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ABSTRACT

This paper presents a study of continuous encryption functions (CEFs) of secret feature vectors for secu-
rity over networks, which include physical layer encryption for wireless communications and biometric
template security for online Internet applications. While CEFs are defined here to include all prior contin-
uous one-way functions, a good CEF is defined to be a continuous function that turns a random feature
vector of limited dimension into a long sequence of numbers in such a way that it is hard to invert and
hard to substitute, it has no or little amplification of noise, and its output samples have zero or near-zero
correlations and have identical or nearly identical distributions. A number of prior CEFs, such as dynamic
random projection, index-of-max hashing and higher-order polynomials, are all shown to fail on these
criteria. Based on selected components of singular value decomposition (SVD) of randomly modulated
matrices of the feature vector, a family of SVD-CEFs is proposed. Such a SVD-CEF is shown to meet all

the criteria for a good CEF and outperform the prior CEFs significantly.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Encryption is fundamentally important for information security
over networks. For a vast range of situations, the amount of user’s
data far exceeds the amount of secrecy that is available to keep
the users’ data in complete secrecy. For such a situation, an often
called one-way function is required to provide computation based
security on top of any given amount of information-theoretic se-
curity. The conventional one-way functions are discrete, which in
general require a secret key that is 100% reliable.

In this paper, we are interested in applications where a reli-
able secret key is either not available or insufficient but a limited
amount of secrecy is available in some noisy form. One such appli-
cation is when two separated nodes (Alice and Bob) in a network
do not share a secret key but they have their respective estimates
of a common physical feature vector (such as reciprocal channel
state information). How to use the estimated feature vectors at Al-
ice and Bob to protect a large amount of information transmitted

* This work was supported in part by the Army Research Office under Grant Num-
ber W911NF-17-1-0581 and the Department of Defense under W911NF-20-2-0267.
The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Office or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

* Corresponding author.

E-mail addresses: yhua@ece.ucr.edu, yhua@ee.ucr.edu (Y. Hua),
ahmed.maksud@email.ucr.edu (A. Maksud).

https://doi.org/10.1016/j.sigpro.2022.108807
0165-1684/© 2022 Elsevier B.V. All rights reserved.

between them is a physical layer encryption problem initially dis-
cussed in [1,2] and more recently in [3], which was driven by an
interest to protect information transmitted over air against eaves-
droppers who may have much stronger channel conditions [5].
Another application is biometric template security for Internet ap-
plications [6,7] where network users rely on their own biometric
feature vectors for secure online transactions.

The estimated (or measured) feature vectors are always noisy to
some degree. To exploit them for encryption, there are two basic
approaches. The first is such that Alice and Bob attempt to gener-
ate a secret key from their noisy estimates. If successful, this key
can be then used to encrypt and decrypt a large amount of infor-
mation based on a discrete encryption method. But due to noise
in the estimated feature vectors, there is no guarantee that the
key produced by Alice 100% agrees with the key produced by Bob
[14-16]. Any mismatched keys would generally fail a discrete en-
cryption method. Note that an encrypted sequence is typically
based on a pseudorandom sequence governed by a seed, i.e., a
secret key, and a totally different pseudorandom sequence would
be generated with any bit change in the seed. Specifically, if Al-
ice and Bob respectively use their noisy estimates to obtain a pair
of limited-length keys K4 and Kpg, then it is likely that K4 # Kp
even though the bit error rate (BER) between K, and Kp can be
very small. If Alice and Bob then use K, and Kjp respectively via
a discrete one-way function to generate a pair of long sequences
of pseudorandom sequences S, and Sg, then the BER between S,
and Sp will be generally very large. Hence Sy and S cannot be
used for encryption and decryption (via modulo addition and sub-
traction, for example) of a long sequence of information bits.
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The second approach is what we call here continuous encryp-
tion. For physical layer encryption [1,3], for example, a message to
be sent by Alice can be encrypted by a continuous encryption func-
tion (CEF) based on Alice’s estimate of a secret feature vector, and
the message can be then recovered by Bob using the same CEF but
based on Bob’s estimate of the secret feature vector. The noises in
the estimated feature vectors in general degrade Bob’s recovery of
the message but only in a soft or controllable way as long as a
signal-to-noise ratio (SNR) of one estimated feature vector relative
to the other is high and the CEF has a good enough figure-of-merit
(FoM). This second approach is similar in a spirit to many of the
methods for biometric template security [6,7].

The contributions of this paper focus on a development of con-
tinuous encryption functions (CEFs). We define a CEF as any con-
tinuous map of an N x 1 real-valued vector X onto a (virtually un-
limited) long sequence of real-valued numbers: yq,y,,---. We will
denote a CEF by y; = fi(x) with k > 1. If y, for each k is an arbi-
trary real-valued number within an interval, we call the CEF type
A. If y, for each k is discrete, we call the CEF type B. A quantiza-
tion of y, for all k converts a type-A CEF to a type-B CEF. But not
all CEFs have the same quality for applications.

We propose to measure the primary qualities of a CEF y, =
fr(x) by the following criteria:

1. (Hardness to invert) If x can be computed (up to a desired pre-
cision) from {yy, k > 1} with a complexity order that is a poly-
nomial function of N, the CEF is said to be easy (or not hard)
to invert. Otherwise, the CEF is said to be hard to invert, which
is desired for a good CEF.

2. (Hardness to substitute) If there are such functions g that
fr(x) = g (s(x)) for all k > 1 where s(x) is a function of x and
invariant to k, then s(x) is said to be a substitute input of the
CEF. If s(x) is easy to compute from {y, k > 1}, then the CEF is
said to be easy to substitute. Otherwise, the CEF is said to be
hard to substitute, which is desired for a good CEF.

3. (Sensitivity) A good CEF should be sufficiently responsive to its
input but not overly sensitive to small perturbation or noise in
its input. The optimal benchmark of the sensitivity to a small
perturbation is the sensitivity of a unitary random projection
of x. The “noise” referred to in this paper is the difference be-
tween two input vectors of interest.

4, (Correlation) Every pair of the output samples of a good CEF
should have zero or near-zero correlation if x has the white
Gaussian distribution A (0, o2ly). If there are strong correla-
tions among the output samples of a CEF, then the CEF is vul-
nerable to attacks by linear prediction (ie., y;, could be esti-
mated by a linear combination of y, with k < k).

5. (Invariance) The statistical distribution of y, for a good CEF
should be invariant or nearly invariant to k if x is of A'(0, 02Iy).
One benefit from the invariance is that it makes quantization of
i for all k easier (i.e., a good quantizer for y;  would be equally
good for y, for all k # ko).

If a CEF meets all of the above criteria, the CEF is said to be
a good CEF. A good type-A CEF can be viewed as a generator of
quasi-continuous pseudorandom numbers (QPRNs). These QCPRNs
are based on a continuous feature vector x as its “seed”, which is
different from the traditional PRN generators that rely on discrete
seed.

It seems not possible to prove whether a CEF is hard to invert
or hard to substitute although one can try to prove that a CEF is
not hard to invert or not hard to substitute. This is an open prob-
lem similar to that of discrete one-way functions [17,18,23] even
though the use of discrete one-way functions in practice is indis-
pensable. We will say that a CEF is empirically hard to attack if
there is a strong empirical evidence suggesting that the CEF is hard
to invert and hard to substitute. As for sensitivity, correlation and
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invariance of a CEF, one can apply statistical analysis and/or com-
puter simulation to quantify the degree to which these criteria are
satisfied by the CEF.

The family of CEFs includes all prior hard-to-invert (i.e., one-
way) continuous functions proposed in the literature. The hard-
to-invert property is widely desired in applications. The hard-to-
substitute property is also important for a similar reason. If an at-
tacker is able to determine a substitute input from a prior exposure
of y, for 1 <k <Kp, then all future output samples y, for k > Ky
can be predicted by the attacker. It is clear that “easy to invert”
implies “easy to substitute”, but the reverse is not true in general.
We say that a CEF is easy to attack if it is easy to invert or easy
to substitute. Equivalently, a CEF is said to be hard to attack if it is
hard to invert and hard to substitute.

The sensitivity of a CEF to noise is clearly important in appli-
cations. The optimal sensitivity is that of a unitary random projec-
tion as discussed later in this paper. To have a small noise sen-
sitivity (relative to the optimal), a CEF must be locally continu-
ous with probability one subject to a continuous randomness of
x. For a type-A CEF, we can measure its sensitivity by a FoM such
as the square-rooted ratio of SNRx over SNRy where SNRx and SNRy
are some signal-to-noise ratios (SNRs) of X and y = [yy,---,yk|"
respectively, e.g., see (62) later. The optimal desired value of such
a FoM is one. For a type-B CEF, the sensitivity can be measured by
BER in y, for k> 1 caused by random perturbations in X, which
will be discussed in detail in Section 7.

The output correlation of a CEF is also important. For example,
if a CEF has a “zero sensitivity to noise”, then its output would be
a constant with perfect correlations, which is obviously a useless
CEF. In general, nonzero correlations among the output samples of
a CEF would allow attacks by linear prediction, which is not desir-
able. So, a good CEF should have zero or near zero output corre-
lations. The invariance of the output distribution of a CEF is also
desirable especially for the purpose of quantization. The correla-
tion and invariance properties of a proposed CEF will be discussed
in detail in this paper.

