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An L-Shaped Array for Estimating 2-D
Directions of Wave Arrival

Yingbo Hua, Member, IEEE, Tapan K. Sarkar, Senior Member, IEEE, and
Donald D. Weiner, Member, IEEE

Abstract—For the estimation of two-dimensional (2-D) directions of
plane wave arrival, an L-shaped array of sensors has 37% better
accuracy potential than the conventional cross array. Computationally
efficient maximum likelihood algorithm for the L-shaped array is avail-
able to achieve its full potential.

1. INTRODUCTION

NIFORM linear arrays (ULA’s) for estimation of wave

arrival have been studied extensively [1]-[3]. It is under-
stood that the ULA can provide only the one-dimensional (1-D)
information of wave arrival. For two-dimensional (2-D) wave
arrival information, a 2-D array of sensors is needed. A conven-
tional 2-D array is the cross array, which consists of two ULA’s
connected orthogonally at the middle of each array. The cross
array is important because of its simple structure so that the
computationally efficient maximum likelihood (ML) algorithm
[2], [3] can be designed to achieve its full potential. (Note that
the Cramer-Rao bound (CRB) of the cross array can be shown
to be the same as the CRB of each ULA in the cross array so
that the ML algorithm for the ULA is also optimum for the cross
array.) On the other hand, another conventional array called
circular array has a much more complicated structure so that
there is no efficient ML algorithm available for multiple wave
direction finding. In this paper, we present another simple
structured 2-D array, called the L-shaped array. The L-shaped
array consists of two ULA’s connected orthogonally at the one
end of each ULA.

In Section II, we show that the Cramer-Rao bounds (CRB’s)
of the estimated wave directions based on the L-shaped array are
about 37% smaller than those for the cross array. CRB indicates
the accuracy potential because it is the (reachable) lower bound
on variance of any unbiased estimate [4].

In Section III, an efficient ML algorithm is developed utilizing
the ULA structure inherent in the L-shaped array.

II. L-SHAPED ARRAY

To appreciate the accuracy potential and the unique structure
of the L-shaped array for estimation of 2-D wave arrival, we
compare it with several other 2-D arrays as shown in Fig. 1. All
sensors in Fig. 1 are identical and omnidirectional, and they are
located on a uniform grid (so that the CRB can be derived). The
arriving waves are assumed to be plane waves. The array output
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vector can then be written as

(1) = 3 ar(elen B) +n(t) ()

k=1
with
y(t) = [7(0). - on ()] )
Z(O‘k’ Bk)

exp [ j27(e/N) cos (ay) x; + j27(e/N) cos (Bo) 7]

exp [j21r(e/)\) cos (e, ) xn + j27(e/N) cos (Bk)yN]

(3)
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Fig. 2. Relation between two coordinate systems of a 2-D direction.

where ¢ denotes the rth snapshot of the total 7; D denotes the
number of waves; a,(k) is the complex amplitude of the kth
wave, the N X 1 vector z( - - ) is called the steering vector; o
and §3, are the two angles of the kth wave with respect to the x
and y axes as shown in Fig. 2; e is the spacing in the x-y grid;
N is the wavelength; (x;, y,) is the coordinate of the ith sensor
of the total N; and n(¢) is the noise vector.

Computing the CRB [4] involves the inversion of a Fisher
information matrix of the dimension equal to the number of
unknowns. In order to be able to derive the CRB analytically,
we consider the case where T = 1, D = 1, and the noise is the
white Gaussian with the variance 202. Then, there are the four
unknowns: «;, 8, the magnitude and the phase of ,(1). Now,
computing the CRB’s of the estimates of «; and (3, for each of
the 2-D arrays in Fig. 1 becomes straightforward. Note that the
4 X 4 Fisher information matrix is a sparse matrix which can be
inverted analytically. In Table I, the CRB’s of cos o, and cos 8,
are listed for each array. The CRB’s on cos o and cos 3, are
equal because of the symmetry of all the arrays considered. The
simple expressions given in the table also requires N » 1.

