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a b s t r a c t 

This paper presents a study of continuous encryption functions (CEFs) of secret feature vectors for secu- 

rity over networks, which include physical layer encryption for wireless communications and biometric 

template security for online Internet applications. While CEFs are defined here to include all prior contin- 

uous one-way functions, a good CEF is defined to be a continuous function that turns a random feature 

vector of limited dimension into a long sequence of numbers in such a way that it is hard to invert and 

hard to substitute, it has no or little amplification of noise, and its output samples have zero or near-zero 

correlations and have identical or nearly identical distributions. A number of prior CEFs, such as dynamic 

random projection, index-of-max hashing and higher-order polynomials, are all shown to fail on these 

criteria. Based on selected components of singular value decomposition (SVD) of randomly modulated 

matrices of the feature vector, a family of SVD-CEFs is proposed. Such a SVD-CEF is shown to meet all 

the criteria for a good CEF and outperform the prior CEFs significantly. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Encryption is fundamentally important for information security 

ver networks. For a vast range of situations, the amount of user’s 

ata far exceeds the amount of secrecy that is available to keep 

he users’ data in complete secrecy. For such a situation, an often 

alled one-way function is required to provide computation based 

ecurity on top of any given amount of information-theoretic se- 

urity. The conventional one-way functions are discrete, which in 

eneral require a secret key that is 100% reliable. 

In this paper, we are interested in applications where a reli- 

ble secret key is either not available or insufficient but a limited 

mount of secrecy is available in some noisy form. One such appli- 

ation is when two separated nodes (Alice and Bob) in a network 

o not share a secret key but they have their respective estimates 

f a common physical feature vector (such as reciprocal channel 

tate information). How to use the estimated feature vectors at Al- 

ce and Bob to protect a large amount of information transmitted 
� This work was supported in part by the Army Research Office under Grant Num- 

er W911NF-17-1-0581 and the Department of Defense under W911NF-20-2-0267. 
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etween them is a physical layer encryption problem initially dis- 

ussed in [1,2] and more recently in [3] , which was driven by an

nterest to protect information transmitted over air against eaves- 

roppers who may have much stronger channel conditions [5] . 

nother application is biometric template security for Internet ap- 

lications [6,7] where network users rely on their own biometric 

eature vectors for secure online transactions. 

The estimated (or measured) feature vectors are always noisy to 

ome degree. To exploit them for encryption, there are two basic 

pproaches. The first is such that Alice and Bob attempt to gener- 

te a secret key from their noisy estimates. If successful, this key 

an be then used to encrypt and decrypt a large amount of infor- 

ation based on a discrete encryption method. But due to noise 

n the estimated feature vectors, there is no guarantee that the 

ey produced by Alice 100% agrees with the key produced by Bob 

14–16] . Any mismatched keys would generally fail a discrete en- 

ryption method. Note that an encrypted sequence is typically 

ased on a pseudorandom sequence governed by a seed, i.e., a 

ecret key, and a totally different pseudorandom sequence would 

e generated with any bit change in the seed. Specifically, if Al- 

ce and Bob respectively use their noisy estimates to obtain a pair 

f limited-length keys K A and K B , then it is likely that K A � = K B 

ven though the bit error rate (BER) between K A and K B can be 

ery small. If Alice and Bob then use K A and K B respectively via 

 discrete one-way function to generate a pair of long sequences 

f pseudorandom sequences S A and S B , then the BER between S A 
nd S B will be generally very large. Hence S A and S B cannot be 

sed for encryption and decryption (via modulo addition and sub- 

raction, for example) of a long sequence of information bits. 

https://doi.org/10.1016/j.sigpro.2022.108807
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The second approach is what we call here continuous encryp- 

ion. For physical layer encryption [1,3] , for example, a message to 

e sent by Alice can be encrypted by a continuous encryption func- 

ion (CEF) based on Alice’s estimate of a secret feature vector, and 

he message can be then recovered by Bob using the same CEF but 

ased on Bob’s estimate of the secret feature vector. The noises in 

he estimated feature vectors in general degrade Bob’s recovery of 

he message but only in a soft or controllable way as long as a 

ignal-to-noise ratio (SNR) of one estimated feature vector relative 

o the other is high and the CEF has a good enough figure-of-merit 

FoM). This second approach is similar in a spirit to many of the 

ethods for biometric template security [6,7] . 

The contributions of this paper focus on a development of con- 

inuous encryption functions (CEFs). We define a CEF as any con- 

inuous map of an N × 1 real-valued vector x onto a (virtually un- 

imited) long sequence of real-valued numbers: y 1 , y 2 , · · · . We will 

enote a CEF by y k = f k (x ) with k ≥ 1 . If y k for each k is an arbi-

rary real-valued number within an interval, we call the CEF type 

. If y k for each k is discrete, we call the CEF type B. A quantiza-

ion of y k for all k converts a type-A CEF to a type-B CEF. But not

ll CEFs have the same quality for applications. 

We propose to measure the primary qualities of a CEF y k = 

f k (x ) by the following criteria: 

1. (Hardness to invert) If x can be computed (up to a desired pre- 

cision) from { y k , k ≥ 1 } with a complexity order that is a poly-

nomial function of N, the CEF is said to be easy (or not hard)

to invert. Otherwise, the CEF is said to be hard to invert, which 

is desired for a good CEF. 

2. (Hardness to substitute) If there are such functions g k that 

f k (x ) = g k (s (x )) for all k ≥ 1 where s (x ) is a function of x and

invariant to k , then s (x ) is said to be a substitute input of the

CEF. If s (x ) is easy to compute from { y k , k ≥ 1 } , then the CEF is

said to be easy to substitute. Otherwise, the CEF is said to be 

hard to substitute, which is desired for a good CEF. 

3. (Sensitivity) A good CEF should be sufficiently responsive to its 

input but not overly sensitive to small perturbation or noise in 

its input. The optimal benchmark of the sensitivity to a small 

perturbation is the sensitivity of a unitary random projection 

of x . The “noise” referred to in this paper is the difference be- 

tween two input vectors of interest. 

4. (Correlation) Every pair of the output samples of a good CEF 

should have zero or near-zero correlation if x has the white 

Gaussian distribution N (0 , σ 2 
x I N ) . If there are strong correla- 

tions among the output samples of a CEF, then the CEF is vul- 

nerable to attacks by linear prediction (i.e., y k 0 could be esti- 

mated by a linear combination of y k with k < k 0 ). 

5. (Invariance) The statistical distribution of y k for a good CEF 

should be invariant or nearly invariant to k if x is of N (0 , σ 2 
x I N ) .

One benefit from the invariance is that it makes quantization of 

y k for all k easier (i.e., a good quantizer for y k 0 would be equally

good for y k for all k � = k 0 ). 

If a CEF meets all of the above criteria, the CEF is said to be

 good CEF. A good type-A CEF can be viewed as a generator of 

uasi-continuous pseudorandom numbers (QPRNs). These QCPRNs 

re based on a continuous feature vector x as its “seed”, which is 

ifferent from the traditional PRN generators that rely on discrete 

eed. 

It seems not possible to prove whether a CEF is hard to invert 

r hard to substitute although one can try to prove that a CEF is 

ot hard to invert or not hard to substitute. This is an open prob-

em similar to that of discrete one-way functions [17,18,23] even 

hough the use of discrete one-way functions in practice is indis- 

ensable. We will say that a CEF is empirically hard to attack if 

here is a strong empirical evidence suggesting that the CEF is hard 

o invert and hard to substitute. As for sensitivity, correlation and 
2 
nvariance of a CEF, one can apply statistical analysis and/or com- 

uter simulation to quantify the degree to which these criteria are 

atisfied by the CEF. 

The family of CEFs includes all prior hard-to-invert (i.e., one- 

ay) continuous functions proposed in the literature. The hard- 

o-invert property is widely desired in applications. The hard-to- 

ubstitute property is also important for a similar reason. If an at- 

acker is able to determine a substitute input from a prior exposure 

f y k for 1 ≤ k ≤ K 0 , then all future output samples y k for k > K 0 

an be predicted by the attacker. It is clear that “easy to invert”

mplies “easy to substitute”, but the reverse is not true in general. 

e say that a CEF is easy to attack if it is easy to invert or easy

o substitute. Equivalently, a CEF is said to be hard to attack if it is

ard to invert and hard to substitute. 

The sensitivity of a CEF to noise is clearly important in appli- 

ations. The optimal sensitivity is that of a unitary random projec- 

ion as discussed later in this paper. To have a small noise sen- 

itivity (relative to the optimal), a CEF must be locally continu- 

us with probability one subject to a continuous randomness of 

 . For a type-A CEF, we can measure its sensitivity by a FoM such

s the square-rooted ratio of SNR x over SNR y where SNR x and SNR y 
re some signal-to-noise ratios (SNRs) of x and y = [ y 1 , · · · , y K ] 

T 

espectively, e.g., see (62) later. The optimal desired value of such 

 FoM is one. For a type-B CEF, the sensitivity can be measured by 

ER in y k for k ≥ 1 caused by random perturbations in x , which

ill be discussed in detail in Section 7 . 

The output correlation of a CEF is also important. For example, 

f a CEF has a “zero sensitivity to noise”, then its output would be 

 constant with perfect correlations, which is obviously a useless 

EF. In general, nonzero correlations among the output samples of 

 CEF would allow attacks by linear prediction, which is not desir- 

ble. So, a good CEF should have zero or near zero output corre- 

ations. The invariance of the output distribution of a CEF is also 

esirable especially for the purpose of quantization. The correla- 

ion and invariance properties of a proposed CEF will be discussed 

n detail in this paper. 

.1. Prior works and current contributions 

It appears that the prior CEFs all exploit (or can all exploit) 

ny available secret key S (as the seed) to produce pseudorandom 

umbers or operations needed in the functions. A method to in- 

ert such a CEF in general has a complexity order equal to C N,M 

2 N S ,

here N S is the number of binary bits in the secret key, and C N,M 

s the complexity to invert the CEF if the secret key is given. Un- 

ess mentioned otherwise, we will refer to C N,M 

as the complexity 

f attack. A good understanding of C N,M 

is important for situations 

here N S is not sufficiently large or simply zero. 

The random projection (RP) method in [8] and the dynamic 

andom projection (DRP) method in [9] are type-A CEFs before a 

uantization is applied at the last step of the functions. The Index- 

f-Maximum (IoM) hashing in [11] is inherently a type-B CEF. The 

igher-order polynomials (HOP) in [10] are a type-A CEF. 

We will show that for the RP method, the DRP method and 

he IoM algorithm 1, C N,M 

= P N,M 

with P N,M 

denoting a polynomial 

unction of both N and M; and for the IoM algorithm 2, C N,M 

= 

 N,M 

2 N with L N,M 

being a linear function of N and M respectively. 

he HOP method is shown to be easy to substitute. There are two 

ersions of DRP based on function-I and function-II in [9] . Unless 

entioned otherwise, we will refer to the function-II version by 

RP. We will also show that HOP is highly sensitive to noise, and 

he output samples of RP, DRP and IoM all have a high peak corre- 

ation. 

Another major contribution of this paper is a new family of 

onlinear CEFs called SVD-CEF. This family of CEFs is of type A 

nd based on selected components of singular value decomposition 
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Table 1 

Comparison of CEFs in the absence of secret key. 

Ref Type Comp. H.I. H.S. Attack C. Cor. Sen. Inv. 