1.1. Prior works and current contributions

It appears that the prior CEFs all exploit (or can all exploit)
any available secret key S (as the seed) to produce pseudorandom
numbers or operations needed in the functions. A method to in-
vert such a CEF in general has a complexity order equal to Cy p2Ns,
where Ns is the number of binary bits in the secret key, and Cy
is the complexity to invert the CEF if the secret key is given. Un-
less mentioned otherwise, we will refer to Cy; as the complexity
of attack. A good understanding of Cyj, is important for situations
where Ns is not sufficiently large or simply zero.

The random projection (RP) method in [8] and the dynamic
random projection (DRP) method in [9] are type-A CEFs before a
quantization is applied at the last step of the functions. The Index-
of-Maximum (IoM) hashing in [11] is inherently a type-B CEF. The
higher-order polynomials (HOP) in [10] are a type-A CEF.

We will show that for the RP method, the DRP method and
the IoM algorithm 1, Cy = Py with Py denoting a polynomial
function of both N and M; and for the IoM algorithm 2, Cyy =
Ly 2N with Ly, being a linear function of N and M respectively.
The HOP method is shown to be easy to substitute. There are two
versions of DRP based on function-I and function-II in [9]. Unless
mentioned otherwise, we will refer to the function-II version by
DRP. We will also show that HOP is highly sensitive to noise, and
the output samples of RP, DRP and IoM all have a high peak corre-
lation.

Another major contribution of this paper is a new family of
nonlinear CEFs called SVD-CEF. This family of CEFs is of type A
and based on selected components of singular value decomposition
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Table 1
Comparison of CEFs in the absence of secret key.
Ref Type Comp. HI HS. AttackC. Cor Sen. Inv.

RP 18] A ONN) No - Pum Bad - -
DRP [9] A ONN) No - Pum Bad - -
URP Here A O(N) No - Pym Bad Best Best
HOP [10] A ON) - No  Pym - Bad -
[oM-1 [11] B ONN?) No - Ly Bad - -
IoM-2 [11] B O(N?)  Yes Yes Ly 2N Bad Not as good -
SVD-CEF  Here A O(N3)  Yes Yes Py 28N Good  Good Good

(SVD) of randomly modulated matrices of x. Based on the empiri-
cal evidences shown in this paper, the complexity order to attack
a SVD-CEF is Cyy = Pym2¢N where ¢ > 1 is typically substantially
larger than one and increases as N increases. We will show that
the output of SVD-CEF also has good properties in terms of noise
sensitivity, output correlation and distribution invariance. Further-
more, we will show that a quantized SVD-CEF outperforms the oM
algorithm 2 dramatically in terms of BER. Additional comparison of
SVD-CEF with other methods is available in [4] where CEF is ap-
plied for secret key generation.

Table 1 provides a summary comparison of CEFs discussed in
this paper, where each entry in the “Comp.” column is the order
of the forward computational complexity per output sample of the
CEF in terms of N, “Yes” in the H.I. column means “empirically hard
to invert”, “No” in the H.I. column “not hard to invert”, “Yes” in the
H.S. column “empirically hard to substitute”, “No” in the H.S. col-
umn “not hard to substitute”, and the column of “Attack C.” shows
the attack complexity Cyp. The columns of “Cor., Sen. and Inv.”
correspond to “correlation, sensitivity and invariance” respectively.
An entry marked as “-” is an entry that is not very important due
to “No” or “Bad” in another column. But an entry that has the op-
timal performance is marked as “Best”. The two entries of “Best” in
the table are easy to prove. The entries of “Good”, “Not as good”,
“Bad”, “Yes” and “No” are established via analysis and simulation
shown in this paper. The complexity orders shown in the table are
also detailed in this paper.

As shown in this paper, SVD-CEF stands out as a good CEF as
measured by the five criteria shown earlier. A main reason why
SVD-CEF is hard to invert and hard to substitute is that the compo-
nents of SVD of a randomly modulated matrix of the secret vector
x are nonlinearly related to x. More specifically, given the output
samples of SVD-CEF, finding X or its substitute amounts to finding
the solution of a set of multivariate second-order polynomials. A
main reason why SVD-CEF yields uncorrelated output samples is
also because of a highly nonlinear relationship between the output
samples of SVD-CEF and x. See discussion of equation (3) in [4].

1.2. The rest of the paper

In Section 2, we review a linear family of CEFs, including RP
and DRP. We will also discuss a unitary random projection (URP)
and a transformation from the N-dimensional real space RN to the
N-dimensional sphere of unit radius SN(1). The URP would be an
ideal CEF if there is a (strong) secret key shared by Alice and Bob.
But if there is no (strong) secret key, URP has the weakness of
being easy to invert and having high output correlations as high-
lighted later in this paper. In Section 3, we review a family of non-
linear CEFs, including HOP and IoM. In Section 4, we present a new
family of nonlinear CEFs called SVD-CEF, which is a new develop-
ment from our prior works in [1,2]. In Section 5, we provide empir-
ical details to explain why SVD-CEF is hard to attack. In Section 6,
we provide statistical analyses of SVD-CEF as well as simulation re-
sults to show why SVD-CEF has good properties in terms of sensi-
tivity, correlation and invariance. In Section 7, we show a detailed

comparison of the noise sensitivities of a quantized SVD-CEF and
the IoM algorithm 2, which shows a significant advantage of SVD-
CEF. The conclusion is given in Section 8. A previous version of this
paper is posted at [24].

2. Linear family of CEFs

A family of linear CEFs can be expressed as follows:

¥y =Rsx (1)

where y = [y1,¥2,---,yul", M is a large integer, Rg is a M x N
pseudorandom matrix dependent on a secret key S. Let the ith
M; x 1 subvector of y be y;, and the ith M; x N block matrix of Rg
be Rg;. Then it follows that

Vi =Rg;x (2)

where i=1,---,] and ijlM,-:M.
2.1. Random projection

The linear family of CEFs includes the random projection (RP)
method shown in [8] and applied in [12]. If S is known, so is
Rg; for all i. If y; for some i is known/exposed and Rg; is of the
full column rank N, then x is given by R{y; = (RLRs i) 'REy;
where * denotes pseudo-inverse. If Rg; is not of full column rank,
then x can be computed from a set of outputs like (for example)
V1.---.,y; where L is such that the vertical stack of Ry, --,Rgy,
denoted by Rg ., is of the full column rank N.

If S is unknown, then a method to compute X includes a dis-
crete search for the Ng bits of S as follows

(3)

where y;p.; is the vertical stack of yq,---,y;. The total complexity

of the above attack algorithm with unknown key S is Py 2N with

Py being a linear function of Z,Lzl M; and a cubic function of N.
So, RP is not hard to attack (subject to a small Ng).

msin min ly1:. — Rs 1. X]| = msin V1L — Rs1.RE; Vil

2.2. Dynamic random projection

The dynamic random projection (DRP) method proposed in
[9] and also discussed in [7] can be described by

Vi = RgxX (4)

where Rg; 4 is the ith realization of a random matrix that depends
on both S and x. Since Rg; is discrete, y; in (4) is a locally linear
function of x. (There is a nonzero probability that a small pertur-
bation w in X' = x+ w leads to Rg;, being substantially different
from Rg; «. This is not a desirable outcome for biometric templates
although the probability may be small.) Two methods were pro-
posed in [9] to construct Rg;x, which were called “Functions I and
II” respectively. For simplicity of notation, we will now suppress i
and S in (4) and write it as

y =Rgx (5)



Y. Hua and A. Maksud

2.2.1. Assuming “Function I” in [9]
In this case, the ith element of y, denoted by v;, corresponds to
the ith slot shown in [9] and can be written as

v =15 X (6)

where r;i is the ith row of Ryx. But r§ ; is one of L key-dependent

pseudorandom vectors "iTr e ,rl.TL that are independent of x and

known if S is known. So we can also write

V= l'lT)-( (7)

where rf =[r] ... .r],|T, and X e R!N is a sparse vector consist-
ing of zeros and Xx. Before x is known, the position of x in X is
initially unknown.

If an attacker has stolen K realizations of v; (denoted by

Vi1, Vig), then it follows that
Vi = Ri)-( (8)
where v; = [v;1,---,V;x]|T, and R; is the vertical stack of K key-

dependent random realizations of r,.T. With K > LN, R; is of the full
column rank LN with probability one, and in this case the above
equation (when given the key S) is linearly invertible with a com-
plexity order equal to O((LN)3).

An even simpler method of attack is as follows. Since v; =
r{k.lx where [ e {1,--- L} and r;;; for all i, k and [ are known,
then we can compute

I* =arg min min ||v; — R; x|
gle{l.---.L} I [lvi — Ry x|
=arg min ||v; — R, R v;|? 9
gle{],«~,L} ” i i, ] 1” ( )

where R;; is the vertical stack of rl.TM for k=1, ... ,K. Provided
K >N, R;; has the full column rank with probability one. In this
case, the correct solution of x is given by R, v;. This method has

i,0*
a complexity order equal to O(LN3).

2.2.2. Assuming “Function II” in [9]
To attack “Function II” with known S, it is equivalent to consider
the following signal model:

N

Ve =) Tin¥n (10)
n=1

where v is available for k=1,--- K, 1, for 1<k<K, 1<l=<lL

and 1 < n < N are random but known' numbers (when given S), x,
for all n are unknown, and [, is a k-dependent random/unknown
choice from [1,---,L].

