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Abstract—This paper presents a generalized channel probing
(GCP) method and a generalized pre-processing (GPP) method
as two consecutive frontend steps for secret key generation
from a MIMO channel between two multi-antenna legitimate
nodes against a multi-antenna eavesdropper (Eve). The degree
of freedom (DoF) of the secret key capacity (SKC) of GCP/GPP
are highlighted and discussed. If the number of antennas on Eve
is larger than or equal to the larger number of the antennas on
the two legitimate nodes, the SKC-DoF of GCP/GPP within each
coherence period equals its minimum, which is either zero for
non-reciprocal channel or the product of the numbers of antennas
on the two legitimate nodes for reciprocal channel. Otherwise,
the SKC-DoF of GCP/GPP increases with the number of random
transmissions in GCP within each coherence period regardless
of the channel reciprocity. A computational algorithm required
for GPP is also discussed, and its performance illustrated via
simulations.

Index Terms—Secret key generation, secret key capacity, de-
gree of freedom, channel probing, pre-processing.

I. INTRODUCTION

Future networks such as Internet-of-Things will continue to
increase its massive scale involving many billions of nodes.
There will be increased levels of challenges for security
problems including authenticity, confidentiality and integrity.
All these security problems can be alleviated if there is a strong
secret key between each pair of legitimate nodes (Alice and
Bob). This paper addresses how to generate a secret key from
a MIMO channel between Alice and Bob.

There have been many prior works on secret key generation
(SKG) from wireless channels such as [1] and [2]. The basic
concept behind these works is that if a wireless channel
(including all relevant transceivers) between Alice and Bob
is reciprocal then Alice and Bob can each send a public
pilot so that they can each obtain a consistent estimate of
the reciprocal channel gain. With the consistent estimates that
are highly correlated with each other, they can perform quan-
tization, information reconciliation and privacy amplification
to generate a final secret key. But the degree of freedom (DoF)
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of the secret key capacity (SKC) of such a method for a
nA × nB MIMO channel can be shown to be nAnB (in bits
per doubling of power per coherence time and band) as long
as the eavesdropper (Eve) in the neighborhood has at least one
antenna. This means that the maximum achievable secret key
rate of such a method in bits per coherence period is always
fixed for a given power regardless of coherence bandwidth and
duration.

Recently there have been attempts such as [3] and [4] to
increase the secret key rate in bits per second per subchannel
beyond the constraint imposed by coherence time. In [3], the
authors considered a SISO channel between Alice and Bob,
and proposed that Alice and Bob each transmits a sequence of
random pilots in hope that the secret key rate would increase
with the length of the two random sequences. But we can
show that the SKC-DoF of their scheme is only one as long
as Eve is present. In [4], the authors considered a nA × 1
MISO channel from Alice to Bob, and proposed that Alice
transmits a sequence of random symbols per subchannel via
a randomly chosen antenna while Bob sends a public pilot in
return. They also proposed that within each coherence period,
Alice and Bob repeat the above transmissions multiple times
(more than nA times) each via a randomly chosen antenna at
Alice. We can also show that the SKC-DoF of the scheme
in [4] is only nA (invariant to the lengths of the transmitted
random sequences) even if Eve has just a single antenna.

In this paper, we look deeper into the frontend of the entire
process of SKG. We will focus on the frontend steps of SKG,
i.e., channel probing and pre-processing, as shown in Fig. 1,
which is in great contrast to the conventional framework such
as in [5] and [11] where channel probing and pre-processing
have not received sufficient attention. More specifically, we
consider a single-subcarrier (with no loss of generality for
applications in orthogonal frequency division multiplexing
systems) nA × nB MIMO channel from Alice to Bob in the
presence of an eavesdropper (Eve) with nE antennas. We first
present a generalized channel probing (GCP) method where
Alice and Bob each transmits a sequence of random vectors
within each coherence period. We will show that under a
Gaussian assumption of all the random vectors and channel
parameters, the SKC-DoF of the GCP method increases with
the number of transmitted random vectors from Alice if



Fig. 1. An enhanced framework for SKG where channel probing and pre-
processing as two frontend steps are stressed. The dashed lines generally leak
information to Eve

nA > nE and/or increases with the number of transmitted
random vectors from Bob if nB > nE . If nE ≥ max(nA, nB),
the SKC-DoF of GCP equals its minimum nAnBδ where
δ = 1 if the MIMO channel is reciprocal and δ = 0 if the
MIMO channel is not reciprocal.