RP [8] A O(N) No - P N,M Bad - - 

DRP [9] A O(N) No - P N,M Bad - - 

URP Here A O(N) No - P N,M Bad Best Best 

HOP [10] A O(N) - No P N,M - Bad - 

IoM-1 [11] B O(N 2 ) No - L N,M Bad - - 

IoM-2 [11] B O(N 2 ) Yes Yes L N,M 2 
N Bad Not as good - 

SVD-CEF Here A O(N 3 ) Yes Yes P N,M 2 
ζN Good Good Good 
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SVD) of randomly modulated matrices of x . Based on the empiri- 

al evidences shown in this paper, the complexity order to attack 

 SVD-CEF is C N,M 

= P N,M 

2 ζN where ζ > 1 is typically substantially 

arger than one and increases as N increases. We will show that 

he output of SVD-CEF also has good properties in terms of noise 

ensitivity, output correlation and distribution invariance. Further- 

ore, we will show that a quantized SVD-CEF outperforms the IoM 

lgorithm 2 dramatically in terms of BER. Additional comparison of 

VD-CEF with other methods is available in [4] where CEF is ap- 

lied for secret key generation. 

Table 1 provides a summary comparison of CEFs discussed in 

his paper, where each entry in the “Comp.” column is the order 

f the forward computational complexity per output sample of the 

EF in terms of N, “Yes” in the H.I. column means “empirically hard 

o invert”, “No” in the H.I. column “not hard to invert”, “Yes” in the 

.S. column “empirically hard to substitute”, “No” in the H.S. col- 

mn “not hard to substitute”, and the column of “Attack C.” shows 

he attack complexity C N,M 

. The columns of “Cor., Sen. and Inv.”

orrespond to “correlation, sensitivity and invariance” respectively. 

n entry marked as “-” is an entry that is not very important due 

o “No” or “Bad” in another column. But an entry that has the op- 

imal performance is marked as “Best”. The two entries of “Best” in 

he table are easy to prove. The entries of “Good”, “Not as good”, 

Bad”, “Yes” and “No” are established via analysis and simulation 

hown in this paper. The complexity orders shown in the table are 

lso detailed in this paper. 

As shown in this paper, SVD-CEF stands out as a good CEF as 

easured by the five criteria shown earlier. A main reason why 

VD-CEF is hard to invert and hard to substitute is that the compo- 

ents of SVD of a randomly modulated matrix of the secret vector 

 are nonlinearly related to x . More specifically, given the output 

amples of SVD-CEF, finding x or its substitute amounts to finding 

he solution of a set of multivariate second-order polynomials. A 

ain reason why SVD-CEF yields uncorrelated output samples is 

lso because of a highly nonlinear relationship between the output 

amples of SVD-CEF and x . See discussion of equation (3) in [4] . 

.2. The rest of the paper 

In Section 2 , we review a linear family of CEFs, including RP 

nd DRP. We will also discuss a unitary random projection (URP) 

nd a transformation from the N-dimensional real space R 

N to the 

-dimensional sphere of unit radius S N (1) . The URP would be an 

deal CEF if there is a (strong) secret key shared by Alice and Bob. 

ut if there is no (strong) secret key, URP has the weakness of 

eing easy to invert and having high output correlations as high- 

ighted later in this paper. In Section 3 , we review a family of non-

inear CEFs, including HOP and IoM. In Section 4 , we present a new

amily of nonlinear CEFs called SVD-CEF, which is a new develop- 

ent from our prior works in [1,2] . In Section 5 , we provide empir-

cal details to explain why SVD-CEF is hard to attack. In Section 6 ,

e provide statistical analyses of SVD-CEF as well as simulation re- 

ults to show why SVD-CEF has good properties in terms of sensi- 

ivity, correlation and invariance. In Section 7 , we show a detailed 
3 
omparison of the noise sensitivities of a quantized SVD-CEF and 

he IoM algorithm 2, which shows a significant advantage of SVD- 

EF. The conclusion is given in Section 8 . A previous version of this 

aper is posted at [24] . 

. Linear family of CEFs 

A family of linear CEFs can be expressed as follows: 

 = R S x (1) 

here y = [ y 1 , y 2 , · · · , y M 

] T , M is a large integer, R S is a M × N

seudorandom matrix dependent on a secret key S. Let the i th 

 i × 1 subvector of y be y i , and the i th M i × N block matrix of R S 

e R S,i . Then it follows that 

 i = R S,i x (2) 

here i = 1 , · · · , I and 

∑ I 
i =1 M i = M. 

.1. Random projection 

The linear family of CEFs includes the random projection (RP) 

ethod shown in [8] and applied in [12] . If S is known, so is 

 S,i for all i . If y i for some i is known/exposed and R S,i is of the

ull column rank N, then x is given by R 

+ 
S,i 

y i = (R 

T 
S,i 

R S,i ) 
−1 R 

T 
S,i 

y i 
here + denotes pseudo-inverse. If R S,i is not of full column rank, 

hen x can be computed from a set of outputs like (for example) 

 1 , · · · , y L where L is such that the vertical stack of R S, 1 , · · · , R S,L ,

enoted by R S, 1: L , is of the full column rank N. 

If S is unknown, then a method to compute x includes a dis- 

rete search for the N S bits of S as follows 

in 

S 
min 

x 
‖ y 1: L − R S, 1: L x ‖ = min 

S 
‖ y 1: L − R S, 1: L R 

+ 
S, 1: L y 1: L ‖ (3) 

here y 1: L is the vertical stack of y 1 , · · · , y L . The total complexity

f the above attack algorithm with unknown key S is P N,M 

2 N S with 

 N,M 

being a linear function of 
∑ L 

i =1 M i and a cubic function of N. 

So, RP is not hard to attack (subject to a small N S ). 

.2. Dynamic random projection 

The dynamic random projection (DRP) method proposed in 

9] and also discussed in [7] can be described by 

 i = R S,i, x x (4) 

here R S,i, x is the i th realization of a random matrix that depends 

n both S and x . Since R S,i, x is discrete, y i in (4) is a locally linear

unction of x . (There is a nonzero probability that a small pertur- 

ation w in x ′ = x + w leads to R S,i, x ′ being substantially different

rom R S,i, x . This is not a desirable outcome for biometric templates 

lthough the probability may be small.) Two methods were pro- 

osed in [9] to construct R S,i, x , which were called “Functions I and 

I” respectively. For simplicity of notation, we will now suppress i 

nd S in (4) and write it as 

 = R x x (5) 
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.2.1. Assuming “Function I” in [9] 

In this case, the i th element of y , denoted by v i , corresponds to

he i th slot shown in [9] and can be written as 

 i = r T x,i x (6) 

here r T 
x,i 

is the i th row of R x . But r T 
x,i 

is one of L key-dependent

seudorandom vectors r T 
i, 1 

, · · · , r T 
i,L 

that are independent of x and 

nown if S is known. So we can also write 

 i = r T i x̄ (7) 

here r T 
i 

= [ r T 
i, 1 

, · · · , r T 
i,L 

] T , and x̄ ∈ R 

LN is a sparse vector consist-

ng of zeros and x . Before x is known, the position of x in x̄ is

nitially unknown. 

If an attacker has stolen K realizations of v i (denoted by 

 i, 1 , · · · , v i,K ), then it follows that 

 i = R i ̄x (8) 

here v i = [ v i, 1 , · · · , v i,K ] T , and R i is the vertical stack of K key-

ependent random realizations of r T 
i 

. With K ≥ LN, R i is of the full

olumn rank LN with probability one, and in this case the above 

quation (when given the key S) is linearly invertible with a com- 

lexity order equal to O((LN) 3 ) . 

An even simpler method of attack is as follows. Since v i,k = 

 

T 
i,k,l 

x where l ∈ { 1 , · · · , L } and r i,k,l for all i , k and l are known,

hen we can compute 

 

∗ = arg min 

l∈{ 1 , ··· ,L } 
min 

x 
‖ v i − R i,l x ‖ 

2 

= arg min 

l∈{ 1 , ··· ,L } 
‖ v i − R i,l R 

+ 
i,l 

v i ‖ 

2 (9) 

here R i,l is the vertical stack of r T 
i,k,l 

for k = 1 , · · · , K. Provided

 ≥ N, R i,l has the full column rank with probability one. In this 

ase, the correct solution of x is given by R 

+ 
i,l ∗ v i . This method has

 complexity order equal to O(LN 

3 ) . 

.2.2. Assuming “Function II” in [9] 

To attack “Function II” with known S, it is equivalent to consider 

he following signal model: 

 k = 

N ∑ 

n =1 

r k,l k ,n 
x n (10) 

here v k is available for k = 1 , · · · , K, r k,l,n for 1 ≤ k ≤ K, 1 ≤ l ≤ L

nd 1 ≤ n ≤ N are random but known 

1 numbers (when given S), x n 
or all n are unknown, and l k is a k -dependent random/unknown 

hoice from [1 , · · · , L ] . 

We can write 

 = Rx (11) 

here v is a stack of all v k , x is a stack of all x n , and R is a stack

f all r k,l k ,n 
(i.e., (R ) k,n = r k,l k ,n 

). In this case, R is a random and

nknown choice from L K possible known matrices. An exhaustive 

earch would require the O(L K ) complexity with K ≥ N + 1 . 

Now we consider a different approach of attack. Since r k,l,n for 

ll k, l, n are known, we can compute 

 n,n ′ = 

1 

KL 

K ∑ 

k =1 

L ∑ 

l=1 

L ∑ 

l ′ =1 

r k,l,n r k,l ′ ,n ′ (12) 

f r k,l,n are pseudo i.i.d. random (but known) numbers of zero mean 

nd variance one, then for large K (e.g., K 	 L 2 ) we have c n,n ′ ≈
n,n ′ . 
1 “random but known” means “known” strictly speaking despite a pseudoran- 

omness. 

w

u

Q

X

4 
Also define 

 n = 

1 

K 

K ∑ 

k =1 

L ∑ 

l=1 

v k r k,l,n = 

N ∑ 

n ′ =1 

ˆ c n,n ′ x n ′ (13) 

here n = 1 , · · · , N and 

ˆ 
 n,n ′ = 

1 

K 

K ∑ 

k =1 

L ∑ 

l=1 

r k,l,n r k,l k ,n 
′ . (14) 

f r k,l,n are i.i.d. of zero mean and unit variance, then for large K

e have ˆ c n,n ′ ≈ c n,n ′ ≈ δn,n ′ and hence 

 n ≈ x n . (15) 

More generally, if we have ˆ c n,n ′ ≈ c n,n ′ with a large K, then 

 ≈ Cx (16) 

here (y ) n = y n , and (C ) n,n ′ = c n,n ′ . Hence, 

 ≈ C 

−1 y . (17) 

With an initial estimate ˆ x of x , we can then do the following to 

efine the estimate: 

1. For each of k = 1 , · · · , K, compute l ∗
k 

= arg min l∈ [1 , ··· ,L ] | v k −∑ N 
n =1 r k,l,n ̂  x n | . 

2. Recall v = Rx . But now use (R ) k,n = r k,l ∗
k 
,n for all k and n , and

replace ˆ x by 

ˆ x = (R 

T R ) −1 R 

T v (18) 

3. Go to step 1 until convergence. 

Note that all entries in R are discrete. Once the correct R is 

ound, the exact x is obtained. The above algorithm converges to 

ither the exact x or a wrong x . But with a sufficiently large K with

espect to a given pair of N and L , our simulation shows that above

ttack algorithm yields the exact x with high probabilities. For ex- 

mple, for N = 8 , L = 8 and K = 23 L , the successful rate is 99% . And

or N = 16 , L = 48 and K = 70 L , the successful rate is 98% . In the

xperiment, for each set of N, L and K, 100 independent realiza- 

ions of all elements in x and R were chosen from i.i.d. Gaussian 

istribution with zero mean and unit variance, i.e., N (0 , 1) . The

uccessful rate was based on the 100 realizations. 