We can write

v=Rx (11)
where v is a stack of all v, x is a stack of all x,, and R is a stack

of all ryy » (ie, (R)gy=Tky.n)- In this case, R is a random and

unknown choice from LX possible known matrices. An exhaustive
search would require the O (LX) complexity with K > N + 1.

Now we consider a different approach of attack. Since ry; , for
all k, I, n are known, we can compute

1 K L L
Cun' = p SO el (12)

k=1 1=1 I'=1

If 1y, ; , are pseudo i.i.d. random (but known) numbers of zero mean
and variance one, then for large K (e.g., K > [?) we have ¢, y ~
Op -

1 “random but known” means “known” strictly speaking despite a pseudoran-
domness.
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Also define
1 K L N
Yn K ; lg]: Ukrk,l,n WX::] Cn Xy (13)
where n=1,--- N and
1 kL
Cnw = % DO Tetalkgon- (14)
k=1 I=1

If 1, are iid. of zero mean and unit variance, then for large K
we have ¢,y ~ ¢, v ~ 8, and hence

Yn X Xn. (15)
More generally, if we have ¢, » ~ ¢, ,, with a large K, then

y~ Cx (16)

where (¥)n = yn, and (C), ,y = ¢, ,y. Hence,

x~ Cly. (17)

With an initial estimate X of X, we can then do the following to
refine the estimate:

1. For each of k=1,..-,K, compute I} =argmin;p . ;j|vy—

> =1 Tet.nknl-
2. Recall v=Rx. But now use (R);, = Tz for all k and n, and

replace X by
%= (R'R)"'R'v (18)

3. Go to step 1 until convergence.

Note that all entries in R are discrete. Once the correct R is
found, the exact x is obtained. The above algorithm converges to
either the exact x or a wrong x. But with a sufficiently large K with
respect to a given pair of N and L, our simulation shows that above
attack algorithm yields the exact x with high probabilities. For ex-
ample, for N = 8, L = 8 and K = 23L, the successful rate is 99%. And
for N=16, L =48 and K = 70L, the successful rate is 98%. In the
experiment, for each set of N, L and K, 100 independent realiza-
tions of all elements in x and R were chosen from i.i.d. Gaussian
distribution with zero mean and unit variance, i.e., N (0,1). The
successful rate was based on the 100 realizations.

In [9], an element-wise quantized version of v was further sug-
gested to improve the hardness to invert. In this case, the vector
potentially exposable to an attacker can be written as

V=Rx+w (19)

where w can be modelled as a white noise vector uncorrelated
with Rx. The above attack algorithm with v replaced by ¥ also ap-
plies although a larger K is needed to achieve the same rate of
successful attack.

In all of the above cases, the computational complexity for a
successful attack is a polynomial function of N, L and/or K when
the secret key S is given.

2.3. Unitary Random Projection (URP)

None of the RP and DRP methods is homomorphic. To have a
homomorphic CEF whose input and output have the same distance
measure, we can use

Vi = Qix (20)

where Q, € RN*N for each realization index k is a pseudorandom
unitary matrix governed by a secret key S. One way to generate
Q, is to compute the QR decomposition [19] of a random matrix
X, whose entries are pseudorandom numbers (including Gaussian
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random numbers) from a standard cryptographically secure pseu-
dorandom number generator. It is important to note that if there is
a secret key with its length Ng > N, then URP is also hard to invert
strictly speaking. But as stressed earlier, this paper focuses on the
case where Ng « N or simply Ng = 0.

Let X' =x+w with w being a noise. Then y; = QX' = Qx +
Qw. It follows that the SNR of y, equals the SNR of X', and hence
the FoM of URP equals one. We can view the noise sensitivity of
URP as optimal. In fact, if Alice and Bob do share a strong secret
key, then the URP would be an ideal CEF as it would meet per-
fectly all the five criteria. However, like RP and DRP, URP is easy
to attack if the secret key is weak or does not exist. Furthermore,
as shown later, without a secret key or equivalently with a known
set of Q, for all k, the output samples of URP are highly correlated
with each other.

Note that each of the linear CEFs requires a forward per-sample
computation complexity equal to O(N). For example, to produce
N output samples of URP, we need to generate the N x N uni-
tary matrix Q,, which requires a computational complexity equal
to @(N?). We also need to compute the product Q,x which costs
another ®(N?). So, the per-sample complexity is O(N).

If x consists of i.i.d. A'(0,52), all entries of y; for all i are also
N(0,02), which is a desired invariance of statistical distribution.
But the entries of y; in general have significant correlations with
entries of y; for j#i (even though the N entries of y; for each
i have zero correlations among themselves). Simulation results on
the correlations of RP, DRP and URP will be shown later.

2.3.1. Transformation from RN to SN(1)

For URP, ||y, |l = |Ix||, which means that ||x]|| is readily available
from y;. If ||x|| needs some protection from an exposed y;, we can
apply the transformation shown next.

We now introduce a transformation from the N-dimensional
vector space RN to the N-dimensional sphere of unit radius SN(1).
Let x € RN. Define

1 x
1+[|x(12
which clearly satisfies v e SN(1). Then, we let
Vi = Qv (22)

where Q; is now a (n+1) x (n+ 1) unitary random matrix gov-
erned by a secret key S.

Let y, = Ryv'. It follows that ||y}, — yi|l = [[v' — v]|. But since v is
now a nonlinear function of X, the relationship between ||v' —v||
and ||x’ — x|| is more complicated, which we discuss below.

Let us consider X’ = X+ w. One can verify that

X+wW X
’ . Ix-+wll /1 +[x-+w]]2 lIxIl./1+[1x]12
[V —v| = [erw] - Il
A 14| x+w|2 1+]1x(12

a
-|2]
d
where
a=x+w)-[Ix]|-/1+][x]?
—X-Ix+w| -1+ ][x+w|2 (24)

b= x|l v1+[X[I>- X+ Wl - /1 +[[x+w]? (25)
c=[Ix+wl- T+ x> = lIx][- 1+ [Ix+wl? (26)

d =1+ X2 - /1+ [x+w]2 (27)
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To derive a simpler relationship between |v' —v| and ||x' -
X|| = ||lw]|, we will assume ||w|| « r = ||x|| and apply the first or-
der approximations. Also we can write

W = Wy + LW (28)

where wy is a unit-norm vector in the direction of x, and w, is a
unit-norm vector orthogonal to X. Then,

Iwll? =n2 +n (29)

x'w= nx|1X[| = nar. (30)

It follows that
[Ix +wl ~ ||x]
1

+ ——(||w||? + 2x"w
2||x||(” I )

1
=T+ 5 (5 + 01 +2rny)

1
AT+ j('ﬁ+2”7x) (31)

VI IIx+ w2~ /1 + ][]
1
+7
21+ [x|?

~y1412 4

Then, one can verify that

1 r V1412
ar~wry1l+r2—x= +
2(«/1+r2 r

(Ilw|)? + 2x"w)

1 2
———= (1 +2rny). 32
S 2 (32)

)(ﬂi +2rmx)  (33)

and
lall? =r2(1+ )M +n?)
2
1 r V1412
+4r2<m+ - )(ni+2rnx)2
2
_ner? Mir r N1+T
1+12 r
~r2(1+r) M2 +n2)
+r T4 EXCAY 2
V1+12 r *

)(ni +2r1,)

/ 2
—2r3/1+12 r 1+r 2
1+12 r
2 24,2 o
:r(1+r)m+1+r277x (34)

where the approximations hold because of ny «r and n, «r.
Similarly, we have

b2~ (1 +12)2 (35)
2 1 2 2 L :

e~ (m(m + 2“7x)> AT (36)
@2~ (1412)2. 37)
Hence

It is somewhat expected that the larger is r, the less are the
sensitivities of ||V —v||2 to n, and 7 But the sensitivities of
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IV —v||2 to n, and ny are different in general, which also vary
differently as r varies. If r « 1, then

1
IV —vli? ~ S0t + 0 (39)

which shows a higher sensitivity of |[v/ —v||2 to 1, than to ny. If
r> 1, then

1 1 1
IV = VI~ o 4+ = w2 (40)
which shows equal sensitivities of ||v' —v]||2 to i, and 5y respec-
tively.
The above results show how ||V —v|? changes with

W=1,W, +1nxWyx subject to |w| <« |X||=r or equivalently

Vg«

For larger ||w/||, the relationship between ||V —v||? and ||w|| is
not as simple. But one can verify that if ||w| > r > 1, then ||V —
v| ~1/r.

3. Nonlinear family of CEFs

If the secret key S available is not large enough, then we will
need a CEF that is hard to attack even if S is known. Such a CEF
has to be nonlinear.

3.1. Higher-order polynomials

A family of higher-order polynomials
gested in [10] as a hard-to-invert continuous

(HOP) was sug-
function.