It is useful to compare the above result with the DoF of
the secrecy capacity of directly transmitting a secret over a
nA×nB MIMO channel. The latter as shown in [7] is zero if
nE ≥ min(nA, nB). This highlights a significant difference
between “secret key capacity” and “secrecy capacity” for
MIMO channels. It is important to stress that secret key
capacity is achieved with additional public communication,
e.g., see [13] and [14].

In this paper, we will also present a generalized pre-
processing (GPP) method that allows Alice and Bob to gen-
erate a pair of highly correlated secret vectors that are ready
to be quantized, which is then followed by information rec-
onciliation and privacy amplification to produce a final secret
key. Furthermore, we show that the GPP method preserves the
SKC-DoF. In other words, the public communications used for
GPP does not change the SKC-DoF.

Unlike all prior methods for SKG that depend on the
availability of channel reciprocity even if Eve has just a single
antenna, the methods shown in this paper can still yield a high
secret key rate from a non-reciprocal channel provided that
Alice or Bob has (or both have) more antennas than Eve.

In the rest of this paper, we will provide more details of the
GCP and GPP methods. Further details other than simulation
results can be found in [16].

II. GENERALIZED CHANNEL PROBING

We consider a flat-fading or single-subcarrier MIMO chan-
nel between Alice and Bob in the presence of Eve, They
have nA, nB and nE antennas respectively. To extract a
secret key from the MIMO channel, we consider the chan-
nel probing method where Alice transmits a random matrix
XA = [xA,1, · · · ,xA,mA

] using nA antennas and mA ≥ nA

time slots, and then Bob transmits another random matrix

XB = [xB,1, · · · ,xB,mB
] using nB antennas and mB ≥ nB

time slots. Alice does not know XB , and Bob does not know
XA. (This channel probing method is a generalization of that
using random pilots as proposed in [3] and [6] for SISO
channel.) Consequently, the signals received by Alice and Bob
can be written as

YA = HA,BXB +WA, (1)

YB = HB,AXA +WB . (2)

Here HA,B is the channel matrix from Bob to Alice, HB,A

is the channel matrix from Alice to Bob, and WA and WB

are the noise matrices. Correspondingly, the signals received
by Eve are

YE,A = GAXA +WE,A, (3)

YE,B = GBXB +WE,B (4)

where the notations are defined in an obvious way. At the con-
clusion of the channel probing, the complete data sets available
at Alice, Bob and Eve are respectively X = {XA,YA},
Y = {XB ,YB} and Z = {YE,A,YE,B}.

The capacity CS of the secret key, in bits per independent
realization of {X ,Y,Z}, that Alice and Bob can generate is
known to be bounded as follows:

Lemma 1: CL
.
= max(CA, CB) ≤ CS ≤ min(C0, CZ) ≤

CZ
.
= CU with C0 = I(X ;Y), CZ = I(X ;Y|Z), CA =

C0 − I(X ;Z) and CB = C0 − I(Y;Z).
This lemma follows from the results shown in [13] and [14]

for discrete {X ,Y,Z}, and hence follows from the generalized
definition of mutual information shown in [15] for continuous
{X ,Y,Z}.

To analyse CS , we assume the following. All entries in
XA and XB are independent and identically distributed (i.i.d.)
circular complex Gaussian random variables with zero mean
and variance P , i.e., with the probability density function
(PDF) CN (0, P ). All entries in WA, WB , WE,A and WE,B

are i.i.d. CN (0, 1). All entries in GA and GB are i.i.d.
CN (0, 1). All entries in each of HA,B and HB,A are i.i.d.
CN (0, 1). But vec(HA,B) and vec(HT

B,A) are jointly Gaus-
sian with the correlation matrix ρInAnB

. If |ρ| = 1, the channel
between Alice and Bob is said to be (perfectly) reciprocal. If
|ρ| < 1, the channel is said to be not reciprocal. Unless already
mentioned otherwise, the above matrices are independent of
each other.

With the above assumptions, a complete characterization of
CL and CU seems hard. It seems still hard to just find an
expression useful for numerical computation of CL and CU .
Part of the reason seems to be the difficulty to obtain the PDF
of such terms like HA,BXB where both matrices are Gaussian.

To void the above mentioned difficulty, we will only con-
sider the DoF of CL and CU . Note that if a function f(P )
can be written as f(P ) ≈ d log2 P + c as P → ∞ where d
and c are invariant to P , then d is said to be the DoF of f(P )
(relative to log2 P ).