In [9] , an element-wise quantized version of v was further sug- 

ested to improve the hardness to invert. In this case, the vector 

otentially exposable to an attacker can be written as 

ˆ  = Rx + w (19) 

here w can be modelled as a white noise vector uncorrelated 

ith Rx . The above attack algorithm with v replaced by ˆ v also ap- 

lies although a larger K is needed to achieve the same rate of 

uccessful attack. 

In all of the above cases, the computational complexity for a 

uccessful attack is a polynomial function of N, L and/or K when 

he secret key S is given. 

.3. Unitary Random Projection (URP) 

None of the RP and DRP methods is homomorphic. To have a 

omomorphic CEF whose input and output have the same distance 

easure, we can use 

 k = Q k x (20) 

here Q k ∈ R 

N×N for each realization index k is a pseudorandom 

nitary matrix governed by a secret key S. One way to generate 

 k is to compute the QR decomposition [19] of a random matrix 

 whose entries are pseudorandom numbers (including Gaussian 
k 
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andom numbers) from a standard cryptographically secure pseu- 

orandom number generator. It is important to note that if there is 

 secret key with its length N S ≥ N, then URP is also hard to invert

trictly speaking. But as stressed earlier, this paper focuses on the 

ase where N S � N or simply N S = 0 . 

Let x ′ = x + w with w being a noise. Then y ′ 
k 

. = Q k x 
′ = Q k x +

 k w . It follows that the SNR of y ′ 
k 

equals the SNR of x ′ , and hence

he FoM of URP equals one. We can view the noise sensitivity of 

RP as optimal. In fact, if Alice and Bob do share a strong secret 

ey, then the URP would be an ideal CEF as it would meet per-

ectly all the five criteria. However, like RP and DRP, URP is easy 

o attack if the secret key is weak or does not exist. Furthermore, 

s shown later, without a secret key or equivalently with a known 

et of Q k for all k , the output samples of URP are highly correlated

ith each other. 

Note that each of the linear CEFs requires a forward per-sample 

omputation complexity equal to O(N) . For example, to produce 

output samples of URP, we need to generate the N × N uni- 

ary matrix Q k , which requires a computational complexity equal 

o O(N 

2 ) . We also need to compute the product Q k x which costs

nother O(N 

2 ) . So, the per-sample complexity is O(N) . 

If x consists of i.i.d. N (0 , σ 2 
x ) , all entries of y i for all i are also

 (0 , σ 2 
x ) , which is a desired invariance of statistical distribution. 

ut the entries of y i in general have significant correlations with 

ntries of y j for j � = i (even though the N entries of y i for each

 have zero correlations among themselves). Simulation results on 

he correlations of RP, DRP and URP will be shown later. 

.3.1. Transformation from R 

N to S N (1) 

For URP, ‖ y k ‖ = ‖ x ‖ , which means that ‖ x ‖ is readily available

rom y i . If ‖ x ‖ needs some protection from an exposed y i , we can

pply the transformation shown next. 

We now introduce a transformation from the N-dimensional 

ector space R 

N to the N-dimensional sphere of unit radius S N (1) . 

et x ∈ R 

N . Define 

 = 

[ 

1 

‖ x ‖ √ 

1+ ‖ x ‖ 2 x 

‖ x ‖ √ 

1+ ‖ x ‖ 2 

] 

(21) 

hich clearly satisfies v ∈ S N (1) . Then, we let 

 k = Q k v (22) 

here Q k is now a (n + 1) × (n + 1) unitary random matrix gov-

rned by a secret key S. 

Let y ′ 
k 

= R k v 
′ . It follows that ‖ y ′ 

k 
− y k ‖ = ‖ v ′ − v ‖ . But since v is

ow a nonlinear function of x , the relationship between ‖ v ′ − v ‖
nd ‖ x ′ − x ‖ is more complicated, which we discuss below. 

Let us consider x ′ = x + w . One can verify that 

 v ′ − v ‖ = 

∥∥∥∥∥
[ 

x + w 

‖ x + w ‖ √ 

1+ ‖ x + w ‖ 2 
‖ x + w ‖ √ 

1+ ‖ x + w ‖ 2 

] 

−
[ 

x 

‖ x ‖ √ 

1+ ‖ x ‖ 2 
‖ x ‖ √ 

1+ ‖ x ‖ 2 

] 

∥∥∥∥∥
= 

∥∥∥∥
[

a 
b 
c 
d 

]∥∥∥∥ (23) 

here 

 = (x + w ) · ‖ x ‖ ·
√ 

1 + ‖ x ‖ 

2 

− x · ‖ x + w ‖ ·
√ 

1 + ‖ x + w ‖ 

2 (24) 

 = ‖ x ‖ ·
√ 

1 + ‖ x ‖ 

2 · ‖ x + w ‖ ·
√ 

1 + ‖ x + w ‖ 

2 (25) 

 = ‖ x + w ‖ ·
√ 

1 + ‖ x ‖ 

2 − ‖ x ‖ ·
√ 

1 + ‖ x + w ‖ 

2 (26) 

 = 

√ 

1 + ‖ x ‖ 

2 ‖ ·
√ 

1 + ‖ x + w ‖ 

2 . (27) 
5 
To derive a simpler relationship between ‖ v ′ − v ‖ and ‖ x ′ −
 ‖ = ‖ w ‖ , we will assume ‖ w ‖ � r = ‖ x ‖ and apply the first or-

er approximations. Also we can write 

 = ηx w x + η⊥ w ⊥ (28) 

here w x is a unit-norm vector in the direction of x , and w ⊥ is a

nit-norm vector orthogonal to x . Then, 

 w ‖ 

2 = η2 
x + η2 

⊥ (29) 

 

T w = ηx ‖ x ‖ = ηx r. (30) 

It follows that 

 x + w ‖ ≈ ‖ x ‖ 

+ 

1 

2 ‖ x ‖ 

(‖ w ‖ 

2 + 2 x 

T w ) 

= r + 

1 

2 r 
(η2 

x + η2 
⊥ + 2 rηx ) 

≈ r + 

1 

2 r 
(η2 

⊥ + 2 rηx ) (31) 

 

1 + ‖ x + w ‖ 

2 ≈
√ 

1 + ‖ x ‖ 

2 

+ 

1 

2 

√ 

1 + ‖ x ‖ 

2 
(‖ w ‖ 

2 + 2 x 

T w ) 

≈
√ 

1 + r 2 + 

1 

2 

√ 

1 + r 2 
(η2 

⊥ + 2 rηx ) . (32) 

hen, one can verify that 

 ≈ w r 
√ 

1 + r 2 − x 

1 

2 

(
r √ 

1 + r 2 
+ 

√ 

1 + r 2 

r 

)
(η2 

⊥ + 2 rηx ) (33) 

nd 

 a ‖ 

2 = r 2 (1 + r 2 )(η2 
x + η2 

⊥ ) 

+ 

1 

4 

r 2 
(

r √ 

1 + r 2 
+ 

√ 

1 + r 2 

r 

)2 

(η2 
⊥ + 2 rηx ) 

2 

− ηx r 
2 
√ 

1 + r 2 

(
r √ 

1 + r 2 
+ 

√ 

1 + r 2 

r 

)
(η2 

⊥ + 2 rηx ) 

≈ r 2 (1 + r 2 )(η2 
x + η2 

⊥ ) 

+ r 4 
(

r √ 

1 + r 2 
+ 

√ 

1 + r 2 

r 

)2 

η2 
x 

− 2 r 3 
√ 

1 + r 2 

(
r √ 

1 + r 2 
+ 

√ 

1 + r 2 

r 

)
η2 

x 

= r 2 (1 + r 2 ) η2 
⊥ + 

r 6 

1 + r 2 
η2 

x (34) 

here the approximations hold because of ηx � r and η⊥ � r. 

imilarly, we have 

 

2 ≈ r 4 (1 + r 2 ) 2 (35) 

 

2 ≈
(

1 

2 r 
√ 

1 + r 2 
(η2 

⊥ + 2 rηx ) 

)2 

≈ 1 

(1 + r 2 ) 
η2 

x (36) 

 

2 ≈ (1 + r 2 ) 2 . (37) 

ence 

 v ′ − v ‖ 

2 = 

‖ a ‖ 

2 

b 2 
+ 

c 2 

d 2 
≈ 1 

r 2 (1 + r 2 ) 
η2 

⊥ + 

r 2 + 1 

(1 + r 2 ) 3 
η2 

x . (38) 

It is somewhat expected that the larger is r, the less are the 

ensitivities of ‖ v ′ − v ‖ 2 to η⊥ and ηx . But the sensitivities of 
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Table 2 

Normalized projection of x onto its estimate using only averaging for attack of 

IoM-1. 

K 1 = 8 16 32 64 

N = 8 0.8546 0.9171 0.9562 0.9772 

16 0.8022 0.8842 0.9365 0.9666 

32 0.7328 0.8351 0.906 0.9494 
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x

 v ′ − v ‖ 2 to η⊥ and ηx are different in general, which also vary 

ifferently as r varies. If r � 1 , then 

 v ′ − v ‖ 

2 ≈ 1 

r 2 
η2 

⊥ + η2 
x (39) 

hich shows a higher sensitivity of ‖ v ′ − v ‖ 2 to η⊥ than to ηx . If

 	 1 , then 

 v ′ − v ‖ 

2 ≈ 1 

r 4 
η2 

⊥ + 

1 

r 4 
η2 

x = 

1 

r 4 
‖ w ‖ 

2 (40) 

hich shows equal sensitivities of ‖ v ′ − v ‖ 2 to η⊥ and ηx respec- 

ively. 

The above results show how ‖ v ′ − v ‖ 2 changes with 

 = η⊥ w ⊥ + ηx w x subject to ‖ w ‖ � ‖ x ‖ = r or equivalently
 

η2 
⊥ + η2 

x � r. 

For larger ‖ w ‖ , the relationship between ‖ v ′ − v ‖ 2 and ‖ w ‖ is
ot as simple. But one can verify that if ‖ w ‖ 	 r 	 1 , then ‖ v ′ −
 ‖ ≈ 1 /r. 

. Nonlinear family of CEFs 

If the secret key S available is not large enough, then we will 

eed a CEF that is hard to attack even if S is known. Such a CEF

as to be nonlinear. 