But we show here that HOP is not hard to substitute.
Let y=[y1.---,ym)T and Xx=[xq,---,xy]T where y, is a
HOP of Xxy,---,xy with pseudorandom coefficients. Namely,

Ym = fmn(Xq, -+, XN) = Z]j:O cn [T 27" where the coefficients
Cm,j can be pseudorandom numbers governed by S. When S is
known, all the polynomials are known and yet x is still generally
hard to obtain from y for any M due to the nonlinearity. But
we can write y; =gn(V(X1,---,Xy)), Where gp is a scalar linear
function conditioned on S, and v(xq{,---,Xxy) is a Jx 1 vector
nonlinear function unconditioned on S. This means that the HOP
is not a hard-to-substitute function. It is also obvious that HOP is
generally highly sensitive to noise in x due to higher-order poly-
nomials. Specifically, ym = p1 Zﬁ':o Cm.j (xfl'jqxgz’j ~~x,€,”’j)8x1 +

. . .1
DN Z]j:O cm,j(xfl'f ...xf,’fll'fxf]”*’ )dxy, where 9 denotes the

differential operator. A large p; ; means a large sensitivity to noise
in x;. So, HOP does not seem a good choice in applications. It
is obvious that the per-sample complexity order of the HOP is
O(Z]j:O Zf\’ﬂ p; ), a simpler form of which in terms of a large N
is O(N).

3.2. Index-of-max hashing

More recently a method called index-of-max (IoM) hashing was
proposed in [11] and applied in [13]. There are algorithms 1 and 2
based on IoM, which will be referred to as loM-1 and IoM-2.

In IoM-1, the feature vector X € RN is multiplied (from the left)
by a sequence of L x N pseudorandom matrices Ry, --- , Rk, to pro-
duce vy, --- , vk, respectively. The index of the largest element in
each v is used as an output y,. With y =[yq, -, ¥k, |7, we see
that y is a nonlinear (“piece-wise” constant and “piece-wise” con-
tinuous) continuous function of x.

The generation of each of Ry,---, Rk, requires O(N%) com-
plexity, and the computation of each of vy,---, vk, requires ad-
ditional O(N%) complexity. The search for the maximum entry
within each v, costs O(N). Hence, the per-sample complexity of
IoM-1 is O(N?).
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Table 2
Normalized projection of x onto its estimate using only averaging for attack of
[oM-1.

Ki =8 16 32 64
N=38 0.8546 0.9171 0.9562 0.9772
16 0.8022 0.8842 0.9365 0.9666
32 0.7328 0.8351 0.906 0.9494

In IoM-2, Ry,---,Rg, used in IoM-1 are replaced by N x
N pseudorandom permutation matrices Py, ---,Pg, to produce
Vi, .-+, Vg, and then a sequence of vectors hy,---, hg, are pro-
duced in such a way that each h; is the element-wise products
of an exclusive set of p vectors from vy,---,vg,. The index of
the largest element in each hy is used as an output y,. With
y=I[y, - ,sz]T, we see that y is another nonlinear continuous
function of x.

The complexity of p random permutations of x to produce p
of v, is O(pN?) (even though there is no multiplication required).
The complexity to produce each hy is O(pN). Then the per-sample
complexity of [oM-2 is also O(N?) provided that p is independent
of N.If p = N, the per-sample complexity of IoM-2 becomes O(N3).

Next we show that [oM-1 is not hard to invert if the secret key
S or equivalently the random matrices Ry, ---, Rk, are known. We
also show that IoM-2 is not hard to invert up to the sign of each
element in x if the secret key S or equivalently the random permu-
tations Py, --- , Py, are known.

3.2.1. Attack of IoM-1
Assume that each R, has L rows and the secret key S is known.

Then knowing yj for k=1,...,K; means knowing ry ,; and ry
satisfying
T q X > Tip X (41)

with [=1,.-- . L—1and k=1,---,Ky. Here r] _, and r], for all
I are rows of Ry. The above is equivalent to dj x > 0 with d;; =

Ty.q.1 — Ty p» OF more simply
dix>0 (42)

where d; is known for k=1, ... ,K with K =K;(L—1). Note that
any scalar change to x does not affect the output y. Also note that
even though IoM-1 defines a nonlinear function from x to y, the
conditions in (42) useful for attack are linear with respect to x.

To attack IoM-1, we can simply compute X satisfying d{)‘( >0
for all k. One such algorithm of attack is as follows:

1. Initialization/averaging: Let x =d = } Y°%_; d,.
2. Refinement: Until d[X > 0 for all k, choose k* = argmin, d]X,
and compute

R <~ X —n(d.R)d}. (43)
where 7 is a step size.

Our simulation (using n = W) shows that using the initial-
k*

ization alone can yield a good estimate of x as K increases. More
specifically, the normalized projection i ﬂ(IIIT-I)I‘XII converges to one as
K increases. Our simulation also shows that the second step in the
above algorithm improves the convergence slightly. Examples of
the attack results are shown in Tables 2 and 3 where L = N. We
see that IoM-1 (with its key S exposed) can be inverted with a
complexity order no larger than a linear function of N and K; re-
spectively.

3.2.2. Attack of IoM-2
To attack [oM-2, we need to know the sign of each element of
X, which is assumed below. Given the output of IoM-2 and all the
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Table 3
Normalized projection of X onto its estimate after convergence of refinement for
attack of IoM-1.

Ki =8 16 32 64
N=38 0.8807 0.9467 0.9804 0.9937
16 0.8174 0.908 0.9612 0.9861
32 0.739 0.8497 0.9268 0.9699

Table 4
Normalized projection of [X| onto its estimate using only averaging for attack of
loM-2.

K, =8 16 32 64
N=38 0.9244 0.954 0.9698 0.9783
16 0.9068 0.9418 0.9603 0.9694
32 0.8844 0.9206 0.9379 0.9466

Table 5
Normalized projection of |x| onto its estimate after convergence of refinement for
attack of loM-2.

K=8 16 32 64
N=38 0.9432 0.9711 0.9802 0.9816
16 0.9182 0.9525 0.9649 0.9653
32 0.8887 0.9258 0.9403 0.9432

permutation matrices Py, --- , Pg,, we know which of the elements
in each hy, is the largest and which of these elements are negative.
If the largest element in h; is positive, we will ignore all the neg-
ative elements in hy. If the largest element in h; is negative, we
know which of the elements in h;, has the smallest absolute value.

Let |h;| be the vector consisting of the corresponding abso-
lute values of the elements in hy. Also let log |h,| be the vector
of element-wise logarithm of |h;|. It follows that

log [hy | = Ty log [x| (44)

where T is the sum of the permutation matrices used for hy. The
knowledge of an output y, of IoM-2 implies the knowledge of tT

k,a,l
and tZ by (1€, TOoW vectors of T) such that either

t; o 10g [X] >t 5 log |X] (45)
with I[=1,---,L, — 1if hy has L, > 2 positive elements, or

t; o 10g [X| <t log |X] (46)
with [=1,---,N—1 if h; has no positive element.

If h;, has only one positive element, the corresponding y, is ig-
nored as it yields no useful constraint on log|x|. We assume that
no element in x is zero.

Equivalently, the knowledge of y, implies c{,, log |x| > 0 where
ck,l = tk,a,l - tk.b,l for | = 1, ey, Lk —1if hk has Lk > 2 pOSitiVe ele-
ments, or € = —ty o+t for I=1,... ,N—1if hy has no pos-
itive element. A simpler form of the constraints on log|X| is

¢/ log|x| > 0 (47)

where ¢, is known for k=1,---,K with K= 2511 (L —1). Here
L, = L if h; has a positive element, and L, = N if h, has no posi-
tive element.

The algorithm to find log |X| satisfying (47) for all k is simi-
lar to that for (42), which consists of “initialization/averaging” and
“refinement”. Knowing log |X|, we also know |x|. Examples of the
attack results are shown in Tables 4 and 5 where p=N and all
entries of X are assumed to be positive.

The above analysis shows that IoM-2 effectively extracts out a
binary (sign) secret from each element of x and utilizes that se-
cret to construct its output. Other than that secret, loM-2 is not a
hard-to-invert function. In other words, loM-2 can be inverted with
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a complexity order no larger than LN’KZZN where Ly, is a linear
function of N and K, respectively, and 2N is to due to an exhaus-
tive search of the sign of each element in x. Note that if an addi-
tional key Sy of N bits is first extracted with 100% reliability from
the signs of the elements in X, then a linear CEF could be used
while maintaining an attack complexity order equal to O(N32N).

4. A new family of nonlinear CEFs

The previous discussions show that RP, DRP and IoM-1 are not
hard to invert, and IoM-2 can be inverted with a complexity order
no larger than LN,KZZN. We show next a new family of nonlinear
CEFs, for which the best known method to attack suffers a com-
plexity order no less than ©(2¢N) with ¢ substantially larger than
one.

The new family of nonlinear CEFs is broadly defined as follows.
Step 1: let M, be a matrix (for index k) consisting of elements
that result from a random modulation of the input vector x € RN.
Step 2: Each element of the output vector y € RM is constructed
from a component of the singular value decomposition (SVD) of
M; , for some k. Each of the two steps can have many possibilities.
We will next focus on one specific CEF in this family (as this CEF
seems the best among many choices we have considered).