The following is proven in [16]:



Theorem 1: DoF (CL) = DoF (CS) = DoF (CU ) =
DoF (CZ) with

DoF (CS) = aA,B + aB,A + bA,B + bB,A

− 2nAnB + nAnBδ|ρ|−1 (5)

where aA,B = min(nB , (nA − nE)
+)mA, bA,B =

min(nB , (nB + nE − nA)
+)nA, δ|ρ|−1 = 0 if |ρ| < 1, and

δ|ρ|−1 = 1 if |ρ| = 1. Furthermore, DoF (CB) = DoF (CS)
if nA ≥ nB , and DoF (CA) = DoF (CS) if nA ≤ nB .

This theorem can be simplified in the following cases of
nE :

1) For nE ≥ max(nA, nB),

DoF (CS) = nAnBδ|ρ|−1 (6)

which is zero if |ρ| < 1, or nAnB if |ρ| = 1. In [3], the
case of nA = nB = 1 was considered. The above result
shows that their channel probing scheme with mA ≥ 1
and/or mB ≥ 1 has the same DoF (which is one) as
using mA = mB = 1.

2) For nB ≤ nE < nA,

DoF (CS) = min(nB , (nA − nE)
+)mA

+ (nB + nE − nA)
+nA − nAnB + nAnBδ|ρ|−1 (7)

which increases as mA (≥ nA) increases, but is invariant
to mB (≥ nB). Also in this case, the channel reciprocity
is not very crucial for a large DoF. The above result is
very useful for the situation where a base station with a
large number of antennas is used to establish a secret key
with a mobile node with a small number of antennas.
Note that the scheme in [4] for the case of nA > nB = 1
has its SKC-DoF equal to nA as long as nE ≥ 1. In
other words, the SKC-DoF of the scheme in [4] does
not benefit from the situation where nE < nA.

3) For nE < nB ≤ nA,

DoF (CS) = min(nB , (nA − nE)
+)mA

+min(nA, (nB − nE)
+)mB + nAnBδ|ρ|−1 (8)

which increases as either mA or mB increases. The first
term corresponds to the transmission from Alice to Bob
while the second term corresponds to the transmission
from Bob to Alice.

A. Comparison to Wiretap Channel Model

Theorem 1 is based on what is called source model
for physical layer security [14]. In [7], a MIMO wiretap-
channel (WTC) model is considered where secret information
is directly transmitted over the channel without additional
public communications. Using the notations defined in this
paper, the main conclusion from [7] is that the DoF of the
secrecy capacity CS,WTC (also called secure DoF) for direct
transmission over the nA × nB MIMO channel against Eve
with nE antennas in bits per channel coherent period of total
T sampling intervals is

DoF (CS,WTC) = (min(nA, nB)− nE)
+(T −min(nA, nB))

(9)

provided T ≥ 2min(nA, nB). We see that DoF (CS,WTC)
does not benefit from a possible reciprocity of the channel,
and DoF (CS,WTC) vanishes as soon as nE ≥ min(nA, nB)
(as opposed to nE ≥ max(nA, nB)). Unlike DoF (CS,WTC),
DoF (CS) = nAnB if nE ≥ max(nA, nB) and |ρ| = 1, and
DoF (CS) increases with mA for nB ≤ nE < nA as shown
in (7). Furthermore, for the case of nE < min(nA, nB), we
can let nA ≥ nB and T = mA + mB , and then it follows
from (8) and (9) that

DoF (CS)−DoF (CS,WTC)

= (min[nB , (nA − nE)]− (nB − nE))mA

+ (nB − nE)nB + nAnBδ|ρ|−1. (10)

This difference DoF (CS)−DoF (CS,WTC) is strictly positive
and also increases with mA subject to nA > nB .

III. GENERALIZED PRE-PROCESSING

Given X and Y at Alice and Bob respectively, they now
need to produce a pair of highly correlated secret vectors vA

and vB . Assuming nA ≥ nB , we consider the following pre-
processing method. Let Bob generate an nB×(mA+mB−nB)
random matrix U = [U0,U1,U2] where U0, U1 and U2

have nB , mA−nB and mB−nB columns respectively. Then,
Bob uses another channel to transmit the following matrices
to Alice:

X′
B = XB + [U0,U2], (11)

Y′
B = YB + [U0,U1]. (12)

We will assume that the second channel is public and hence
both Alice and Eve receive X′

B and Y′
B . Since Bob knows U,

if Alice can obtain a good estimate Û of U, then Alice and
Bob would have a pair of highly correlated secret vectors, i.e.,
vA = vec(Û) and vB = vec(U). These two vectors can be
further processed by quantization using such methods as the
coset based method, [8], the guard-band based method [2] and
the continuous encryption based method [9], [10]. The two bit
streams at Alice and Bob after the quantization can be further
processed by methods such as in [11] and [12] for information
reconciliation and privacy amplification to produce the final
secret key.