.1. Higher-order polynomials 

A family of higher-order polynomials (HOP) was sug- 

ested in [10] as a hard-to-invert continuous function. 

ut we show here that HOP is not hard to substitute. 

et y = [ y 1 , · · · , y M 

] T and x = [ x 1 , · · · , x N ] 
T where y m 

is a

OP of x 1 , · · · , x N with pseudorandom coefficients. Namely, 

 m 

= f m 

(x 1 , · · · , x N ) = 

∑ J 
j=0 

c m, j 

∏ N 
i =1 x 

p i, j 

i 
where the coefficients

 m, j can be pseudorandom numbers governed by S. When S is 

nown, all the polynomials are known and yet x is still generally 

ard to obtain from y for any M due to the nonlinearity. But 

e can write y m 

= g m 

(v (x 1 , · · · , x N )) , where g m 

is a scalar linear

unction conditioned on S, and v (x 1 , · · · , x N ) is a J × 1 vector

onlinear function unconditioned on S. This means that the HOP 

s not a hard-to-substitute function. It is also obvious that HOP is 

enerally highly sensitive to noise in x due to higher-order poly- 

omials. Specifically, ∂ y m 

= p 1 , j 

∑ J 
j=0 

c m, j (x 
p 1 , j −1 

1 
x 

p 2 , j 

2 
· · · x 

p N, j 

N 
) ∂ x 1 +

· · + p N, j 

∑ J 
j=0 

c m, j (x 
p 1 , j 

1 
· · · x 

p N−1 , j 

N−1 
x 

p N, j −1 

N 
) ∂ x N , where ∂ denotes the

ifferential operator. A large p i, j means a large sensitivity to noise 

n x i . So, HOP does not seem a good choice in applications. It 

s obvious that the per-sample complexity order of the HOP is 

( 
∑ J 

j=0 

∑ N 
i =1 p i, j ) , a simpler form of which in terms of a large N

s O(N) . 

.2. Index-of-max hashing 

More recently a method called index-of-max (IoM) hashing was 

roposed in [11] and applied in [13] . There are algorithms 1 and 2

ased on IoM, which will be referred to as IoM-1 and IoM-2. 

In IoM-1, the feature vector x ∈ R 

N is multiplied (from the left) 

y a sequence of L × N pseudorandom matrices R 1 , · · · , R K 1 
to pro- 

uce v 1 , · · · , v K 1 respectively. The index of the largest element in 

ach v k is used as an output y k . With y = [ y 1 , · · · , y K 1 ] 
T , we see

hat y is a nonlinear (“piece-wise” constant and “piece-wise” con- 

inuous) continuous function of x . 

The generation of each of R 1 , · · · , R K 1 
requires O(N 

2 ) com- 

lexity, and the computation of each of v 1 , · · · , v K 1 requires ad- 

itional O(N 

2 ) complexity. The search for the maximum entry 

ithin each v k costs O(N) . Hence, the per-sample complexity of 

oM-1 is O(N 

2 ) . 
6 
In IoM-2, R 1 , · · · , R K 1 
used in IoM-1 are replaced by N ×

pseudorandom permutation matrices P 1 , · · · , P K 1 
to produce 

 1 , · · · , v K 1 , and then a sequence of vectors h 1 , · · · , h K 2 
are pro-

uced in such a way that each h k is the element-wise products 

f an exclusive set of p vectors from v 1 , · · · , v K 1 . The index of

he largest element in each h k is used as an output y k . With

 = [ y 1 , · · · , y K 2 ] 
T , we see that y is another nonlinear continuous

unction of x . 

The complexity of p random permutations of x to produce p

f v k is O(pN 

2 ) (even though there is no multiplication required). 

he complexity to produce each h k is O(pN) . Then the per-sample 

omplexity of IoM-2 is also O(N 

2 ) provided that p is independent 

f N. If p = N, the per-sample complexity of IoM-2 becomes O(N 

3 ) .

Next we show that IoM-1 is not hard to invert if the secret key 

or equivalently the random matrices R 1 , · · · , R K 1 
are known. We 

lso show that IoM-2 is not hard to invert up to the sign of each

lement in x if the secret key S or equivalently the random permu- 

ations P 1 , · · · , P K 1 
are known. 

.2.1. Attack of IoM-1 

Assume that each R k has L rows and the secret key S is known. 

hen knowing y k for k = 1 , · · · , K 1 means knowing r k,a,l and r k,b,l 

atisfying 

 

T 
k,a,l x > r T k,b,l x (41) 

ith l = 1 , · · · , L − 1 and k = 1 , · · · , K 1 . Here r T 
k,a,l 

and r T 
k,b,l 

for all

are rows of R k . The above is equivalent to d 

T 
k,l 

x > 0 with d k,l =
 k,a,l − r k,b,l , or more simply 

 

T 
k x > 0 (42) 

here d k is known for k = 1 , · · · , K with K = K 1 (L − 1) . Note that

ny scalar change to x does not affect the output y . Also note that

ven though IoM-1 defines a nonlinear function from x to y , the 

onditions in (42) useful for attack are linear with respect to x . 

To attack IoM-1, we can simply compute ˆ x satisfying d 

T 
k ̂

 x > 0 

or all k . One such algorithm of attack is as follows: 

1. Initialization/averaging: Let ˆ x = d̄ 

. = 

1 
K 

∑ K 
k =1 d k . 

2. Refinement: Until d 

T 
k ̂

 x > 0 for all k , choose k ∗ = arg min k d 

T 
k ̂

 x ,

and compute 

ˆ x ← ˆ x − η(d 

T 
k ∗ ˆ x ) d k ∗ (43) 

where η is a step size. 

Our simulation (using η = 

1 
‖ d k ∗ ‖ 2 ) shows that using the initial- 

zation alone can yield a good estimate of x as K increases. More 

pecifically, the normalized projection 

d̄ T x 

‖ ̄d ‖·‖ x ‖ converges to one as 

increases. Our simulation also shows that the second step in the 

bove algorithm improves the convergence slightly. Examples of 

he attack results are shown in Tables 2 and 3 where L = N. We

ee that IoM-1 (with its key S exposed) can be inverted with a 

omplexity order no larger than a linear function of N and K 1 re- 

pectively. 

.2.2. Attack of IoM-2 

To attack IoM-2, we need to know the sign of each element of 

 , which is assumed below. Given the output of IoM-2 and all the 
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Table 3 

Normalized projection of x onto its estimate after convergence of refinement for 

attack of IoM-1. 

K 1 = 8 16 32 64 

N = 8 0.8807 0.9467 0.9804 0.9937 

16 0.8174 0.908 0.9612 0.9861 

32 0.739 0.8497 0.9268 0.9699 

Table 4 

Normalized projection of | x | onto its estimate using only averaging for attack of 

IoM-2. 

K 2 = 8 16 32 64 

N = 8 0.9244 0.954 0.9698 0.9783 

16 0.9068 0.9418 0.9603 0.9694 

32 0.8844 0.9206 0.9379 0.9466 

Table 5 

Normalized projection of | x | onto its estimate after convergence of refinement for 

attack of IoM-2. 

K 2 = 8 16 32 64 

N = 8 0.9432 0.9711 0.9802 0.9816 

16 0.9182 0.9525 0.9649 0.9653 

32 0.8887 0.9258 0.9403 0.9432 
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ermutation matrices P 1 , · · · , P K 1 
, we know which of the elements 

n each h k is the largest and which of these elements are negative. 

f the largest element in h k is positive, we will ignore all the neg-

tive elements in h k . If the largest element in h k is negative, we

now which of the elements in h k has the smallest absolute value. 

Let | h k | be the vector consisting of the corresponding abso- 

ute values of the elements in h k . Also let log | h k | be the vector

f element-wise logarithm of | h k | . It follows that 

og | h k | = T k log | x | (44) 

here T k is the sum of the permutation matrices used for h k . The

nowledge of an output y k of IoM-2 implies the knowledge of t T 
k,a,l 

nd t T 
k,b,l 

(i.e., row vectors of T k ) such that either 

 

T 
k,a,l log | x | > t k,b,l log | x | (45) 

ith l = 1 , · · · , L k − 1 if h k has L k ≥ 2 positive elements, or 

 

T 
k,a,l log | x | < t k,b,l log | x | (46) 

ith l = 1 , · · · , N − 1 if h k has no positive element. 

If h k has only one positive element, the corresponding y k is ig- 

ored as it yields no useful constraint on log | x | . We assume that

o element in x is zero. 

Equivalently, the knowledge of y k implies c T 
k,l 

log | x | > 0 where 

 k,l = t k,a,l − t k,b,l for l = 1 , · · · , L k − 1 if h k has L k ≥ 2 positive ele-

ents, or c k,l = −t k,a,l + t k,b,l for l = 1 , · · · , N − 1 if h k has no pos-

tive element. A simpler form of the constraints on log | x | is 
 

T 
k log | x | > 0 (47) 

here c k is known for k = 1 , · · · , K with K = 

∑ K 2 
k =1 

( ̄L k − 1) . Here

¯
 k = L k if h k has a positive element, and L̄ k = N if h k has no posi-

ive element. 

The algorithm to find log | x | satisfying (47) for all k is simi-

ar to that for (42) , which consists of “initialization/averaging” and 

refinement”. Knowing log | x | , we also know | x | . Examples of the

ttack results are shown in Tables 4 and 5 where p = N and all

ntries of x are assumed to be positive. 

The above analysis shows that IoM-2 effectively extracts out a 

inary (sign) secret from each element of x and utilizes that se- 

ret to construct its output. Other than that secret, IoM-2 is not a 

ard-to-invert function. In other words, IoM-2 can be inverted with 
7 
 complexity order no larger than L N,K 2 
2 N where L N,K 2 

is a linear 

unction of N and K 2 , respectively, and 2 N is to due to an exhaus- 

ive search of the sign of each element in x . Note that if an addi-

ional key S x of N bits is first extracted with 100% reliability from 

he signs of the elements in x , then a linear CEF could be used

hile maintaining an attack complexity order equal to O(N 

3 2 N ) . 

. A new family of nonlinear CEFs 

The previous discussions show that RP, DRP and IoM-1 are not 

ard to invert, and IoM-2 can be inverted with a complexity order 

o larger than L N,K 2 
2 N . We show next a new family of nonlinear

EFs, for which the best known method to attack suffers a com- 

lexity order no less than O(2 ζN ) with ζ substantially larger than 

ne. 

The new family of nonlinear CEFs is broadly defined as follows. 

tep 1: let M k,x be a matrix (for index k ) consisting of elements

hat result from a random modulation of the input vector x ∈ R 

N .

tep 2: Each element of the output vector y ∈ R 

M is constructed 

rom a component of the singular value decomposition (SVD) of 

 k,x for some k . Each of the two steps can have many possibilities.

e will next focus on one specific CEF in this family (as this CEF 

eems the best among many choices we have considered). 

For each pair of k and l, let Q k,l be a (secret key dependent)

andom N × N unitary (real) matrix. Define 

 k,x = [ Q k, 1 x , · · · , Q k,N x ] (48) 

here each column of M k,x is a random rotation of x . Let u k,x, 1 be

he principal left singular vector of M k,x , i.e., 

 k,x, 1 = arg max 
u , ‖ u ‖ =1 

u 

T M k,x M 

T 
k,x u (49) 

hen for each k , choose N y ( 1 ≤ N y < N) elements in u k,x, 1 to be

 y elements in y = [ y 1 , y 2 , · · · ] T . If we choose N y = 1 , then y k for

ach k is an entry (such as the 1st entry) of u k,x, 1 . We will refer

o the above function (from x to y ) as SVD-CEF. Note that there

re efficient ways to perform the forward computation needed 

or (49) given M k,x M 

T 
k,x 

. One of them is the power method [19] ,

hich has the complexity equal to O(N 

2 ) . But the construction of 

 k,x M 

T 
k,x 

(starting from the generation of Q k, 1 , · · · , Q k,N ) for each k

equires O(N 

3 ) complexity. 

We can see that for each random realization of Q k,l for all k and

and a random realization x 0 of x , with probability one there is a 

eighborhood around x 0 within which y is a continuous function 

f x . It is also clear that for any fixed x the elements in y appear

andom to anyone who does not have access to the secret key used 

o produce the pseudorandom Q k,l . 