For each pair of k and [, let Q; be a (secret key dependent)
random N x N unitary (real) matrix. Define

Mk,x = [Qk,]xs o 7Qk.Nx] (48)

where each column of M, is a random rotation of x. Let u;, ; be
the principal left singular vector of My, ,, i.e.,

w,,; =arg max u'M;, M/ u (49)

u [lull=1 '

Then for each k, choose Ny (1 <Ny < N) elements in u;,; to be
Ny elements in y = [y, ¥, ---|T. If we choose Ny =1, then y, for
each k is an entry (such as the 1st entry) of u, ;. We will refer
to the above function (from x to y) as SVD-CEF. Note that there
are efficient ways to perform the forward computation needed
for (49) given Mk,xME.x- One of them is the power method [19],

which has the complexity equal to ©(N2). But the construction of
MkaM;x (starting from the generation of Qy 1, - -, Qy y) for each k
requires O(N3) complexity.

We can see that for each random realization of Qy; for all k and
I and a random realization Xy of X, with probability one there is a
neighborhood around xy within which y is a continuous function
of x. It is also clear that for any fixed X the elements in y appear
random to anyone who does not have access to the secret key used
to produce the pseudorandom Q.

More importantly, we will show in Section 5 that SVD-CEF is
empirically hard to attack even with Q,; known for all k and I;
and in Section 6 that if x consists of i.i.d. A'(0, o), then all entries
of y = [¥1. ¥, - - - |T have nearly zero correlations and the same dis-
tribution even with Q; being fixed for all k and I. The noise sen-
sitivity of SVD-CEF is also discussed in Section 6.

5. Attack of SVD-CEF

We now consider how to compute x € RN from a given y e RM
with M > N for SVD-CEF based on (48) and (49) assuming that Q
for all k and [ are given.

A universal method for inverting a function is via exhaustive
search, i.e., searching for a x that produces the known y via the
forward function up to a desired precision. This method has a com-
plexity order no less than ©(2MsN) with N being an effective num-
ber of bits needed to represent each of the N elements in x. The
value of Np depends on an expected noise level in x. It is not un-
common in practice that Ng ranges from 3 to 8 or even higher.
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The only other known method that we know to invert SVD-CEF
is the Newton’s method, which is considered next. To prepare for
the application of the Newton’s method, we need to formulate a
set of equations which must be satisfied by all unknown variables.

5.1. Preparation

We now assume that for each of k=1,---,K, Ny elements of
w1 are used to construct y € RM with M = KN,. Computing x
from y and Q, for all k and [ is equivalent to solving the following
eigenvalue-decomposition (EVD) equations:

T 2
Mk,ka,xuk.x,l = O'k,x,]uk,x,] (50)

with k=1,..-,K. Here okzx] is the principal eigenvalue of

Mkva[.X. But this is not a conventional EVD problem because the
vector X inside M, , is unknown along with okz_,c1 and N — N, ele-
ments in uy, ¢ for each k. We will refer to (50) as the EVD equi-
librium conditions for x.

If the unknown x is multiplied by «, so should be the cor-
responding unknowns oy, for all k but u,; for any k is not
affected. So, we will only need to consider the solution satisfy-
ing ||x||2 = 1. Note that if the norm of the original feature vec-
tor contains secret, we can first use the transformation shown in
Section 2.3.1.

The number of unknowns in the system of nonlinear
equations (50) is Nypk pvp.1 = N + (N — Ny)K + K, which consists of
all N elements of X, N — Ny, elements of u, ; for each k and o,ix_l
for all k. The number of the nonlinear equations is Negy gvp,1 =
NK + K + 1, which consists of (50) for all k, [luy 1|l =1 for all k
and ||x||2 = 1. Then, the necessary condition for a finite set of so-
lutions is Neqy evp,1 = Nynk pvp.1, OF equivalently NyK > N — 1.

If Ny <N, there are N — N, unknowns in u;,; for each k and
hence the left side of (50) is a third-order function of unknowns.
To reduce the nonlinearity, we can expand the space of unknowns
as follows. Since My, ML = 3"\ ; Q¢ XQ} , with X = xx (a substi-
tute input), we can treat X as a N x N symmetric unknown matrix
(without the rank-1 constraint), and rewrite (50) as

N
(Z Qk,lezzl)uk,x,l = szyxv]“k,x.l (51)

=1

with Tr(X) =1, [lug,q1ll=1 and k=1,--- K. In this case, both
sides of (51) are of the 2nd order of all unknowns. But the
number of unknowns is now Ny pyp 2 = %N(N +1) + (N—-NyK +
K > Nynkpvp,1 While the number of equations is not changed,
i.e., Nequvp,2 = Nequevp,1 = NK+ K+ 1. In this case, the necessary
condition for a finite set of solution for X is Negu evp.2 > Nynk gvp.2»
or equivalently NyK > IN(N+1) — 1.

Note that X seems the only useful substitute for x. But this sub-
stitute still seems hard to compute from y as shown later.

Alternatively, we know that x satisfies the following SVD equa-
tions:

kavkx :kazkx (52)

with U Urx =1y and Vk Vix =In. Here Uy, is the matrix of all
left smgular vectors, V, , is the matrix of all right singular vectors,
and X, is the diagonal matrix of all singular values. The above
equations are referred to as the SVD equilibrium conditions on x.
With Ny elements of the first column of Uy, for each k to be
known, the unknowns are the vector X, N> — Ny elements in Uy ,
for each k, all N? elements in V,, for each k, and all diagonal ele-
ments in X, for each k. Then, the number of unknowns is now
Nynesyp = N+ (N> = Ny)K + N2K + NK, and the number of equa-
tions is Negysyp = N°K+N(N+ DK + 1. In this case, Negysyp >
Nynk.svp iff NyK > N — 1. This is the same condition as that for EVD
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equilibrium. But the SVD equilibrium equations in (52) are all of
the second order.

Note that for the EVD equilibrium, there is no coupling be-
tween different eigen-components. But for the SVD equilibrium,
there are couplings among all singular-components. Hence the lat-
ter involves a much larger number of unknowns than the former.
Specifically, Ny svp > Nunk.evp.2 > Nunk Evp.1-

Every set of equations that x must fully satisfy (given y) is a set
of nonlinear equations, regardless of how the parameterization is
chosen. This seems the fundamental reason why SVD-CEF is hard
to invert. SVD is a three-factor decomposition of a real-valued ma-
trix, for which there are efficient ways for forward computations
but no easy way for backward computation. If a two-factor de-
composition of a real-valued matrix (such as QR decomposition)
is used, the hard-to-invert property does not seem achievable.

In Appendix A, the details of an attack algorithm based on New-
ton’s method are given.

5.2. Performance of attack algorithm

Since the conditions useful for attack of SVD-CEF are always
nonlinear, any attack algorithm with a random initialization X’ can
converge to the true vector x (or its equivalent which produces the
same y) only if X’ is close enough to x. To translate the local con-
vergence into a computational complexity needed to successfully
obtain x from y, we now consider the following.

Let x be an N-dimensional unit-norm vector of interest. Any
unit-norm initialization of x can be written as

X =41 -r2x+rw (53)

where 0 <r <1 and w is a unit-norm vector orthogonal to x. For
any X, rw is a vector (or “point”) on the sphere of dimension

N —2 and radius r, denoted by S¥-2(r). The total area of S¥—2(r)
N-1

is known to be |SN-2(r)| = I%(”T?)r"’*z. Then the probability for a
T

uniformly random x’ from SN-1(1) to fall onto SN-2(ry) orthogo-

nal to \/1—rax with r <rp <r+dris2 5720l 4 where the factor

[SN-T(1)]
2 accounts for + in (53).
Therefore, the probability of convergence from x’ to X is

1 SN—Z r
Peony = Sx{/ 2Px,r|()|dr}

|SN=1(D)]

2r (y
fr N : / RrN-2dr (54)

where & is the expectatlon over X, P, is the probability of con-
vergence from X’ to X when X’ is chosen randomly from SN-2(r)

orthogonal to a given /1 —r2x, and &{P,} = P..

We see that P is the probability that the algorithm converges
from X' to x (including its equivalent) subject to a fixed r, uni-
formly random unit-norm X, and uniformly random unit-norm w
satisfying w/x = 0. And P, can be estimated via simulation.

Let rmax < 1 be such that P, = 0 for r > ryax. Then

2F(g) T'max
()
U
(N—l)fF(NT) max
< il (55)

PrN=2dr

conv =

which converges to zero exponentially as N increases. In other
words, for such an algorithm to find x or its equivalent from
random initializations has a complexity order equal to O(P ) >

O((rmax)N 1) which increases exponentially as N increases.
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Table 6

Py and Py versus r and N.
r 0.001 0.01 0.1 0.3 0.5 0.7 0.9 1
P4 0.46 0.24 0.06 0 0.01 0.01 0.01 0
Py 0.45 0.17 0.04 0 0.01 0 0.01 0
Pg 0.29 0.07 0.01 0 0 0 0 0
Prg 0.25 0.05 0 0 0 0 0 0

In our simulation, we have found that rp.x decreases rapidly
as N increases. Let Py be P as function of N. Also let Py be
the probability of convergence to X which via SVD-CEF not only
yields the correct y, for k=1,... ,K but also the correct y, for
k > K (up to maximum absolute element-wise error no larger than
0.02). Here K is the number of output elements used to com-
pute the input vector X. In the simulation, we chose Ny =1 and
Nequ.evp2 = Nynk pvp2 + 1, which is equivalent to K = IN(N+1).
Shown in Table 6 are the percentage values of P,y versus r and
N, which are based on 100 random choices of x. For each choice
of x and each value of r, we used one random initialization of x'.
(For N = 8 and the values of r in this table, it took two days on a
PC with CPU 3.4 GHz Dual Core to complete the 100 runs.)