Let X ′ = {X ,X′
B ,Y

′
B}, Y ′ = {Y,U} and Z ′ =

{Z,X′
B ,Y

′
B}. Assume that all entries in U are i.i.d.

CN (0, P ). The following is proved in [16]:
Theorem 2: If |ρ| = 1 and nA ≥ nB , the secret key capacity

C ′
S based on {X ′,Y ′,Z ′} has the same DoF as CS based on

{X ,Y,Z}, i.e.,

DoF (C ′
S) = DoF (CS). (13)

This theorem says that the leakage to Eve due to {X′
B ,Y

′
B}

does not change the DoF of the secret key capacity from
that given by (5). This generalized pre-processing method
is inspired by a conceptual approach shown in section 4.2.1
in [14] where Bob transmits publicly the modulo sum of a
uniform random variable U and a discrete Y (both belonging
to a common finite set). By doing so, the lower bound CB



on CS is achieved. But an application of that approach for
{X ,Y,Z} obtained via the generalized channel probing would
require a specific coding scheme, which is not yet available.

Furthermore, if the MIMO channel is not reciprocal, i.e.,
|ρ| < 1, the following Corollary is proved in [16]:

Corollary 1: If |ρ| < 1 and nA ≥ nB , and we let U0 and
the first nA − nB columns of U1 be public, then the secret
key capacity C ′

S based on {X ′,Y ′,Z ′} has the same DoF as
CS based on {X ,Y,Z}, i.e., DoF (C ′

S) = DoF (CS).
It is important to notice that without the reciprocity of

the MIMO channel, DoS(CS) does not vanish unless nE ≥
max(nA, nB). See the discussion of Theorem 1.

IV. ESTIMATION OF SECRET VECTOR AT ALICE

Assuming nA ≥ nB , the implementation of the GPP method
requires Alice to obtain a good estimate of U from her
knowledge of X ′ = {XA,YA,X

′
B ,Y

′
B}. We will consider

separately the cases of reciprocal channel and non-reciprocal
channel.

A. The case of |ρ| = 1

For the reciprocal channel case, the key equations that Alice
needs to exploit are

YA = H(X′
B − [U0,U2]) +WA, (14)

Y′
B = HTXA + [U0,U1] +WB , (15)

where the unknowns are H and U = [U0,U1,U2]. Also
notice that (14) is nonlinear.

To show more insights into (14) and (15), we let YA =
[YA,α,YA,β ] with YA,α consisting of the first nB columns
of YA and YA,β consisting of all other columns of YA. We
will use the subscripts α and β to indicate the same partitions
for all relevant matrices. Then we know

YA,α = H[X′
B,α −U0] +WA,α, (16)

YA,β = H[X′
B,β −U2] +WA,β , (17)

Y′
B,α = HTXA,α +U0 +WB,α, (18)

Y′
B,β = HTXA,β +U1 +WB,β . (19)

If Ĥ is given, then the least-square (LS) estimates of U0,
U1 and U2 are as follows:

Û0 = (ĤHĤ+ InB
)−1(−ĤH∆YA,α +∆Y′

B,α), (20)

Û1 = Y′
B,β − ĤTXA,β , (21)

Û2 = −(ĤHĤ)−1ĤH∆YA,β , (22)

with ∆YA,α = YA,α−ĤX′
B,α, ∆Y′

B,α = Y′
B,α−ĤTXA,α

and ∆YA,β = YA,β − ĤX′
B,β . Note that (20) is the LS

solution of U0 to (16) and (18), or equivalently,

Û0 = argmin
U0

J0 (23)

with

J0 =

∥∥∥∥[ ∆YA,α

∆Y′
B,α

]
−
[

−Ĥ
InB

]
U0

∥∥∥∥2
F

. (24)

Here ∥M∥2F
.
= Tr(MMH) for any matrix M. We will also

write J0 = ∥Y0 − H0U0∥2F with Y0 and H0 defined in an
obvious way.