More importantly, we will show in Section 5 that SVD-CEF is 

mpirically hard to attack even with Q k,l known for all k and l; 

nd in Section 6 that if x consists of i.i.d. N (0 , σ 2 
x ) , then all entries

f y = [ y 1 , y 2 , · · · ] T have nearly zero correlations and the same dis-

ribution even with Q k,l being fixed for all k and l. The noise sen-

itivity of SVD-CEF is also discussed in Section 6 . 

. Attack of SVD-CEF 

We now consider how to compute x ∈ R 

N from a given y ∈ R 

M 

ith M ≥ N for SVD-CEF based on (48) and (49) assuming that Q k,l 

or all k and l are given. 

A universal method for inverting a function is via exhaustive 

earch, i.e., searching for a x that produces the known y via the 

orward function up to a desired precision. This method has a com- 

lexity order no less than O(2 N B N ) with N B being an effective num- 

er of bits needed to represent each of the N elements in x . The

alue of N B depends on an expected noise level in x . It is not un-

ommon in practice that N ranges from 3 to 8 or even higher. 
B 



Y. Hua and A. Maksud Signal Processing 203 (2023) 108807 

i

t

s

5

 

u  

f  

e

M

w

M

v

m  

l

r

a

i  

t

S

e  

a

f

N  

a  

l

 

h

T

a  

t

(

(

w  

s

n  

K

i  

c

o

 

s

t

M

w  

l

a

e

 

k

f  

m

N  

t

N

e

t

t

t

t

S

 

o

c

t

t

b

c

i

t

5

n

c

s  

v

o

u

x

w  

a  

N  

i  

u

n  

2

P

w

v

o

f

f

s

P

w

w

r

O

The only other known method that we know to invert SVD-CEF 

s the Newton’s method, which is considered next. To prepare for 

he application of the Newton’s method, we need to formulate a 

et of equations which must be satisfied by all unknown variables. 

.1. Preparation 

We now assume that for each of k = 1 , · · · , K, N y elements of

 k,x, 1 are used to construct y ∈ R 

M with M = KN y . Computing x

rom y and Q k,l for all k and l is equivalent to solving the following

igenvalue-decomposition (EVD) equations: 

 k,x M 

T 
k,x u k,x, 1 = σ 2 

k,x, 1 u k,x, 1 (50) 

ith k = 1 , · · · , K. Here σ 2 
k,x, 1 

is the principal eigenvalue of 

 k,x M 

T 
k,x 

. But this is not a conventional EVD problem because the 

ector x inside M k,x is unknown along with σ 2 
k,x, 1 

and N − N y ele- 

ents in u k,x, 1 for each k . We will refer to (50) as the EVD equi-

ibrium conditions for x . 

If the unknown x is multiplied by α, so should be the cor- 

esponding unknowns σk,x, 1 for all k but u k,x, 1 for any k is not 

ffected. So, we will only need to consider the solution satisfy- 

ng ‖ x ‖ 2 = 1 . Note that if the norm of the original feature vec-

or contains secret, we can first use the transformation shown in 

ection 2.3.1 . 

The number of unknowns in the system of nonlinear 

quations (50) is N unk,EV D, 1 = N + (N − N y ) K + K, which consists of

ll N elements of x , N − N y elements of u k,x, 1 for each k and σ 2 
k,x, 1 

or all k . The number of the nonlinear equations is N equ,EV D, 1 = 

K + K + 1 , which consists of (50) for all k , ‖ u k,x, 1 ‖ = 1 for all k

nd ‖ x ‖ 2 = 1 . Then, the necessary condition for a finite set of so-

utions is N equ,EV D, 1 ≥ N unk,EV D, 1 , or equivalently N y K ≥ N − 1 . 

If N y < N, there are N − N y unknowns in u k,x, 1 for each k and

ence the left side of (50) is a third-order function of unknowns. 

o reduce the nonlinearity, we can expand the space of unknowns 

s follows. Since M k,x M 

T 
k,x 

= 

∑ N 
l=1 Q k,l XQ 

T 
k,l 

with X = xx T (a substi-

ute input), we can treat X as a N × N symmetric unknown matrix 

without the rank-1 constraint), and rewrite (50) as 

 

N ∑ 

l=1 

Q k,l XQ 

T 
k,l ) u k,x, 1 = σ 2 

k,x, 1 u k,x, 1 (51) 

ith T r(X ) = 1 , ‖ u k,x, 1 ‖ = 1 and k = 1 , · · · , K. In this case, both

ides of (51) are of the 2nd order of all unknowns. But the 

umber of unknowns is now N unk,EV D, 2 = 

1 
2 N(N + 1) + (N − N y ) K +

 > N unk,EV D, 1 while the number of equations is not changed, 

.e., N equ,EV D, 2 = N equ,EV D, 1 = NK + K + 1 . In this case, the necessary

ondition for a finite set of solution for X is N equ,EV D, 2 ≥ N unk,EV D, 2 , 

r equivalently N y K ≥ 1 
2 N(N + 1) − 1 . 

Note that X seems the only useful substitute for x . But this sub-

titute still seems hard to compute from y as shown later. 

Alternatively, we know that x satisfies the following SVD equa- 

ions: 

 k,x V k,x = U k,x �k,x (52) 

ith U 

T 
k,x 

U k,x = I N and V 

T 
k,x 

V k,x = I N . Here U k,x is the matrix of all

eft singular vectors, V k,x is the matrix of all right singular vectors, 

nd �k,x is the diagonal matrix of all singular values. The above 

quations are referred to as the SVD equilibrium conditions on x . 

With N y elements of the first column of U k,x for each k to be

nown, the unknowns are the vector x , N 

2 − N y elements in U k,x 

or each k , all N 

2 elements in V k,x for each k , and all diagonal ele-

ents in �k,x for each k . Then, the number of unknowns is now 

 unk,SV D = N + (N 

2 − N y ) K + N 

2 K + NK, and the number of equa-

ions is N equ,SV D = N 

2 K + N(N + 1) K + 1 . In this case, N equ,SV D ≥
 unk,SV D iff N y K ≥ N − 1 . This is the same condition as that for EVD 
8 
quilibrium. But the SVD equilibrium equations in (52) are all of 

he second order. 

Note that for the EVD equilibrium, there is no coupling be- 

ween different eigen-components. But for the SVD equilibrium, 

here are couplings among all singular-components. Hence the lat- 

er involves a much larger number of unknowns than the former. 

pecifically, N unk,SV D > N unk,EV D, 2 > N unk,EV D, 1 . 

Every set of equations that x must fully satisfy (given y ) is a set

f nonlinear equations, regardless of how the parameterization is 

hosen. This seems the fundamental reason why SVD-CEF is hard 

o invert. SVD is a three-factor decomposition of a real-valued ma- 

rix, for which there are efficient ways for forward computations 

ut no easy way for backward computation. If a two-factor de- 

omposition of a real-valued matrix (such as QR decomposition) 

s used, the hard-to-invert property does not seem achievable. 

In Appendix A , the details of an attack algorithm based on New- 

on’s method are given. 

.2. Performance of attack algorithm 

Since the conditions useful for attack of SVD-CEF are always 

onlinear, any attack algorithm with a random initialization x ′ can 

onverge to the true vector x (or its equivalent which produces the 

ame y ) only if x ′ is close enough to x . To translate the local con-

ergence into a computational complexity needed to successfully 

btain x from y , we now consider the following. 

Let x be an N-dimensional unit-norm vector of interest. Any 

nit-norm initialization of x can be written as 

 

′ = ±
√ 

1 − r 2 x + rw (53) 

here 0 < r ≤ 1 and w is a unit-norm vector orthogonal to x . For

ny x , rw is a vector (or “point”) on the sphere of dimension

 − 2 and radius r, denoted by S N−2 (r) . The total area of S N−2 (r)

s known to be |S N−2 (r ) | = 

2 π
N−1 

2 

	( N−1 
2 

) 
r N−2 . Then the probability for a

niformly random x ′ from S N−1 (1) to fall onto S N−2 (r 0 ) orthogo- 

al to 
√ 

1 − r 2 
0 

x with r ≤ r 0 ≤ r + d r is 2 |S N−2 (r) | 
|S N−1 (1) | d r where the factor

 accounts for ± in (53) . 

Therefore, the probability of convergence from x ′ to x is 

 con v = E x 
{∫ 1 

0 

2 P x,r 
|S N−2 (r) | 
|S N−1 (1) | dr 

}

= 

2	
(

N 
2 

)
√ 

π	
(

N−1 
2 

) ∫ 1 

0 

P r r 
N−2 dr (54) 

here E x is the expectation over x , P x,r is the probability of con- 

ergence from x ′ to x when x ′ is chosen randomly from S N−2 (r) 

rthogonal to a given 

√ 

1 − r 2 x , and E x { P x,r } = P r . 

We see that P r is the probability that the algorithm converges 

rom x ′ to x (including its equivalent) subject to a fixed r, uni- 

ormly random unit-norm x , and uniformly random unit-norm w 

atisfying w 

T x = 0 . And P r can be estimated via simulation. 

Let r max < 1 be such that P r = 0 for r ≥ r max . Then 

 con v = 

2	
(

N 
2 

)
√ 

π	
(

N−1 
2 

) ∫ r max 

0 

P r r 
N−2 dr 

< 

2	
(

N 
2 

)
(N − 1) 

√ 

π	
(

N−1 
2 

) r N−1 
max 

< r N−1 
max (55) 

hich converges to zero exponentially as N increases. In other 

ords, for such an algorithm to find x or its equivalent from 

andom initializations has a complexity order equal to O( 1 
P con v 

) > 

(( 1 
r ) N−1 ) which increases exponentially as N increases. 

max 
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Table 6 

P r,N and P ∗r,N versus r and N. 

r 0.001 0.01 0.1 0.3 0.5 0.7 0.9 1 

P r, 4 0.46 0.24 0.06 0 0.01 0.01 0.01 0 

P ∗r, 4 0.45 0.17 0.04 0 0.01 0 0.01 0 

P r, 8 0.29 0.07 0.01 0 0 0 0 0 

P ∗r, 8 0.25 0.05 0 0 0 0 0 0 
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Fig. 1. The mean and mean-plus-deviation of ηk,x versus N. 
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In our simulation, we have found that r max decreases rapidly 

s N increases. Let P r,N be P r as function of N. Also let P ∗r,N be

he probability of convergence to ˆ x which via SVD-CEF not only 

ields the correct y k for k = 1 , · · · , K but also the correct y k for

 > K (up to maximum absolute element-wise error no larger than 

.02). Here K is the number of output elements used to com- 

ute the input vector x . In the simulation, we chose N y = 1 and

 equ,EV D, 2 = N unk,EV D, 2 + 1 , which is equivalent to K = 

1 
2 N(N + 1) .

hown in Table 6 are the percentage values of P r,N versus r and 

, which are based on 100 random choices of x . For each choice

f x and each value of r, we used one random initialization of x ′ .
For N = 8 and the values of r in this table, it took two days on a

C with CPU 3.4 GHz Dual Core to complete the 100 runs.) 

The above discussions have explained why SVD-CEF is empiri- 

ally hard to attack. Next we will discuss the sensitivity, correlation 

nd invariance of SVD-CEF. 

. Statistics of SVD-CEF 

In this section, we show a statistical study of SVD-CEF to un- 

erstand some of the statistical properties of its output. Since each 

ntry of the output y = [ y 1 , y 2 , · · · , y M 

] T of SVD-CEF is an element

n the principal eigenvector u k,x, 1 of the matrix M k,x M 

T 
k,x 

, we can 

ostly focus on the statistics of u k,x, 1 . 

