKF update
is max(O(r2d), O(ξ3)). If, on the other hand, the residual
vector ro was employed, without projecting it on the range of
HX, the computational cost of computing the Kalman gain



would have been O(d3). Since typically d � ξ, r, we see
that the use of the residual rn results in substantial savings
in computation.

F. Discussion

We now study some of the properties of the described
algorithm. As shown in the previous section, the filter’s
computational complexity is linear in the number of ob-
served features, and at most cubic in the number of states
that are included in the state vector. Thus, the number of
poses that are included in the state is the most significant
factor in determining the computational cost of the algorithm.
Since this number is a selectable parameter, it can be tuned
according to the available computing resources, and the
accuracy requirements of a given application. If required,
the length of the filter state can be also adaptively controlled
during filter operation, to adjust to the varying availability
of resources.

One source of difficulty in recursive state estimation with
camera observations is the nonlinear nature of the measure-
ment model. Vision-based motion estimation is very sensitive
to noise, and, especially when the observed features are at
large distances, false local minima can cause convergence
to inconsistent solutions [23]. The problems introduced by
nonlinearity have been addressed in the literature using
techniques such as Sigma-point Kalman filtering [24], par-
ticle filtering [4], and the inverse depth representation for
features [25]. Two characteristics of the described algorithm
increase its robustness to linearization inaccuracies: (i) the in-
verse feature depth parametrization used in the measurement
model (cf. Appendix) and (ii) the delayed linearization of
measurements [17]. By the algorithm’s construction, multiple
observations of each feature are collected, prior to using them
for EKF updates, resulting in more accurate evaluation of the
measurement Jacobians.

One interesting observation is that in typical image se-
quences, most features can only be reliably tracked over a
small number of frames (“opportunistic” features), and only
few can be tracked for long periods of time, or when re-
visiting places (persistent features). This is due to the limited
field of view of cameras, as well as occlusions, image noise,
and viewpoint changes, that result in failures of the feature
tracking algorithms. As previously discussed, if all the poses
in which a feature has been seen are included in the state
vector, then the proposed measurement model is optimal,
except for linearization inaccuracies. Therefore, for realistic
image sequences, the proposed algorithm is able to optimally
use the localization information of the opportunistic features.
Moreover, we note that the state vector Xk is not required
to contain only the IMU and camera poses. If desired, the
persistent features can be included in the filter state, and
used for SLAM. This would further improve the attainable
localization accuracy, within areas with lengthy loops.

IV. EXPERIMENTAL RESULTS

The algorithm described in the preceding sections has
been tested extensively both in simulation and with real data.
Our simulation experiments have verified that the algorithm

produces pose and velocity estimates that are consistent,
and can operate reliably over long trajectories, with varying
motion profiles and density of visual features. Unfortunately,
simulation data cannot be included in this paper, due to
space limitations. Instead, we here present the results of
the algorithm in an outdoor experiment, which demonstrates
that the method is capable of long-term operation in a real-
world setting. Additional datasets of real-world experiments,
as well as simulation results of the use of our algorithm, can
be found in [21].

The experimental setup consisted of a camera/IMU sys-
tem, placed on a car that was moving on the streets of
a typical residential area in Minneapolis, MN. The system
comprised a Pointgrey FireFly camera, registering images of
resolution 640 × 480 pixels at 3Hz, and an Inertial Science
ISIS IMU, providing inertial measurements at a rate of
100Hz. During the experiment all data were stored on a
computer and processing was done off-line. Some example
images from the recorded sequence are shown in Fig. 1,
while a video of all 1598 images, which were recorded in
about 9 minutes of driving, can be found online at [26].

For the results shown here, feature extraction and matching
was performed using the SIFT algorithm [27]. During this
run, a maximum of 30 camera poses was maintained in
the filter state vector. Since features were rarely tracked
for more than 30 images, this number was sufficient for
utilizing most of the available constraints between states,
while attaining real-time performance. Even though images
were only recorded at 3Hz due to limited hard disk space on
the test system, the estimation algorithm is able to process
the dataset at 14Hz, on a single core of an Intel T7200
processor (2GHz clock rate). During the experiment, a total
of 142903 features were successfully tracked and used for
EKF updates, along a 3.2km-long trajectory. A GPS sensor
was not available during the experiment, and therefore no
ground-truth trajectory data exists. However, the quality of
the position estimates can be evaluated using a map of the
area.

In Fig. 2, the estimated trajectory is plotted on a map of the
neighborhood where the experiment took place. We observe
that this trajectory follows the street layout quite accurately
and, additionally, the position errors that can be inferred from
this plot agree with the 3σ bounds shown in Fig 3(a). The
final position estimate, expressed with respect to the starting
pose, is X̂final = [−7.92 13.14 − 0.78]T m. From the
initial and final parking spot of the vehicle it is known that
the true final position expressed with respect to the initial
pose is approximately Xfinal = [0 7 0]T m. Thus, the
final position error is approximately 10m in a trajectory of
3.2km, i.e., an error of 0.31% of the travelled distance. This
is remarkable, given that the algorithm does not utilize loop
closing, and uses no prior information (for example, non-
holonomic constraints or a street map) about the car motion.
Moreover, it is worth pointing out that the camera motion
is almost parallel to the optical axis, a condition which
is particularly adverse for image-based motion estimation
algorithms [23]. In Figs. 3(b) and 3(c), the 3σ bounds for
the errors in the IMU attitude and velocity along the three



Fig. 1. Some images from the dataset used for the experiment. The entire
video sequence can be found at [26].

axes are shown. From these, we observe that the algorithm
obtains accuracy (3σ) better than 1o for attitude, and better
than 0.35m/sec for velocity in this particular experiment.