If Û0 is a consistent estimate of U0, then a consistent
estimate of H follows from (16), i.e.,

Ĥ = YA,α[X
′
B,α − Û0]

−1 (25)

which then leads to consistent estimates of U1 and U2 via
(21) and (22).

To find a consistent estimate Û0, we can use (25) in (18),
which yields

(X′
B,α − Û0)

T (Y′
B,α − Û0) = YT

A,αXA,α. (26)

This is an nB ×nB quadratic matrix equation of the nB ×nB

unknown matrix Û0, which in general have multiple (but no
more than 2n

2
B ) solutions. One of the solutions in the absence

of noise is the desired solution U0.
Every solution to (26) can be written as Û0 = U0 −

∆Û0. Then (26) implies (XB,α +∆Û0)
T (YB,α +∆Û0) =

YT
A,αXA,α. Clearly, every nonzero ∆Û0 in the absence of

noise is independent of U0. For example, if nB = 1, then
∆Û0 = −XB,α−YB,α. Furthermore, one can verify that the
corresponding estimates of U1 and U2 from (21) and (22) can
be also written as Û1 = U1 − ∆Û1 and Û2 = U2 − ∆Û2

where ∆Û1 and ∆Û2 in the absence of noise are also
independent of U. Therefore, among all solutions to (26) in
the absence of noise, the desired solution has the minimum
variance. Provided that the number nU = nB(mA+mB−nB)
of entries in U is large, the desired solution to (26) can be
detected by choosing the one corresponding to the smallest

1
PnU

∥Û∥2F which approaches to one for large nU .
To show an algorithm to solve (26), we can write T1 =

X′
B,α− Û0 and T2 = Y′

B,α− Û0. Then (26) is equivalent to{
TT

1 T2 = Z,
T1 −T2 = Y.

(27)

with Y = X′
B,α −Y′

B,α and Z = YT
A,αXA,α = XT

B,αYB,α.
For a random initial guess Û

(0)
0 of U0, let T(0)

1 = X′
B,α −

Û
(0)
0 . Then for each T

(i)
1 with i ≥ 0, we first compute{
T

(i)′

2 = T
(i)
1

−T
Z,

T
(i)′′

2 = T
(i)
1 −Y,

(28)

which are two possible solutions of T2 based on the two equa-
tions in (27). We then update the estimate of T2 by taking the
average: T(i)

2 = 1
2 (T

(i)′

2 +T
(i)′′

2 ). With the updated T2, we can
renew T1 in two different ways, i.e., via the nonlinear equation
in (28) or the linear equation in (28). (These two choices often
lead to two different solutions upon convergence.) We repeat
the above process until ∥T(i)′

2 − T
(i)′′

2 ∥ is sufficiently small.
Upon convergence, an estimate of U0 is Û0 = X′

B,α − T̂1.
After a good initial estimate of H is found, the maximum

likelihood (ML) estimates of all unknowns (i.e., H, U0, U1



and U2) can be found by minimizing the following cost
function:

J = ∥YA −H(X′
B − [U0,U2])∥2F

+ ∥Y′
B −HTXA − [U0,U1]∥2F . (29)

A gradient method for updating the estimate of H is

Ĥ(k+1) = Ĥ(k) − η
∂J

∂H

∣∣∣∣
k

(30)

where k denotes the k-th iteration, and η is a step size which
can be optimized by backtracking such as Armijo’s algorithm.
Furthermore, one can verify from (29) that

∂J

∂H
= −2(YA −H(X′

B − [U0,U2]))(X
′
B − [U0,U2])

H

− 2[(Y′
B −HTXA − [U0,U1])X

H
A ]T (31)

where H, U0, U1 and U2 need to be replaced by their best
estimates at every iteration.

B. The case of |ρ| < 1

For this non-reciprocal channel case, we will treat HA,B

and HB,A as two independent matrices. Also note that in this
case, U0 and the first nA − nB columns of U1 are public.