The above discussions have explained why SVD-CEF is empiri-
cally hard to attack. Next we will discuss the sensitivity, correlation
and invariance of SVD-CEF.

6. Statistics of SVD-CEF

In this section, we show a statistical study of SVD-CEF to un-
derstand some of the statistical properties of its output. Since each
entry of the output y = [y1,y5,---,ym]T of SVD-CEF is an element
in the principal eigenvector uy,; of the matrix M, ,M[ , we can
mostly focus on the statistics of uy ;.

kx’

6.1. Sensitivity

Unlike the unitary random projections, here the relationship be-
tween the normalized distance at the input %NHAXH and the nor-

malized distance at the output ﬁ | Ay]l is not trivial.

6.1.1. Sensitivity to small perturbation

We now consider the sensitivity of SVD-CEF to a small per-
turbation, i.e., the relationship between the differential duy 4
(or a corresponding dy,) and the differential dx. It follows from
[21] that

8ukxl_ZA

where A; is the jth eigenvalue of kaM

ukxjukxja(kaka)ukxl (56)

and w,; is the

=YL Qxx'Q)
,,xaxTQ,fJ. It follows that

kx'
corresponding jth eigenvector. Since M; ,M

a(Mk,ka,x) = Zl Qk,laxxTQ;l{-v[ + Zl
8uk~x‘1 =Tox (57)

where T = A + B with

A= Z)\‘] ukaukijlex leukxl (58)
N 1 N

B= Z M= A uk,x.j“lz.x.j ZQka“;x,le,l' (59)
Jj=2 =1
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Fig. 1. The mean and mean-plus-deviation of 7, versus N.

We can also write

ZM

ukX]ukx]

N
ZQk,l[(XTQl,luk,xJ)lN +Xu}<‘,x,1QJ<,I] (60)

=1

where the first matrix component has the rank N — 1 and hence so
does T.
Let 0x = w which consists of i.i.d. elements with zero mean and
variance o2 < 1. It then follows that
N-1
Ewllldw 17} = Tr{TogT} =03 ) o7 (61)
j=1
where o for j=1,...,N—1 are the nonzero singular values of T.
Since &y{[|0x||*} = No2, we have

— Ewfllduyx 112}
TV adloxRy T
which measures the sensitivity of u;,; to a small perturbation
in X.

Since each of the N entries in du,,; has the same vari-
ance due to symmetry, then the corresponding dy, satisfies

Enl{lldyell?} = ,LSW{||8uk“|| }. Since both x and u,; have the
unit norm, the input SNR of SVD-CEF is SNRy = 1/&w{||0x(|?} = o 2,

and the output SNR of SVD-CEF for yj is SNRy; = O(W)
O1/Ew{ll0uy x4 I2}). Therefore, the FoM of SVD-CEF for y, is

SNRX
SR,

For each given x, there is a small percentage of realizations of
{Qg;.I=1,--- N} that make 5, relatively large. To reduce 7y ,,
we can prune away such bad realizations.

Shown in Fig. 1 are the means and means-plus-deviations of
Nk (over choices of k and X) versus N, with and without prun-
ing respectively. Here “std” stands for standard deviation. We see
that 5% pruning (or equivalently 95% inclusion shown in the figure)
results in a substantial reduction of 7, ,. We used 1000 x 1000 re-
alizations of x and {Qy .l =1,---,N}. Shown in Table 7 are statis-
tics of 7y, subject to 1y, < 2.5 where Pyyoq is the probability of
Nkx < 2.5. We see that Py, is relatively large at around or above
80% and the mean of 7, , ranges roughly from 1.3 to 1.6 for N =
16, 32, 64. This noise sensitivity is far from perfect when compared

(62)

= O(n;.x)- Here O denotes the order as o;2 — 0.
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Table 7
Statistics of 7y, subject to 1y x < 2.5 and Pyq.
N 16 32 64
Mean 1.325 1.489 1.645
Std 0.414 0.397 0.371
Pyood 0.88 0.84 0.78
2.6 £=s,
vl h
247 ﬂ,’(,‘x‘\\x‘
»
2.20-0-0-0-000 ¢ & & & 0-0-0-00-0°° 7/ “A“‘\‘b
3o Yo g i K K gy ,*»*u—a—x—n“‘“‘/{" \R\:\
AAp by hohad .,LAFM-A" \\\e
\

l1Au IFIAX]

0.8
10° 10°

[1axi|

Fig. 2. The means (lower three curves) and means-plus-deviations (upper three

curves) of % subject to 1y, < 2.5.

to the unitary random projection. But SVD-CEF has the hard-to-
attack property as empirically established earlier.

6.1.2. Sensitivity to large perturbation

Any unit-norm vector X' can be written as X' =41 —ax+
Jow where 0 <a <1, and w is of the unit norm and satisfies
wix =0. Then ||AX| = ||X —X| =+/2—2vT—a. It follows that
|AX]| < v2 and ||Auy, || < +/2. For given « in X' = £J/T—ox +

Jaw, ||Ax| is given while ||Auy, 1| still depends on w. We can

call % a deviation gain of SVD-CEF, which is dependent

on X, k and ||Ax|. Here a different k means a different set of
{Qg;.I=1,---,N}. Shown in Fig. 2 are the means and means-plus-
deviations of the deviation gain versus || AX|| subject to 1, < 2.5.
This figure is based on 1000 x 1000 realizations of x and {Qy ;[ =
1,.--,N}. We see that the mean of the deviation gain is somewhat
constant and comparable to the mean of 7, , for ||Ax|| <0.1.

6.2. Correlation

We show below via simulation that the correlation between the
input and output of SVD-CEF as well as the correlation among the
output samples of SVD-CEF are practically zero.

6.2.1. Correlation between input and output

Recall My, = [Q X, -, QnX]. If there is a secret key, then
Q; for all k and | are uniformly random unitary matrices (from
adversary’s perspective). Then u,,; for all k and any x are uni-

formly random on SN=1(1). It follows that &qf{uy ,quf, , ;} =0 for

k#m, and &p{uy, X"} = 0. Furthermore, it can be shown that
SQ{“k.xJ“EX,]} = 4ly, ie, the entries of w,,; are uncorrelated
with each other. Here &, denotes the expectation over the distri-
butions of Qy ;.

If there is no secret key, then Q,; for all k and I must be treated
as known. We will consider typical random realizations of Qy ; for
all k and I, which exclude those (such as Q,; = Q,; for some k'
k or I’ #1) that would occur with extremely small probability.

To understand the correlation between x € SN-1(1) and u , ; €
SN=1(1) subject to a fixed set of Q;;, we consider the following

10
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Fig. 3. The means and means=deviations of p; (using SVD-CEF output) and p; (us-
ing random output) versus N subject to 1, < 2.5.

Table 8
Maximums of absolute normalized correlations among the outputs of CEFs.
X SVD-CEF IoM-2 IoM-1 DRP URP
0.0085 0.012 0.21 0.25 0.49 0.81
measure:
T
Pk = NIT}?X |[5x{xuk,x<1 }]11| (63)

where & denotes the expectation over the distribution of x. If
u .1 =X, then p, = 1. So, if the correlation between x and u
is small, so should be p. For comparison, we define p; as p, with
u 1 replaced by a random unit-norm vector (independent of x).

For a different k, there is a different realization of Q 1, , Qi n-
Hence, p, changes with k. Shown in Fig. 3 are the mean and
meanzdeviation of p, and pj; versus N subject to 7, < 2.5. We
used 10000 x 100 realizations of x and {Qy ¢, -, Qg n}. We see
that o, and p} have virtually the same mean and deviation. (With-
out the constraint 7, < 2.5, p; and p; match even better with
each other.) In other words, the correlation between the input and
output of SVD-CEF is virtually the same as the correlation between
the (unit-norm) input of SVD-CEF and an (unit-norm) random
vector.

6.2.2. Correlations among the output samples

We now consider the correlation among y, = f(x) for k=
1,---,K of SVD-CEF subject to x being A (0,Iy) and a typical re-
alization of Q; for k=1,--- ,K and I=1,---,N. We define the
following normalized sample covariance/correlation matrix:

(64)

where Ysyp-cer = [J1. -+ . yk]T with its kth entry y, being the first
entry of u,q, and &g denotes the sample average over R re-
alizations of x (which treats all other quantities such as key-
dependent matrices as fixed). We also define Cygp g = Ex r{YureYige )}
with yyre being a vertical stack of y, in (20) for k=1, .-, Ky with
NKo = K. Similarly, we let Cpzp g = CorrEx r{YoreYoge)} and Croyg =
Cronx R{Y1omY o} Where copp and cren are such that the diagonal el-
ements of each of Cpp g and Cion have their averaged value equal
to one. For IoM, each entry of yr. is an integer “index-of-max”
(ranging from 0 to N — 1) minus Ngl, which ensures that each en-
try of y1ox has the zero mean.