.1. Sensitivity 

Unlike the unitary random projections, here the relationship be- 

ween the normalized distance at the input 1 √ 

N 
‖ 
x ‖ and the nor- 

alized distance at the output 1 √ 

M 

‖ 
y ‖ is not trivial. 

.1.1. Sensitivity to small perturbation 

We now consider the sensitivity of SVD-CEF to a small per- 

urbation, i.e., the relationship between the differential ∂u k,x, 1 

or a corresponding ∂y k ) and the differential ∂x . It follows from 

21] that 

u k,x, 1 = 

N ∑ 

j=2 

1 

λ1 − λ j 

u k,x, j u 

T 
k,x, j ∂(M k,x M 

T 
k,x ) u k,x, 1 . (56) 

here λ j is the jth eigenvalue of M k,x M 

T 
k,x 

, and u k,x, j is the 

orresponding jth eigenvector. Since M k,x M 

T 
k,x 

= 

∑ N 
l=1 Q k,l xx T Q 

T 
k,l 

, 

(M k,x M 

T 
k,x 

) = 

∑ 

l Q k,l ∂xx T Q 

T 
k,l 

+ 

∑ 

l Q k,l x ∂x T Q 

T 
k,l 

. It follows that 

 u k,x, 1 = T ∂ x (57) 

here T = A + B with 

 = 

N ∑ 

j=2 

1 

λ1 − λ j 

u k,x, j u 

T 
k,x, j 

N ∑ 

l=1 

Q k,l x 

T Q 

T 
k,l u k,x, 1 (58) 

 = 

N ∑ 

j=2 

1 

λ1 − λ j 

u k,x, j u 

T 
k,x, j 

N ∑ 

l=1 

Q k,l xu 

T 
k,x, 1 Q k,l . (59) 
9 
e can also write 

 = 

( 

N ∑ 

j=2 

1 

λ1 − λ j 

u k,x, j u 

T 
k,x, j 

) 

·
( 

N ∑ 

l=1 

Q k,l 

[
(x 

T Q 

T 
k,l u k,x, 1 ) I N + xu 

T 
k,x, 1 Q k,l 

]) 

(60) 

here the first matrix component has the rank N − 1 and hence so 

oes T . 

Let ∂x = w which consists of i.i.d. elements with zero mean and 

ariance σ 2 
w 

� 1 . It then follows that 

 w 

{‖ ∂u k,x, 1 ‖ 

2 } = T r{ T σ 2 
w 

T 

T } = σ 2 
w 

N−1 ∑ 

j=1 

σ 2 
j (61) 

here σ j for j = 1 , · · · , N − 1 are the nonzero singular values of T .

ince E w 

{‖ ∂x ‖ 2 } = Nσ 2 
w 

, we have 

k,x = 

√ 

E w 

{‖ ∂u k,x, 1 ‖ 

2 } 
E w 

{‖ ∂x ‖ 

2 } = 

√ √ √ √ 

1 

N 

N−1 ∑ 

j=1 

σ 2 
j 

(62) 

hich measures the sensitivity of u k,x, 1 to a small perturbation 

n x . 

Since each of the N entries in ∂u k,x, 1 has the same vari- 

nce due to symmetry, then the corresponding ∂y k satisfies 

 w 

{‖ ∂y k ‖ 2 } = 

1 
N E w 

{‖ ∂u k,x, 1 ‖ 2 } . Since both x and u k,x, 1 have the

nit norm, the input SNR of SVD-CEF is SNR x = 1 / E w 

{‖ ∂x ‖ 2 } = 

1 

Nσ 2 
w 

,

nd the output SNR of SVD-CEF for y k is SNR y,k = O( 1 
NE w {‖ ∂y k ‖ 2 } ) = 

(1 / E w 

{‖ ∂u k,x, 1 ‖ 2 } ) . Therefore, the FoM of SVD-CEF for y k is
 

SNR x 
SNR y,k 

= O(ηk,x ) . Here O denotes the order as σ 2 
w 

→ 0 . 

For each given x , there is a small percentage of realizations of 

 Q k,l , l = 1 , · · · , N} that make ηk,x relatively large. To reduce ηk,x ,

e can prune away such bad realizations. 

Shown in Fig. 1 are the means and means-plus-deviations of 

k,x (over choices of k and x ) versus N, with and without prun- 

ng respectively. Here “std” stands for standard deviation. We see 

hat 5% pruning (or equivalently 95% inclusion shown in the figure) 

esults in a substantial reduction of ηk,x . We used 10 0 0 × 10 0 0 re-

lizations of x and { Q k,l , l = 1 , · · · , N} . Shown in Table 7 are statis-

ics of ηk,x subject to ηk,x < 2 . 5 where P good is the probability of 

k,x < 2 . 5 . We see that P good is relatively large at around or above

0% and the mean of ηk,x ranges roughly from 1.3 to 1.6 for N =
6 , 32 , 64 . This noise sensitivity is far from perfect when compared
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Table 7 

Statistics of ηk,x subject to ηk,x < 2 . 5 and P good . 

N 16 32 64 

Mean 1.325 1.489 1.645 

Std 0.414 0.397 0.371 

P good 0.88 0.84 0.78 

Fig. 2. The means (lower three curves) and means-plus-deviations (upper three 

curves) of 
‖ 
u k,x, 1 ‖ 

‖ 
x ‖ subject to ηk,x < 2 . 5 . 
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Fig. 3. The means and means ±deviations of ρk (using SVD-CEF output) and ρ∗
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ing random output) versus N subject to ηk,x < 2 . 5 . 

Table 8 

Maximums of absolute normalized correlations among the outputs of CEFs. 

x SVD-CEF IoM-2 IoM-1 DRP URP 

0.0085 0.012 0.21 0.25 0.49 0.81 
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o the unitary random projection. But SVD-CEF has the hard-to- 

ttack property as empirically established earlier. 

.1.2. Sensitivity to large perturbation 

Any unit-norm vector x ′ can be written as x ′ = ±√ 

1 − αx + 

 

αw where 0 ≤ α ≤ 1 , and w is of the unit norm and satisfies

 

T x = 0 . Then ‖ 
x ‖ = ‖ x ′ − x ‖ = 

√ 

2 − 2 
√ 

1 − α. It follows that

 
x ‖ ≤ √ 

2 and ‖ 
u k,x, 1 ‖ ≤
√ 

2 . For given α in x ′ = ±√ 

1 − αx +
 

αw , ‖ 
x ‖ is given while ‖ 
u k,x, 1 ‖ still depends on w . We can

all 
‖ 
u k,x, 1 ‖ 

‖ 
x ‖ a deviation gain of SVD-CEF, which is dependent 

n x , k and ‖ 
x ‖ . Here a different k means a different set of

 Q k,l , l = 1 , · · · , N} . Shown in Fig. 2 are the means and means-plus-

eviations of the deviation gain versus ‖ 
x ‖ subject to ηk,x < 2 . 5 .

his figure is based on 10 0 0 × 10 0 0 realizations of x and { Q k,l , l =
 , · · · , N} . We see that the mean of the deviation gain is somewhat

onstant and comparable to the mean of ηk,x for ‖ 
x ‖ < 0 . 1 . 

.2. Correlation 

We show below via simulation that the correlation between the 

nput and output of SVD-CEF as well as the correlation among the 

utput samples of SVD-CEF are practically zero. 

.2.1. Correlation between input and output 

Recall M k,x = [ Q k, 1 x , · · · , Q k,N x ] . If there is a secret key, then

 k,l for all k and l are uniformly random unitary matrices (from 

dversary’s perspective). Then u k,x, 1 for all k and any x are uni- 

ormly random on S N−1 (1) . It follows that E Q { u k,x, 1 u 

T 
m,x, 1 } = 0 for

 � = m , and E Q { u k,x, 1 x 
T } = 0 . Furthermore, it can be shown that

 Q { u k,x, 1 u 

T 
k,x, 1 

} = 

1 
N I N , i.e., the entries of u k,x, 1 are uncorrelated

ith each other. Here E Q denotes the expectation over the distri- 

utions of Q k,l . 

If there is no secret key, then Q k,l for all k and l must be treated

s known. We will consider typical random realizations of Q k,l for 

ll k and l, which exclude those (such as Q k,l = Q k ′ ,l ′ for some k ′ � =
 or l ′ � = l) that would occur with extremely small probability. 

To understand the correlation between x ∈ S N−1 (1) and u k,x, 1 ∈ 

 

N−1 (1) subject to a fixed set of Q k,l , we consider the following
10 
easure: 

k = N max 
i, j 

| [ E x { xu 

T 
k,x, 1 } ] i, j | (63) 

here E x denotes the expectation over the distribution of x . If 

 k,x, 1 = x , then ρk = 1 . So, if the correlation between x and u k,x, 1 

s small, so should be ρk . For comparison, we define ρ∗
k 

as ρk with 

 k,x, 1 replaced by a random unit-norm vector (independent of x ). 

For a different k , there is a different realization of Q k, 1 , · · · , Q k,N .

ence, ρk changes with k . Shown in Fig. 3 are the mean and 

ean ±deviation of ρk and ρ∗
k 

versus N subject to ηk,x < 2 . 5 . We 

sed 10 0 0 0 × 100 realizations of x and { Q k, 1 , · · · , Q k,N } . We see

hat ρk and ρ∗
k 

have virtually the same mean and deviation. (With- 

ut the constraint ηk,x < 2 . 5 , ρk and ρ∗
k 

match even better with 

ach other.) In other words, the correlation between the input and 

utput of SVD-CEF is virtually the same as the correlation between 

he (unit-norm) input of SVD-CEF and an (unit-norm) random 

ector. 

.2.2. Correlations among the output samples 

We now consider the correlation among y k = f k (x ) for k =
 , · · · , K of SVD-CEF subject to x being N (0 , I N ) and a typical re-

lization of Q k,l for k = 1 , · · · , K and l = 1 , · · · , N. We define the

ollowing normalized sample covariance/correlation matrix: 

 SVD-CEF ,R = NE x ,R { y SVD-CEF y T SVD-CEF } (64) 

here y SVD-CEF = [ y 1 , · · · , y K ] 
T with its k th entry y k being the first

ntry of u k,x, 1 , and E x ,R denotes the sample average over R re- 

lizations of x (which treats all other quantities such as key- 

ependent matrices as fixed). We also define C URP ,R = E x ,R { y URP y T URP }
ith y URP being a vertical stack of y k in (20) for k = 1 , · · · , K 0 with

K 0 = K. Similarly, we let C DRP ,R = c DRP E x ,R { y DRP y T DRP } and C IoM ,R =
 IoM E x ,R { y IoM y T IoM } where c DRP and c IoM are such that the diagonal el-

ments of each of C DRP ,R and C IoM have their averaged value equal 

o one. For IoM, each entry of y IoM is an integer “index-of-max”

ranging from 0 to N − 1 ) minus N−1 
2 , which ensures that each en- 

ry of y IoM has the zero mean. 

Shown in Table 8 are the maximum value of the absolute off- 

iagonal elements of each of the above defined sample covariance 

atrices with N = 16 , K = 128 and R = 10 5 . The first column in
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Fig. 4. Correlation “heatmaps” of the output samples of SVD-CEF, IoM-2, DRP and URP (when there is no secret key used in any of these CEFs). 
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able 8 is for C x ,R = E x ,R { xx T } of x ∼ N (0 , I N ) , which serves as a

eference. We know that as R → ∞ , the peak sample correlation 

f the elements in x goes to zero. (The mean and deviation of 

ach off-diagonal element of C x ,R are zero and 

1 √ 

R 
, respectively. At 

 = 10 5 , 1 √ 

R 
= 0 . 0032 .) We see that the peak sample correlation of

VD-CEF is very small and comparable to (about 1.4 times) that of 

 . On the other hand, the peak sample correlations of IoM, DRP 

nd URP are about 17 to 67 times larger than that of SVD-CEF. We 

hould stress that the values in this table will change, but only 

lightly with high probability, if different realizations of the ran- 

om matrices and/or operations in the CEFs are used. 