Alice can now compute an initial consistent estimate of
HA,B based on (16) as follows:

ĤA,B = YA,α(X
′
B,α −U0)

−1. (32)

With any ĤA,B , the ML estimate of U2 is the LS solution of
(17), i.e.,

Û2 = X′
B,β − (ĤH

A,BĤA,B)
−1ĤH

A,BYA,β . (33)

The ML estimate of HA,B (and hence U2) can be found by
a gradient search of the LS solution of (16) and (17) with
H = HA,B , i.e.,

ĤA,B,k+1 = ĤA,B,k − η
∂J1

∂HA,B

∣∣∣∣
k

(34)

where J1 is the first term in (29), and ∂J1

∂HA,B
is the first term

in (31) with H = HA,B . For ML estimation of HB,A and
the unknowns in U1, let Y′

B,γ and XA,γ be each the first
nA columns of Y′

B and XA respectively, Uγ be the first nA

columns of [U0,U1], and Uτ , Y′
B,τ and XA,τ be each the last

mA−nA columns of U1, Y′
B and XA respectively. Then the

ML estimates of HB,A and Uτ are given by the LS solution
to (18) and (19) with HT = HB,A, i.e.,

[ĤB,A, Ûτ ] = [T1,Y
′
B,τ ]

[
XAX

H
A XA,τ

XH
A,τ ImA−nA

]−1

(35)

with T1 = (Y′
B,γ −Uγ)X

H
A,γ +Y′

B,τX
H
A,τ .

Note that unlike the case where a reciprocal channel is fully
exploited, the complexity of the above method is much lower.
Furthermore, if we know that nA > nE ≥ nB , then the
optimal choice of mB in terms of SKC-DoF can be chosen to
be nB . In this case, U2 is empty, and the estimation of HA,B

is no longer needed. In other words, if mB = nB , Alice only

needs the optimal estimate of the nB× (mA−nA) matrix Uτ

as given in (35), which can be further written (using block
matrix inversion) as

Ûτ = T1T2 +Y′
B,τT3 (36)

with T2 = −(XA,γX
H
A,γ)

−1XA,τ and T3 = ImA−nA
+

XH
A,τ (XA,γX

H
A,γ)

−1XA,τ . Alice and Bob can then use the
pair of secret vectors vec(Ûτ ) and vec(Uτ ), respectively, to
generate the final secret key.

V. SIMULATION

For simulation, we will normalize all signals such that the
entries of U, XA and XB all have the unit variance while the
entries of WA and WB all have the variance equal to 1

P .

A. The case of |ρ| = 1

For the reciprocal channel case, we considered nA = 8,
nB = 2, mA = 128 and mB = 4. The algorithm for this case
relies on an initial estimate of U0 from multiple solutions
to (26). For nB = 2, our proposed algorithm based on (27)
can yield up to four solutions for Û0. Recall that for each
Û0, there are corresponding Û1 and Û2 from (21) and (22).
Among the multiple choices of Û = [Û0, Û1, Û2], we will
pick the one which has the smallest value of ∥Û∥2F . This is the
initial estimate of U before the use of gradient search shown
in (30). An improved estimate of U follows after the gradient
search.

We have run the above algorithm for each of 1000 inde-
pendent realizations of U, XA, XB , H, WA and WB at
different values of SNR(dB) .

= 10 log10 P . Figs. 2, 3 and 4
show the distributions of the element-wise squared errors (in
log scale) of the entries in Û0, Û1 and Û2 respectively. As
expected, the gradient search reduces the error distributions.
The MSE values are heavily influenced by the larger errors.
We also see that the median errors on Û0, Û1 and Û2 are
somewhat different.

Fig. 2. Distributions (“violin” plots) of squared estimation errors in the
elements of Û0. The lightly shaded curves facing the left and the heavily
shaded curves facing the right are histograms.

Furthermore, we see that the errors in the “upper tails”
shown in Figs. 2, 3 and 4 are relatively large although they
represent a small percentage. These large errors are mostly
due to the situations where a desired solution to (26) was
not obtained by the algorithm based on (27) subject to a
given number (chosen up to 5 in simulation) of random



Fig. 3. Distributions of squared estimation errors in the elements of Û1.

Fig. 4. Distributions of squared estimation errors in the elements of Û2.

initializations of Û0. In order to show the performances that
are not overly impacted by such situations, we also considered
a thresholding that only accepted the initial estimates of U
which satisfy 1

nU
∥Û∥2F < 1.5. Note that in the absence

of noise, limnU→∞
1
nU

∥U∥2F = 1. The percentages of the
accepted realizations is shown in Fig. 5. An effect of the
thresholding on the estimated U1 (for example) can be seen
by comparing Fig. 6 with Fig. 3.

B. For the case of |ρ| < 1

In this case, we also considered nA = 8, nB = 2, mA =
128 and mB = 4, and chose independent HA,B and HB,A.
The performance of the algorithm (36) is illustrated in Fig. 7

Fig. 5. Percentages of accepted realizations after thresholding.
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