The results shown here demonstrate that the proposed al-
gorithm is capable of operating in a real-world environment,
and producing very accurate pose estimates in real-time. We
should point out that in the dataset presented here several
moving objects appear, such as cars, pedestrians, and trees
whose leaves move in the wind. The algorithm is able to
discard the outliers which arise from visual features detected
on these objects, using a simple Mahalanobis distance test.
Robust outlier rejection is facilitated by the fact that multiple
observations of each feature are available, and thus visual
features that do not correspond to static objects become
easier to detect. As a final remark, we note that the described
method can be used either as a stand-alone pose estimation
algorithm, or combined with additional sensing modalities
to provide increased accuracy. For example, if a GPS sensor
was available during this experiment, its measurements could
be used to compensate for position drift.

V. CONCLUSIONS

In this paper we have presented an EKF-based estima-
tion algorithm for real-time vision-aided inertial navigation.
The main contribution of this work is the derivation of a
measurement model that is able to express the geometric
constraints that arise when a static feature is observed from
multiple camera poses. This measurement model does not
require including the 3D feature positions in the state vector
of the EKF, and is optimal, up to the errors introduced
by linearization. The resulting EKF-based pose estimation
algorithm has computational complexity linear in the number
of features, and is capable of very accurate pose estimation in
large-scale real environments. In this paper the presentation
has only focused on fusing inertial measurements with vi-
sual measurements from a monocular camera. However, the
approach is general and can be adapted to different sensing
modalities both for the proprioceptive, as well as for the
exteroceptive measurements (e.g., for fusing wheel odometry

Fig. 2. The estimated trajectory overlaid on a map of the area where the
experiment took place. The initial position of the car is denoted by a red
square, and the scale of the map is shown on the top left corner.

and laser scanner data).

APPENDIX

To compute an estimate of the position of a tracked feature
fj we employ intersection [28]. To avoid local minima, and
for better numerical stability, during this process we use an
inverse-depth parametrization of the feature position [25]. In
particular, if {Cn} is the camera frame in which the feature
was observed for the first time, then the feature coordinates
with respect to the camera at the i-th time instant are:

Cipfj
= C(Ci

Cn
q̄)Cnpfj

+ CipCn
, i ∈ Sj (32)

In this expression C(Ci

Cn
q̄) and CipCn

are the rotation and
translation between the camera frames at time instants n and
i, respectively. Eq. (32) can be rewritten as:

Cipfj
= CnZj


C(Ci

Cn
q̄)




CnXj
Cn Zj
CnYj
Cn Zj

1


 +

1
CnZj

CipCn


 (33)

= CnZj


C(Ci

Cn
q̄)


αj

βj

1


 + ρj

CipCn


 (34)

= CnZj


hi1(αj , βj , ρj)

hi2(αj , βj , ρj)
hi3(αj , βj , ρj)


 (35)

In the last expression hi1, hi2 and hi3 are scalar functions
of the quantities αj , βj , ρj , which are defined as:

αj =
CnXj

CnZj
, βj =

C1Yj

CnZj
, ρj =

1
CnZj

, (36)

Substituting from Eq. (35) into Eq. (18) we can express the
measurement equations as functions of αj , βj and ρj only:

z(j)
i =

1
hi3(αj , βj , ρj)

[
hi1(αj , βj , ρj)
hi2(αj , βj , ρj)

]
+ n(j)

i (37)

Given the measurements z(j)
i , i ∈ Sj , and the estimates

for the camera poses in the state vector, we can obtain
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Fig. 3. The 3σ bounds for the errors in the position, attitude, and velocity. The plotted values are 3-times the square roots of the corresponding diagonal
elements of the state covariance matrix. Note that the EKF state is expressed in ECEF frame, but for plotting we have transformed all quantities in the
initial IMU frame, whose x axis is pointing approximately south, and its y axis east.

estimates for α̂j , β̂j , and ρ̂j , using Gauss-Newton least-
squares minimization. Then, the global feature position is
computed by:

Gp̂fj
=

1
ρ̂j

CT (Cn

G
ˆ̄q)


α̂j

β̂j

1


 + Gp̂Cn

(38)

We note that during the least-squares minimization process
the camera pose estimates are treated as known constants,
and their covariance matrix is ignored. As a result, the min-
imization can be carried out very efficiently, at the expense
of the optimality of the feature position estimates. Recall,
however, that up to a first-order approximation, the errors in
these estimates do not affect the measurement residual (cf.
Eq. (23)). Thus, no significant degradation of performance
is inflicted.
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