Illustrated in Fig. 4 are the “heatmaps” of the absolute values 

f the entries of the sample covariance matrices of SVD-CEF, IoM- 

, DRP and URP, where all parameters are the same as those for 

able 8 . Each of these heatmaps is based on a random realization 

f their embedded pseudorandom transformations. However, the 

verall patterns of the heatmaps in general do not change much 

s these pseudorandom transformations are chosen differently. We 

ee that the output samples of SVD-CEF have virtually zero cor- 

elations, which in fact do not differ much from the sample cor- 

elations of the entries in x . This is because of the unique rela-

ionship between the principal eigenvector u k,x, 1 of M k,x M 

T 
k,x 

and 

he input vector x . We also see that most of the correlations of

oM-2 are also small but not as small as those of SVD-CEF. And 
11 
here are still a lot of scattered “peaks” in the heatmap of IoM-2, 

hich are quite significant. The heatmaps of DRP and URP show 

verwhelmingly large correlation values. For URP, the sample cor- 

elations among samples within each subvector y k are small in the 

rder of 1 √ 

R 
, which is due to unitary transformation. But the cor- 

elation between y k and y l for k � = l is rather large as shown in

his figure, which is because of the linear nature of URP and the 

on-orthogonality among any set of L N-dimensional vectors with 

 > N. For the same reason, RP proposed in [8] also has a very poor

roperty in correlation. 

.3. Invariance 

We show next via simulation that u k,x, 1 for each k is nearly uni- 

ormly distributed on S N−1 (1) when x is uniformly distributed on 

 

N−1 (1) , which implies that y k of SVD-CEF for each k has the same

istribution (i.e., invariant to k ). 

To show that the distribution of u k,x, 1 for each k is nearly uni- 

orm on S N−1 (1) , we show that for any k and any unit-norm vec-

or v , the probability density function (PDF) p k, v (x ) of v T u k,x, 1 sub-

ect to a fixed set of { Q k, 1 , · · · , Q k,N } and a uniform random x on

 

N−1 (1) is nearly the same as the PDF p(x ) of an element in x . The

xpression of p(x ) is derived in (83) in Appendix B . The distance
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Fig. 5. The mean and mean ±deviation of D k, v versus N subject to ηk,x < 2 . 5 . 
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etween p(x ) and p k, v (x ) can be measured by 

 k, v = 

∫ 
p(x ) ln 

p(x ) 

p k, v (x ) 
dx ≥ 0 . (65) 

learly, D k, v changes as k and v change. Shown in Fig. 5 are the

ean and mean ± deviation of D k, v versus N subject to ηk,x < 2 . 5 .

e used 50 × 10 0 0 × 500 realizations of v , x and { Q k, 1 , · · · , Q k,N } .
e see that D k, v becomes very small as N increases beyond 15. 

his means that for a moderate or large N, u k,x, 1 is (at least 

pproximately) uniformly distributed on S N−1 (1) when x is uni- 

ormly distributed on S N−1 (1) . (Without the constraint ηk,x < 2 . 5 ,

 k, v versus N has a similar pattern and is even slightly smaller.) 

n other words, for a moderate or large N, the output sample y k 
f SVD-CEF for each k has a PDF approximately given by (83) in 

ppendix B , which is invariant to k . 

. Further comparison between SVD-CEF and IoM-2 

As discussed earlier, the per (integer) sample complexity of for- 

ard computation of IoM-2 is O(N 

2 ) while the per (real) sample 

omplexity of forward computation of SVD-CEF is O(N 

3 ) . And the 

est known method to attack IoM-2 has the complexity L N,M 

2 N 

ith L N,M 

being a linear function of M and N respectively while the 

est known method to attack SVD-CEF has the complexity P N,M 

2 ζN 

ith ζ > 1 increasing with N and P N,M 

being a polynomial func- 

ion of M and N. Furthermore, SVD-CEF has much smaller output 

orrelations than IoM-2. 

Note that while SVD-CEF is much harder to attack than IoM-2, 

one of the two could be shown yet to be easy to attack (assuming

hat all elements in x have independently random signs from the 

erspective of the attacker). In this regard, both SVD-CEF and IoM- 

 somewhat stand out among all the CEFs considered in this paper. 

We will next compare the noise sensitivities of SVD-CEF and 

oM-2. To do so, we need to quantize the output of SVD-CEF as 

hown below since the output of IoM-2 is always discrete. 

.1. Quantization of SVD-CEF 

Let the k th (real-valued) sample of the output of SVD-CEF at 

lice due to the input vector x be y k , and the k th sample of the

utput of SVD-CEF at Bob due to the input vector x ′ = x + w be y ′ 
k 
.

n the simulation, we will assume that the perturbation vector w 

s white Gaussian, i.e., N (0 , σ 2 
w 

I ) . 

As shown before, the PDF of y k can be approximated by (83) in 

ppendix B , i.e., f y k (y ) = C N (1 − y 2 ) 
N−3 

2 with C N = 

	( N 
2 

) 
√ 

π	( N−1 ) 
and
2 

12 
1 < y < 1 . To quantize y k into b y = log 2 B y bits, Alice first over

uantizes y k into m y = log 2 M y bits with M y = B y L y . Each of

he M y quantization intervals within (−1 , 1) is chosen to have 

he same probability 1 
M y 

. For example, the left-side boundary 

alue t i of the i th interval can be computed (offline) from 

 t i 
−1 

f y k (y ) dy = 

i 
M y 

with i = 0 , 1 , · · · , M y − 1 . A closed form of
 

(1 − y 2 ) 
N−3 

2 dy = 

∫ 
cos N−2 θdθ with y = sin θ is available for effi- 

ient bisection search of t i . Specifically, 
∫ 

cos n θdθ = 

cos n −1 θ sin θ
n + 

n −1 
n 

∫ 
cos n −2 θdθ . 

The additional l y = log 2 L y bits are used to assist the quan- 

ization of y ′ 
k 

at Bob. Specifically, if y k is quantized by Al- 

ce into an integer 0 ≤ i k ≤ M y − 1 , which has the standard bi-

ary form d 1 · · · d b y d b y +1 · · · d m y , then Alice keeps the first b y bits

 1 · · · d b y , corresponding to an integer 0 ≤ m k ≤ B y − 1 , and informs

ob of the last l y bits d b y +1 · · · d m y , corresponding to an inte- 

er 0 ≤ j k ≤ L y − 1 . Then the quantization of y ′ 
k 

by Bob is m 

′ 
k 

=
rg min m =0 , ··· ,B y −1 | y ′ k − j k − mL y | . 

If m k differs from m 

′ 
k 
, it is very likely that m 

′ 
k 

= m k ± 1 . So, Gray

inary code should be used to represent the integers m k and m 

′ 
k 

at 

lice and Bob respectively. If m 

′ 
k 

= m k ± 1 , Gray codes of m k and

 

′ 
k 

only differ from each other by one bit. 

The above quantization scheme is related to those for secret key 

eneration in [15] and [16] . Here, we have a virtually unlimited 

mount of y k and y ′ 
k 

for k ≥ 1 . A limited bit error rate after quan-

ization is not a problem in such applications as biometrics based 

uthentication (where “Alice” corresponds to “registration phase”

nd “Bob” “validation phase”). 

.2. Comparison of Bit Error Rates 

We next compare the bit error rates (BERs) between the quan- 

ized SVD-CEF and IoM-2. For each pair of x and x ′ = x + w , we

ill assume that SVD-CEF and IoM-2 each produces a pair of se- 

uences each of at least L key bits. 

Furthermore, we assume that for each of k = 1 , · · · , K 2 , IoM-

 applies N random permutations to the N × 1 feature vector x 

t Alice to produce v k, 1 , · · · , v k,N respectively, and then computes 

he element-wise products of these vectors to produce h k . The in- 

ex of the largest entry in h k is now denoted by 0 ≤ m k ≤ N − 1 ,

hich corresponds to a string of log 2 N binary bits for Alice. Bob 

onducts the same operations on x ′ = x + w to produce 0 ≤ m 

′ 
k 

≤
 − 1 , which corresponds to a string of log 2 N binary bits for Bob. 

e also apply Gray binary code here for IoM-2, which however 

as little effect on the performance. For each fixed pair of x and 

 

′ , the above process is repeated (with independent sets of per- 

utations) for all k = 1 , · · · , K 2 , which yields a pair of binary se-

uences each of K 2 log 2 N ≥ L key bits. With R random realizations 

f x and x ′ (and the corresponding set of random permutations), 

he above process yields a pair of sequences each of RK 2 log 2 N bits, 

rom which the BER of IoM-2 is computed. Namely, the BER is es- 

imated by 1 
RK 2 log 2 N 

times the number of mismatched bits in the 

wo sequences. 

For each pair of x and x ′ , the quantized SVD-CEF first generates 

 1 , · · · , y K (based on x ) for Alice and y ′ 1 , · · · , y ′ K (based on x ′ = x +
 ) for Bob, which are then quantized into a pair of sequences each 

f Kb y ≥ L key bits where b y is the number of bits per output sample

f SVD-CEF. With R realizations of x and x ′ (and the corresponding 

ealizations of Q k,l for 1 ≤ k ≤ K and 1 ≤ l ≤ N), the quantized SVD- 

EF also yields a pair of sequences each of RKb y bits, from which 

ER is computed. 

We consider two choices of b y , i.e., b y = log 2 N and b y = 1 . The

rst choice means that each output sample of SVD-CEF yields the 

ame number of bits as that of IoM-2. But the second choice yields 

ne bit per output sample of SVD-CEF. By reducing the number of 

its per sample, we can reduce the BER significantly for SVD-CEF. 
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Fig. 6. A BER comparison of quantized SVD-CEF and IoM-2. The vertical line at the end of a curve indicates that the next value is below 10 −6 . 
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he computation cost of the second choice is only increased by a 

actor no more than log 2 N, which is not very significant. With a re- 

uced b y , the quantization complexity is also reduced. This option 

s not available for IoM-2. If we constrain the search of the index- 

f-max among the first L < N elements in h k , it only reduces the

umber of bits per output sample but does not improve the BER 

f IoM-2. This is because all entries in each h k are statistically the 

ame. 

In Fig 6 , we compare the BER performances of the quantized 

VD-CEF and IoM-2, where L key = 128 , K 2 = 

⌈ 
L key 

log 2 N 

⌉ 
, K = 

⌈ 
L key 

b y 

⌉ 
,

 = 50 0 0 , x ∼ N (0 , I N ) , w ∼ N (0 , σ 2 
w 

I N ) and SNR x = 

1 

σ 2 
w 

. In the fig-

re, we considered all combinations of N = 16 vs N = 32 , b y =
og 2 N vs b y = 1 for SVD-CEF, and pruned vs unpruned SVD-CEF. In 

he case of pruning, we used ηk,x < 2 . 5 . We see that IoM-2 is out-

erformed significantly by SVD-CEF with or without pruning for 

oth cases of b y . As expected, using b y = 1 (instead of b y = log 2 N),

VD-CEF has a dramatic (several orders of magnitude) reduction 

f BER. The somewhat irregular pattern of BER vs SNR, when BER 

s very small, is due to the limited number R of runs used in the

imulation. 