Shown in Table 8 are the maximum value of the absolute off-
diagonal elements of each of the above defined sample covariance
matrices with N =16, K = 128 and R = 10°. The first column in

T
Csvp-cer.k = NEx r{Ysvp-cerYsup-car)
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Table 8 is for Cxg = & r{xxT} of x ~ N(0,Iy), which serves as a
reference. We know that as R — oo, the peak sample correlation
of the elements in x goes to zero. (The mean and deviation of
each off-diagonal element of Cy p are zero and %, respectively. At

R=10°, % = 0.0032.) We see that the peak sample correlation of
SVD-CEF is very small and comparable to (about 1.4 times) that of
X. On the other hand, the peak sample correlations of IoM, DRP
and URP are about 17 to 67 times larger than that of SVD-CEF. We
should stress that the values in this table will change, but only
slightly with high probability, if different realizations of the ran-
dom matrices and/or operations in the CEFs are used.

[llustrated in Fig. 4 are the “heatmaps” of the absolute values
of the entries of the sample covariance matrices of SVD-CEF, loM-
2, DRP and URP, where all parameters are the same as those for
Table 8. Each of these heatmaps is based on a random realization
of their embedded pseudorandom transformations. However, the
overall patterns of the heatmaps in general do not change much
as these pseudorandom transformations are chosen differently. We
see that the output samples of SVD-CEF have virtually zero cor-
relations, which in fact do not differ much from the sample cor-
relations of the entries in x. This is because of the unique rela-
tionship between the principal eigenvector uy ,; of M,QXM;X and
the input vector x. We also see that most of the correlations of
[oM-2 are also small but not as small as those of SVD-CEF. And

1
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Fig. 4. Correlation “heatmaps” of the output samples of SVD-CEF, loM-2, DRP and URP (when there is no secret key used in any of these CEFs).

there are still a lot of scattered “peaks” in the heatmap of IoM-2,
which are quite significant. The heatmaps of DRP and URP show
overwhelmingly large correlation values. For URP, the sample cor-
relations among samples within each subvector y, are small in the
order of LR, which is due to unitary transformation. But the cor-

relation between y, and y; for k # [ is rather large as shown in
this figure, which is because of the linear nature of URP and the
non-orthogonality among any set of L N-dimensional vectors with
L > N. For the same reason, RP proposed in [8] also has a very poor
property in correlation.

6.3. Invariance

We show next via simulation that uy , ; for each k is nearly uni-
formly distributed on SN-1(1) when x is uniformly distributed on
SN-1(1), which implies that y, of SVD-CEF for each k has the same
distribution (i.e., invariant to k).

To show that the distribution of u , ; for each k is nearly uni-
form on SN-1(1), we show that for any k and any unit-norm vec-
tor v, the probability density function (PDF) py ,(x) of vTu, , ; sub-
ject to a fixed set of {Qy 1, --,Q,y} and a uniform random x on
SN-1(1) is nearly the same as the PDF p(x) of an element in x. The
expression of p(x) is derived in (83) in Appendix B. The distance
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Fig. 5. The mean and meanzdeviation of Dy, versus N subject to n,, < 2.5.

between p(x) and py ,(x) can be measured by

p(x)
pk,v(x)

Clearly, Dy, changes as k and v change. Shown in Fig. 5 are the
mean and mean =+ deviation of Dy, versus N subject to 1, , < 2.5.
We used 50 x 1000 x 500 realizations of v, x and {Qy 1,--- . Qg n}-
We see that Dy, becomes very small as N increases beyond 15.
This means that for a moderate or large N, uy,; is (at least
approximately) uniformly distributed on SN-1(1) when x is uni-
formly distributed on SN-1(1). (Without the constraint n , < 2.5,
Dy, versus N has a similar pattern and is even slightly smaller.)
In other words, for a moderate or large N, the output sample y,
of SVD-CEF for each k has a PDF approximately given by (83) in
Appendix B, which is invariant to k.

Dy, = / p(x)In dx > 0. (65)

7. Further comparison between SVD-CEF and IoM-2

As discussed earlier, the per (integer) sample complexity of for-
ward computation of IoM-2 is ©(N?) while the per (real) sample
complexity of forward computation of SVD-CEF is ®(N3). And the
best known method to attack [oM-2 has the complexity Ly 2N
with Ly y being a linear function of M and N respectively while the
best known method to attack SVD-CEF has the complexity Py 25N
with ¢ > 1 increasing with N and Py being a polynomial func-
tion of M and N. Furthermore, SVD-CEF has much smaller output
correlations than IoM-2.

Note that while SVD-CEF is much harder to attack than IoM-2,
none of the two could be shown yet to be easy to attack (assuming
that all elements in x have independently random signs from the
perspective of the attacker). In this regard, both SVD-CEF and IoM-
2 somewhat stand out among all the CEFs considered in this paper.

We will next compare the noise sensitivities of SVD-CEF and
[oM-2. To do so, we need to quantize the output of SVD-CEF as
shown below since the output of IoM-2 is always discrete.

7.1. Quantization of SVD-CEF

Let the kth (real-valued) sample of the output of SVD-CEF at
Alice due to the input vector X be y,, and the kth sample of the
output of SVD-CEF at Bob due to the input vector x’ = X +w be y,.
In the simulation, we will assume that the perturbation vector w
is white Gaussian, i.e., N'(0, 52I).

As shown before, the PDF of y, can be approximated by (83) in

. . 2 N3 rdh
Appendix B, ie., fy,, (¥y) =Cy(1-y7) 2z with Cy = 2

JerLT, and
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-1 <y < 1. To quantize yj into by =log, By bits, Alice first over
quantizes y, into my =log, My bits with M, =ByL,. Each of
the My quantization intervals within (-1,1) is chosen to have
the same probability M%, For example, the left-side boundary
value t; of the ith interval can be computed (offline) from
S5 fyk(y)dsziy with i=0,1,---,My—1. A closed form of

ra )Py = [cosN-20d0 with y = sin@ is available for effi-
cient bisection search of t;. Specifically, [ cos"0df = w +
=1 [ cos"2 0d6.

The additional I, =log, L, bits are used to assist the quan-
tization of y) at Bob. Specifically, if y, is quantized by Al-
ice into an integer 0 <i, <My, — 1, which has the standard bi-
nary form dy ---dp dp 1 ---dm,, then Alice keeps the first by bits
dq ~~~dby, corresponding to an integer 0 < m;, < By — 1, and informs
Bob of the last I, bits dp .i---dm,, corresponding to an inte-
ger 0 < ji <Ly —1. Then the quantization of y, by Bob is mj =
argming_o.... g,—1 1Y}, — jr — mlyl.

If my differs from my, it is very likely that m; = my + 1. So, Gray
binary code should be used to represent the integers m; and mj at
Alice and Bob respectively. If m; =my + 1, Gray codes of my and
m;, only differ from each other by one bit.

The above quantization scheme is related to those for secret key
generation in [15] and [16]. Here, we have a virtually unlimited
amount of y, and y; for k> 1. A limited bit error rate after quan-
tization is not a problem in such applications as biometrics based
authentication (where “Alice” corresponds to “registration phase”
and “Bob” “validation phase”).

7.2. Comparison of Bit Error Rates

We next compare the bit error rates (BERs) between the quan-
tized SVD-CEF and IoM-2. For each pair of x and X' = x+w, we
will assume that SVD-CEF and IoM-2 each produces a pair of se-
quences each of at least Ly, bits.

Furthermore, we assume that for each of k=1, .. ,K;, loM-
2 applies N random permutations to the N x 1 feature vector x
at Alice to produce vy, ---,Vy y respectively, and then computes
the element-wise products of these vectors to produce hy. The in-
dex of the largest entry in h; is now denoted by 0 <m, <N -1,
which corresponds to a string of log, N binary bits for Alice. Bob
conducts the same operations on x' = x+w to produce 0 <m; <
N — 1, which corresponds to a string of log, N binary bits for Bob.
We also apply Gray binary code here for IoM-2, which however
has little effect on the performance. For each fixed pair of x and
X/, the above process is repeated (with independent sets of per-
mutations) for all k=1,---,K,, which yields a pair of binary se-
quences each of Kjlogy N > Ly, bits. With R random realizations
of x and X’ (and the corresponding set of random permutations),
the above process yields a pair of sequences each of RK; log, N bits,
from which the BER of IoM-2 is computed. Namely, the BER is es-
timated by RKzlszN times the number of mismatched bits in the
two sequences.

For each pair of x and X/, the quantized SVD-CEF first generates
¥1.--+ .Yk (based on x) for Alice and y},--- ,y} (based on X' =x+
w) for Bob, which are then quantized into a pair of sequences each
of Kby > Ly, bits where by is the number of bits per output sample
of SVD-CEF. With R realizations of x and x’ (and the corresponding
realizations of Q,; for 1 <k <K and 1 <[ < N), the quantized SVD-
CEF also yields a pair of sequences each of RKby bits, from which
BER is computed.

We consider two choices of by, i.e.,, by =log, N and by = 1. The
first choice means that each output sample of SVD-CEF yields the
same number of bits as that of [oM-2. But the second choice yields
one bit per output sample of SVD-CEF. By reducing the number of
bits per sample, we can reduce the BER significantly for SVD-CEF.
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Fig. 6. A BER comparison of quantized SVD-CEF and IoM-2. The vertical line at the end of a curve indicates that the next value is below 1076.