It is seen from this table that the CRB of the L-shaped array is
significantly (=37%) smaller than that of the conventional cross
array!

It is also seen from the table that the octagon array (which is
close to the circular array in structure) has only =5% smaller
CRB than the L-shaped array.

III. MaxmMum LikeLiHoop EstiMaTiON (MLE)

It is known that the CRB can be achieved by the MLE. For
the L-shaped array, a computationally efficient ML algorithm is
developed in the following way.

TABLE I
CRB (cos a,) = CRB (cos §3;)

57
Al —_—
Octagon Array BN
60
-Sh: A _
L-Shaped Array PYNE
96

Cross Array SN°
96
Square Array NG
. . 108
Right Triangle Array aN?
. 192
Generalized Cross Array Iy

8 =2 SNR, 27e/N? and SNR, = |a,|2/20%. 207 is the variance
of the white noise. Note that CRB(«,) = CRB(cos a;)/sin* o; and
CRB(B,) = CRB(cos 8,)/sin B;.

Under the Gaussian assumption of the noise, the ML estimates
minimize the cost function:

2

J=Hy- P Ace(e ) @

where || - || denotes the 2-norm and
[ (1)
y=1 (5)
| ¥(T)
[ ap(1)Iy
Ay = : (6)
_ak(T) Iy

Iy is the N X N identity matrix. The cost function J is a
highly nonlinear function of the unknowns: {a,(#), o and B;;
k=1,--,Dand t =1, -, T}. Based on the structure of the
L-shaped array, the following interative ML algorithm has been
developed.

A. Outer Loop

Let A% and z) be the previous estimates of A, and z,,
where z; = z(ay, B;). Define for k = 1,-++, D,

X =AYz + Wi

D
y- 2 A’kz;() (7
k=1
where w,, kK = 1,-++, D, are nonnegative real values satisfying
D
> we=1 (8)
k=1
Then, for each k, the new estimates of A, and z, are obtained
by minimizing
2
Je =% — Az )

with respect to a,(¢), o, and ;.
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B. Inner Loop (minimizing J,)
Rewite (9) as

Te= T xdo) - a ()2 (10)

the fth subvector of xi=
For any given z,, the optimum esti-
-+, T, are given by

(282,) " 2lx, (1)

2i'x, () /N

where X, (1) is
[x(DT, -+, x (T
mates of a,(¢), t =1,

a,(t)

Il

(11)

where the superscript H denotes the conjugate transpose. Then
J; becomes

T
Ji = t:zl “(IN_ zszl/N)xk(t)Hz-
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complement of the span of single vector z, is equal to the span
of all the columns of B, i.c.,

Iy = (1/N)zezi’ = BeBy

(19)

where the superscript plus sign denotes the pseudo-inverse.
Since B, has independent columns, Bf = (B{B;)”'Bj’. Sub-
stituting (19) into (12) yields

T
Jo= ¥ BeBix(n

T

—1
Zl xk(t)HBk(Bka) Blx(1).
t=

(20)

It can be verified that

x,(1)7B = BT X, (1)

(21)

(12)  where

1
Now J is a function of the two unknowns o, and 3, only. For by =|Ck (22)

the L-shaped array, z, can be written as d,

zk=[p,?’,“-,pk,l,qk,---,q,fl]r (13)  and X,(¢) is the 2M X 3 matrix:
[ x-x —J( %) + x2) 0 |
Xpp— X —J(Xpt+x 0
Xk(t) _ M M+1 ( M M+1) ) (23)
“Xpr1 T Xma2 0 ~(Xare1 + Xp142)
| ~X2m t Xonm41 0 - J(xom+ Xam) |

where M = (N — 1)/2 and
Dy = exp (j27(e/N) cos ay)
ay = exp (j2m(e/N) cos B;).
Py and g, are also uniquely represented by
pe= (1 +jer) /(1 = jei) (16)
a = (1 +jd)/(1 ~ jdy) (17)

where ¢, and d, are real values. (o, B;) is one-to-one
function of (c,, d;) or (py, q,). Define the @M + 1) by 2M
matrix:

By

(14)
(15)

[ 1+ jo,
=1+ je,

1+ je,
-1+ je, -1+ jd,
1+ jd,

—1+jd,
1+ jd,

(18)
It is easy to check that the 2M + 1) by one vector z, is
orthogonal to all 2 M columns of B,. Therefore, the orthogonal

In (23), x; denotes the jth element of the vector x,(f). With
(21), (20) becomes

S = o] X x(0)(BEB) T Xu(0)" [ @0

Now the inner loop can be summarized as: Given the previous
estimates ¢, and d, (which are the one-to-one function of o
and B;), the 3 X 3 matrix within the bracket in (24) is com-
puted, and the new estimates of ¢, and d, are given by the
3 x 1 eigenvector (according to (22)) corresponding to the
smallest eigenvalue of that 3 X 3 matrix. This process is re-
peated until convergence.

At each iteration of the inner loop, the 2M + 1)by QM + 1)
matrix inverse (Bf7B,)~! can be computed very efficiently [7]
due to its sparse structure.

The inner loop has been tested to be a stable algorithm (it
converged after five iterations in our simulations for one-wave
and two-wave cases), which is a consistent property as observed
with a similar ML algorithm [2], [3] designed for the ULA’s.
The outer loop is actually an application of the estimate maxi-
mize (EM) approach, which is guarranteed to be stable [5]-[7].
In our simulations, it converged after 10 iterations.

C. Initial Estimates

Since J is a highly nonlinear function of the unknowns, good
initial estimates are important to make the iterative algorithm
converge to the global optimum point. Fortunately, the L-shaped
array consists of two ULA’s so that any algorithms [1]-[3]
designed for the ULA’s can be used to provide the initial
estimates.
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For multiple waves, the correct pairing between the estimated
o and the estimated £ obtained from the ULA’s still needs to be
done. The optimum pairing is to minimize J with respect to all
possible pairings of a and 8. A more computationally efficient
pairing technique follows.

Computing the sample correlation matrix (N X N) of y(f):

R, l/Té () y()"

z l/Téa(t)a(t)H zH 4+ 1/Tt§=:T1n(t)n(t)H

(25)

where

I

a(t) = [a(1).+++, ap(r)]" (26)
Z=[7~1""’ZD]' (27)

Assume both the signal amplitude vector a(f) and the noise
vector n(t) are ergodical random processes with the covariance
matrices: R, (of the full rank D) and R, = 202I,, respec-
tively. Then, for large T (i.e., asymptotically),

R, =ZR,Z" 1+ 24%1,.

(28)

It can be shown that the D principal eigenvectors of R »
asymptotically span the same space as the columns of Z, and the
N-D nonprincipal eigenvectors are asymptotically orthogonal to
each of the columns of Z. Let the N eigenvectors of R y be
denoted by vy, -, vp, vp,,,"**, vy, Which are corresponding
to the decreasing order of the eigenvalues. Then, the pairing can
be obtained by minimizing the following weighted sum of the
inner products between the steering vector z(c«, () and the
N-D nonprincipal eigenvectors v,,, m = D + 1,*-+, N:
D

> w2 (e, B)v,|

7= (29)

(with respect to D possible choices of By, k=1,-++, D, for
each oy, k = 1,-++, D) where w}, are positive weights. J” is
asymptotically zero if the ML estimates of «, and 8, are
correctly paired.

IV. ConNcLusioN

For 2-D wave direction finding, the L-shaped array has higher
accuracy potential than the conventional cross array and many
other simple structured arrays. Due to the property of the two
ULA’s in the L-shaped array, the maximum likelihood estima-
tion of the wave directions can be implemented in a computa-
tionally efficient way.
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