. Conclusion 

In this paper, we have presented a systematic development of 

ontinuous encryption functions (CEFs) that transcend the bound- 

ries of wireless network science and biometric data science. The 

evelopment of CEFs is critically important for physical layer en- 

ryption of wireless communications and biometric template secu- 

ity for online Internet applications among others. While the fam- 

ly of CEFs defined in this paper include all prior continuous one- 

ay functions, we proposed a list of criteria for a good CEF de- 

irable in applications, which are the hardness to invert, the hard- 

ess to substitute, the sensitivity to noise, the correlation among 

he output samples and the invariance of the output distributions. 

e showed that the dynamic random projection (DRP) method 

nd the index-of-max hashing algorithm 1 (IoM-1) are not hard 

o invert, the index-of-max hashing algorithm 2 (IoM-2) is not as 

ard to invert as it was thought to be, and the higher-order poly- 

omials (HOP) method is easy to attack via substitution. We also 

howed that DRP and IoM have relatively poor properties in terms 

f their output correlations, and HOP is highly sensitive to noise. 

e have introduced a singular value decomposition (SVD) based 

EF, which is shown empirically to be hard to attack. Our statisti- 

al analyses and simulation results also verified that SVD-CEF has 

elatively good properties in its noise sensitivity, its output corre- 
13 
ation and the invariance of its output distribution. Despite their 

ower complexity in forward computation, none of the prior con- 

inuous one-way functions reviewed in this paper is able to com- 

ete against SVD-CEF favorably under the five criteria proposed in 

his paper. However, if there is already a strong secret key, the uni- 

ary random projection (URP) discussed in this paper should be the 

rst to consider in applications. 

During the review of this paper, speculation of alternative ap- 

roaches such as (higher-order) tensors and chaos systems was 

aised. It is unknown right now whether these or other approaches 

ould lead to a better CEF than SVD-CEF. The hardness to invert or 

ubstitute is only part of the requirements for a good CEF. 
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ppendix A. Attack of SVD-CEF via EVD Equilibrium in X 

We show next the details of an attack algorithm based on (51) . 

imilar attack algorithms developed from (50) and (52) are omit- 

ed. An earlier result was also reported in [2] . 

It is easy to verify that X = αI N + (1 − α) xx T with any −∞ <

< ∞ is a solution to the following 

 

N ∑ 

l=1 

Q k,l XQ 

T 
k,l ) u k,x, 1 = c k,x, 1 u k,x, 1 (66) 

here c k,x, 1 = α + (1 − α) σ 2 
k,x, 1 

. The expression (66) is more pre- 

ise and more revealing than (51) for the desired unknown matrix 

 . 

To ensure that u k,x, 1 from (66) is unique, it is sufficient and nec- 

ssary to find a X with the above structure and 1 − α � = 0 . To en-

ure 1 − α � = 0 , we assume that x 1 x 2 � = 0 where x 1 and x 2 are the

rst two elements of x . Then we add the following constraint: 

X ) 1 , 2 = (X ) 2 , 1 = 1 . (67) 

hich is in addition to the previous condition T r(X ) = 1 . Now for

he expected solution structure X = αI N + (1 − α) xx T , we have 1 −
= 

1 
x 1 x 2 

� = 0 . 
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Note that c k,x, 1 in (66) is either the largest or the smallest 

igenvalue of 
∑ N 

l=1 Q k,l XQ 

T 
k,l 

corresponding to whether 1 − α is 

ositive or negative. 

To develop the Newton’s algorithm, we now take the differenti- 

tion of (66) to yield 

 

N ∑ 

l=1 

Q k,l ∂XQ 

T 
k,l 

) 

u k,x, 1 + 

( 

N ∑ 

l=1 

Q k,l XQ 

T 
k,l 

) 

∂u k,x, 1 

= ∂c k u k,x, 1 + c k ∂u k,x, 1 (68) 

here we have used u k,x, 1 = u k,x, 1 and c k = c k,x, 1 for convenience. 

he first term is equivalent to ˜ Q k ∂ ̃  x with 

˜ Q k = ( 
∑ N 

l=1 u 

T 
k,x, 1 

Q k,l �

 k,l ) and ˜ x = v ec(X ) . (For basics of matrix differentiation, see [20] .)

Since X = X 

T , there are repeated entries in ˜ x . We can write ˜ x =
 ̃ x T 1 , · · · , ̃  x T N ] 

T with ˜ x n = [ ̃ x n, 1 , · · · , ̃  x n,N ] 
T and ˜ x i, j = ˜ x j,i for all i � = j.

et ˆ x be the vectorized form of the lower triangular part of X . Then

t follows that 

˜ 
 k ∂ ̃  x = 

ˆ Q k ∂ ̂  x (69) 

here ˆ Q k is a compressed form of ˜ Q k as follows. Let ˜ Q k = 

 ̃

 Q k, 1 , · · · , ̃  Q k,N ] with 

˜ Q k,n = [ ̃  q k,n, 1 , · · · , ̃  q k,n,N ] . For all 1 ≤ i < j ≤ N,

eplace ˜ q k,i, j by ˜ q k,i, j + ̃  q k, j,i , and then drop ˜ q k, j,i . The resulting ma- 

rix is ˆ Q k . 

The differential of T r(X ) = 1 is T r(∂X ) = 0 or equivalently

 

T ∂ ̂  x = 0 where t T = [ t T 
1 
, · · · , t T 

N 
] and t T n = [1 , 0 1 ×(N−n ) ] 

T . 

Combining the above for all k along with u 

T 
k,x, 1 

∂u k,x, 1 = 0 (due 

o the norm constraint ‖ u k,x, 1 ‖ 2 = 1 ) for all k , we have 

 x ∂ ̂  x + A u ∂u + A z ∂z = 0 (70) 

here 

 x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

t T 

ˆ Q 1 

· · ·
ˆ Q K 

0 K× 1 
2 N (N +1) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(71) 

 u = 

[ 

0 1 ×NK 

diag(G 1 ,x , · · · , G K,x ) 
diag(u 

T 
1 , · · · , u 

T 
K ) 

] 

, (72) 

 z = 

[ 

0 1 ×K 

−diag(u 1 , · · · , u K ) 
0 K×K 

] 

(73) 

ith G k,x = M k,x M 

T 
k,x 

− c k I M 

. 

Now we partition u into two parts: u a (known) and u b (un- 

nown). Also partition A u into A u,a and A u,b such that A u ∂u = 

 u,a ∂ u a + A u,b ∂ u b . Since (X ) 1 , 2 = (X ) 2 , 1 = 1 , we also let ˆ x 0 be ˆ x

ith its second element removed, and A x, 0 be A x with its second 

olumn removed. It follows from (70) that 

 ∂a + B ∂b = 0 (74) 

here a = u a , b = [ ̂ x T 0 , u 

T 
b 
, z T ] T , A = A u,a , B = [ A x, 0 , A u,b , A z ] . 

Based on (74) , the Newton’s algorithm is 

ˆ x 

(i +1) 
0 

]
= 

[
ˆ x 

(i ) 
0 

]
− η(B 

T B ) −1 B 

T A (u a − u 

(i ) 
a ) (75) 

here the terms associated with ∗ are not needed, u 

(i ) 
a is the i th- 

tep “estimate” of the known vector u a (through forward compu- 

ation) based on the i -step estimate ˆ x (i ) 
0 

of the unknown vector ˆ x 0 . 

his algorithm requires N yK ≥ 1 
2 N (N + 1) − 1 in order for B to have

ull column rank. 

For a random initialization around X , we can let X 

′ = (1 −
) X + βW where W is a symmetric random matrix with T r(W ) =
 . Furthermore, (W ) 1 , 2 = (W ) 2 , 1 is such that (X 

′ ) 1 , 2 = (X 

′ ) 2 , 1 = 1 .
14 
eep in mind that at every step of iteration, we keep (X 

(i ) ) 1 , 2 =
X 

(i ) ) 2 , 1 = 1 . 

Upon convergence of X , we can also update x as follows. Let 

he eigenvalue decomposition of X be X = 

∑ N 
i =1 λi e i e 

T 
i 

where λ1 > 

2 > · · · > λN . Then the update of x is given by e 1 if 1 − α > 0 or

y e N if 1 − α < 0 . With each renewed x , there are a renewed α
nd hence a renewed X (i.e., by setting X = αI + (1 − α) xx T with

 − α = 

1 
x 1 x 2 

). Using the new X as the initialization, we can con- 

inue the search using (75) . 

The performance of the algorithm (75) is discussed in 

ection 5.2 . 

ppendix B. Distributions of Elements of a Uniformly Random 

ector on Sphere 

Let x be uniformly random on S n −1 (r) . This vector can be pa-

ameterized as follows: 

x 1 = r cos θ1 

x 2 = r sin θ1 cos θ2 

· · ·
 n −1 = r sin θ1 · · · sin θn −2 cos θn −1 

x n = r sin θ1 · · · sin θn −2 sin θn −1 

here 0 < θi ≤ π for i = 1 , · · · , n − 2 , and 0 < θn −1 ≤ 2 π . Accord-

ng to Theorem 2.1.3 in [22] , the differential of the surface area on 

 

n −1 (r) is 

S n −1 (r) = r n −1 sin 

n −2 θ1 sin 

n −3 θ2 · · · sin θn −2 d θ1 · · · d θn −1 (76) 

e know that 
∫ 
S n −1 (r) dS n −1 (r) = |S n −1 (r) | = 

2 πn/ 2 

	( n 
2 
) 

r n −1 . Hence, the

DF of x is 

f x (x ) = 

1 

|S n −1 (r) | . (77) 

0.1. Distribution of one element in x 

We can rewrite 
∫ 
S n −1 (r) f x (x ) dS n −1 (r) = 1 as 

 

θ1 

[∫ 
S n −2 (r sin θ1 ) 

f x (x ) rdS n −2 (r sin θ1 ) 

]
dθ1 = 1 (78) 

r equivalently 

 

θ1 

[ |S n −2 (r sin θ1 ) | 
|S n −1 (r) | r 

]
dθ1 = 1 . (79) 

ence the PDF of θ1 is 

f θ1 
(θ1 ) = 

|S n −2 (r sin θ1 ) | 
|S n −1 (r) | r. (80) 

o find the PDF of x 1 = r cos θ1 , we have 

f x 1 (x 1 ) = f θ, 1 (θ1 ) 
1 ∣∣ dx 1 

dθ1 

∣∣ = 

f θ, 1 (θ1 ) 

| r sin θ1 | (81) 

here r sin θ1 = 

√ 

r 2 − x 2 
1 
. Therefore, combining all the previous re- 

ults yields 

f x 1 (x 1 ) = 

	( n 
2 
) √ 

π	( n −1 
2 

) 

(r 2 − x 2 1 ) 
n −3 

2 

r n −2 
(82) 

here −r ≤ x 1 ≤ r. 

If r = 1 , we have 

f x 1 (x 1 ) = 

	( n 
2 
) √ 

π	( n −1 
2 

) 
(1 − x 2 1 ) 

n −3 
2 (83) 

here −1 ≤ x ≤ 1 . This is the PDF p(x ) in Section 6.3 . 
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Due to symmetry, we know that x i for any i has the same PDF

s x 1 . Also note that if n = 3 , f x 1 (x ) is a uniform distribution. 
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