The computation cost of the second choice is only increased by a
factor no more than log, N, which is not very significant. With a re-
duced by, the quantization complexity is also reduced. This option
is not available for IoM-2. If we constrain the search of the index-
of-max among the first L < N elements in hy, it only reduces the
number of bits per output sample but does not improve the BER
of IoM-2. This is because all entries in each h, are statistically the
same.

In Fig 6, we compare the BER performances of the quantized
SVD-CEF and IoM-2, where L, = 128, K; = [kfgk;yN-‘, K= H—yy]
Ihﬁmax~Nmmyw~NmﬂmmaMwmzﬁ,mme@-
ure, we considered all combinations of N =16 vs N =32, by =
logy N vs by =1 for SVD-CEF, and pruned vs unpruned SVD-CEF. In
the case of pruning, we used 7, < 2.5. We see that IoM-2 is out-
performed significantly by SVD-CEF with or without pruning for
both cases of by. As expected, using b, = 1 (instead of by, = log, N),
SVD-CEF has a dramatic (several orders of magnitude) reduction
of BER. The somewhat irregular pattern of BER vs SNR, when BER
is very small, is due to the limited number R of runs used in the
simulation.

8. Conclusion

In this paper, we have presented a systematic development of
continuous encryption functions (CEFs) that transcend the bound-
aries of wireless network science and biometric data science. The
development of CEFs is critically important for physical layer en-
cryption of wireless communications and biometric template secu-
rity for online Internet applications among others. While the fam-
ily of CEFs defined in this paper include all prior continuous one-
way functions, we proposed a list of criteria for a good CEF de-
sirable in applications, which are the hardness to invert, the hard-
ness to substitute, the sensitivity to noise, the correlation among
the output samples and the invariance of the output distributions.
We showed that the dynamic random projection (DRP) method
and the index-of-max hashing algorithm 1 (IoM-1) are not hard
to invert, the index-of-max hashing algorithm 2 (IoM-2) is not as
hard to invert as it was thought to be, and the higher-order poly-
nomials (HOP) method is easy to attack via substitution. We also
showed that DRP and IoM have relatively poor properties in terms
of their output correlations, and HOP is highly sensitive to noise.
We have introduced a singular value decomposition (SVD) based
CEF, which is shown empirically to be hard to attack. Our statisti-
cal analyses and simulation results also verified that SVD-CEF has
relatively good properties in its noise sensitivity, its output corre-

13

lation and the invariance of its output distribution. Despite their
lower complexity in forward computation, none of the prior con-
tinuous one-way functions reviewed in this paper is able to com-
pete against SVD-CEF favorably under the five criteria proposed in
this paper. However, if there is already a strong secret key, the uni-
tary random projection (URP) discussed in this paper should be the
first to consider in applications.

During the review of this paper, speculation of alternative ap-
proaches such as (higher-order) tensors and chaos systems was
raised. It is unknown right now whether these or other approaches
could lead to a better CEF than SVD-CEF. The hardness to invert or
substitute is only part of the requirements for a good CEF.
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Appendix A. Attack of SVD-CEF via EVD Equilibrium in X

We show next the details of an attack algorithm based on (51).
Similar attack algorithms developed from (50) and (52) are omit-
ted. An earlier result was also reported in [2].

It is easy to verify that X = aly + (1 — a)xx” with any —oco <
o < oo is a solution to the following

N
(Z Qk,lXlel)uk,xJ = Ck,x.luk.x,l

1=1

(66)

where ¢ 1 =+ (1 —a)akzx 1 The expression (66) is more pre-
cise and more revealing than (51) for the desired unknown matrix
X.

To ensure that u , ; from (66) is unique, it is sufficient and nec-
essary to find a X with the above structure and 1 —« # 0. To en-
sure 1 —«a # 0, we assume that x;x, # 0 where x; and x, are the

first two elements of x. Then we add the following constraint:
X)12=X)21=1.

which is in addition to the previous condition Tr(X) = 1. Now for

the expected solution structure X = aly + (1 — a)xx”, we have 1 —
1

o=z #0.

(67)
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Note that cy,q in (66) is either the largest or the smallest
eigenvalue of Zfi] QkleQ,fJ corresponding to whether 1 -« is
positive or negative.

To develop the Newton'’s algorithm, we now take the differenti-
ation of (66) to yield

N N
(Z Qk.laxQL[) U x1+ <Z Qk,IXQEl) auk.x,l
=1

=1

= aCkuk.x,l + Ckauk.x,l (68)

where we have used vy, =u,, 1 and ¢, = ¢, for convenience.
i i O 9% with 0 N

The first term is equivalent to Q,dX with Q, = (3" 4 UEMQM ®

Q. ;) and X = vec(X). (For basics of matrix differentiation, see [20].)
Since X = X7, there are repeated entries in X. We can write X =

[)"({,A-u LT with')"(n =[&n1, - Zan]T anq X j=2%;; for all i#j.

Let X be the vectorized form of the lower triangular part of X. Then

it follows that

Q0% = Q, 0% (69)
where Q, is a compressed form of Q as follows. Let @ =

[Qk.l’ e ~QI<.N] with Qk,n =[Qgn1, - Gganl- Forall1<i<j<N,
replace y ; j by @ j + @ j;» and then drop §p ;;. The resulting ma-

trix is Q.
The differential of Tr(X)=1 is Tr(dX) =0 or equivalently
tTox =0 where t" = [t], ... . tl] and t] =[1.0;, y ] .

Combining the above for all k along with u[{x_lauk,x‘] =0 (due
to the norm constraint ||, 1]/ = 1) for all k, we have

AKX +A,0u+A,02=0 (70)
where
-
Q
A= . (71)
Qx
| Ok NN
[ . 01Nk
A, = dlag(Gl,xa <, Gix) |, (72)
| diag(ul, - u})
i 0.k
A; = | —diag(uy, --- , ug) (73)
Ok .k

with Gk,x = Mk,le_x - CklM~

Now we partition u into two parts: ug (known) and wu, (un-
known). Also partition A, into Ayq and A,, such that Aydu=
Ayq0ug + A, p0u,. Since (X)1, = (X)21 =1, we also let Xy be X
with its second element removed, and A, be Ax with its second
column removed. It follows from (70) that

Ada+Bib=0 (74)
where a =ug, b= [&]. u] . 2"]T, A=Ay q, B=[Ay0.Ay)p. Azl

Based on (74), the Newton’s algorithm is
[x5D] = [%] - n(B"B)'B"A(u, — uf’) (75)

where the terms associated with * are not needed, ugi) is the ith-
step “estimate” of the known vector u, (through forward compu-
tation) based on the i-step estimate )‘(6) of the unknown vector X;.
This algorithm requires NyK > %N(N +1) — 1 in order for B to have
full column rank.

For a random initialization around X, we can let X' = (1 —
B)X + W where W is a symmetric random matrix with Tr(W) =
1. Furthermore, (W); 5 = (W), 7 is such that (X');, = (X)21=1.
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Keep in mind that at every step of iteration, we keep (X1);, =
XD)y 1 =1.

Upon convergence of X, we can also update x as follows. Let
the eigenvalue decomposition of X be X = Z?’Zl )LieieiT where A; >
Ay > ---> An. Then the update of x is given by e; if 1 —« > 0 or
by ey if 1 —«a < 0. With each renewed X, there are a renewed «
and hence a renewed X (i.e., by setting X = al + (1 — a)xx” with
1-a= ﬁ). Using the new X as the initialization, we can con-
tinue the search using (75).

The performance of the algorithm
Section 5.2.

(75) is discussed in

Appendix B. Distributions of Elements of a Uniformly Random
Vector on Sphere

Let x be uniformly random on S"~1(r). This vector can be pa-
rameterized as follows:
X1 =rcos6;
Xy = rsinf; cos 6,

Xp_1 =T1sin6; ---sinf,_, cos O,_4
Xp =rsinf; ---sin6,_,sinb,_;

where 0 <0; <m fori=1,---,n-2, and 0 < 6,_1 < 2m. Accord-
ing to Theorem 2.1.3 in [22], the differential of the surface area on
S 1(r) is

dS"™1(r) = r"1sin® 2 0y sin" > 6, - - - sin O, _»d6; - - - d6p_ (76)

n/2

We know that g1, das"1(r) = |8 1(r)| = %,”(E) r"=1. Hence, the
2
PDF of X is
1
fi(x) = IGEIGIE (77)
BO0.1. Distribution of one element in x
We can rewrite [gn-1, frx)ds™1(r) =1 as
/ [ / Fo(X)rds"2(rsin 91)}191 -1 (78)
6, Sn=2(rsin6)
or equivalently
|S"2(rsin6,)|
——— 2 r|db = 1. 79
J, [ ERIGTE e 79)
Hence the PDF of 0, is
_|8"2(rsin6,)]
f01 (6h) = W (80)
To find the PDF of x; = rcos#;, we have
1 fo.1(01)
= 6 == 81
le(X1) f@,]( 1)‘%| |r51n91| ( )

where rsinf; = /r2 — x%. Therefore, combining all the previous re-
sults yields

reg) -x)+7
) = e En T (82)
where —1r <x; <r.
If r =1, we have
F z n-3
o) = =L (83)
2

where —1 < x; < 1. This is the PDF p(x) in Section 6.3.
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Due to symmetry, we know that x; for any i has the same PDF
as xq. Also note that if n =3, fx, () is a uniform distribution.
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