
User Guide for GLU V2.0

Lebo Wang and Sheldon Tan

University of California, Riverside

June 2017

Contents

1 Introduction 1

2 Using GLU within a C/C++ program 2

2.1 GLU flowchart . 2

2.2 GLU routines and their functions 3

2.2.1 Preprocess . 3

2.2.2 Symbolic Matrix 3

2.2.3 Symbolic Matrix.symbolic pivot 3

2.2.4 Symbolic Matrix.csr 3

2.2.5 Symbolic Matrix.predictLU 4

2.2.6 Symbolic Matrix.U W leveling 4

2.2.7 Symbolic Matrix.restore 4

2.2.8 LUonDevice . 4

3 Compilation and test 5

4 Performance 6

Chapter 1

Introduction

GPU accelerated LU factorization (GLU) method is a sparse LU solver
on GPUs for circuit simulation and more general scientific computing. It
is based on a hybrid right-looking LU factorization algorithm [7], which
is highly efficient on the GPU platforms.

Compared to the GLU 1.0, there are several imppovement: First,
we fix a few bugs of the numerical factorization. One bug is related
to the dependency detection issue, which can cause the inaccuracy in
the factorized matrices. As a result, the dependency detection and level
prediction codes have been rewritten, in which new dependencies can be
easily added to generate level information.

Second, similar to many commercial LU factorization solver, we also
added the HSL MC64 algorithm to the pre-process phase (which make
the diagonal elements dominant) to improve the numerical stability of
the LU factorization process.

Third, to further improve the numerical stability, numerically factor-
ized results will be checked to avoid Inf (infinity) or NaN (not a number)
in the diagonals. If the Inf and NaN happens, the forced perturbation
is employed (adding a small diagonal value) during the numerical factor-
ization is carried out [8] in the new GLU 2.0.

With the the HSL MC64 algorithm and zero-diagonal element miti-
gation techniques, GLU 2.0 does not need the dynamic pivoting to en-
sure the numerical stability of the LU factorization, which makes it more
amenable for the GLU kernel computing.

Chapter 2

Using GLU within a
C/C++ program

2.1 GLU flowchart

Figure 2.1: The flowchart of GLU V2.0

The flowchart of the GLU V2.0 is shown in Fig. 2.1. GLU compout-
ing flow follows the similar flow of NICSLU [2, 3, 4]. The preprocess
includes HSL MC64 algorithm [6] and AMD (Approximate Minimum
Degree) algorithm [1] to ensure nonzero diagonal elements and to mini-

2.2 GLU routines and their functions 3

mize the number of fill-ins. After that, the symbolic analysis is executed
for the prediction of fill-in elements for better memory management and
independent level estimation. Finally, the numerical factorization can be
deployed after the symbolic analysis.

2.2 GLU routines and their functions

In the following, we briefly explain the GLU basic routine functions
in each sub-section.

2.2.1 Preprocess

Preprocess function prefomrs preprocess phase for the input matrices,
including HSL MC64 algorithm and AMD algorithm to ensure dominant
diagonal elements and to minimize the number of fill-ins. Please refer to
NICSLU [3] for the details of the preprocess.

2.2.2 Symbolic Matrix

Symbolic Matrix initializes the class for the symbolic matrix, which
contains new fill-ins after the symbolic prediction, level information for
numerical factorization. The data are stored in CSC format. We also
use CSR format to store the position information to accelerate the level
prediction.

2.2.3 Symbolic Matrix.symbolic pivot

Symbolic pivot function symbolically factorizes the matrix after pre-
processing, where all the positions of fill-ins and non-zero elements are
assigned with non-zero initial values and their memories are allocated.

2.2.4 Symbolic Matrix.csr

Csr function generates the CSR information for the symbolic matrix,
in which the position information can be used to accelerate the level
prediction.

2.2 GLU routines and their functions 4

2.2.5 Symbolic Matrix.predictLU

PredictLU function generates and allocates all values for the fill-ins
and non-zero elements. It will finish all information for the symbolic
matrix with Symbolic pivot function.

2.2.6 Symbolic Matrix.U W leveling

U W leveling function generates level information including U-shape
and W-shape dependencies.

2.2.7 Symbolic Matrix.restore

Restore function resets the value of the symbolic matrix. It must be
executed every time before doing the numerical factorization.

2.2.8 LUonDevice

LUonDevice runs on GPU to do numerical factorization.

Chapter 3

Compilation and test

GLU can be compiled in the Linux platforms and used with most
recent Nvidia GPUs.

To compile GLU on Linux, gcc is required. Just type ”make” in the
”./src” directory. Make sure that the ”preprocess” function has already
been compiled. The ”preprocess” function is in the ”./ src/preprocess”
folder. If you need to recompile the ”preprocess” function, just type
”make” in the ”./src/preprocess” directory.

After compiling successfully, we can run GLU in the ”src” folder or
any other folder.

The basic usage is ”./lu cmd -i inputfile”, where inputfile is a sparse
matrix file with ”.mtx” (there is one example matrix called ”add32.mtx”
in the ”./src” folder). If perturbation is needed, add ”-p” like ”./lu cmd
-i inputfile -p”.

Chapter 4

Performance

Experiments are carried out on a Linux server with two 8-Core Xeon
E5-2670 CPUs, DDR3-1600 64-GB memory. The server also consists
of one K40c GPU, which serves as the GPU platforms for the GLU. A
set of typical circuit matrices are obtained from the UFL sparse matrix
collection [5] as the benchmark matrices.

Figure 4.1: Performance of GLU

We test the execution time of both CPU and GPU parts of our GLU,
which is shown in Fig.4.1. All matrices are sorted by the number of
nonzero elements after symbolic factorization.

Bibliography

[1] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. “Algorithm
837: AMD, an approximate minimum degree ordering algorithm”. In:
ACM Transactions on Mathematical Software (TOMS) 30.3 (2004),
pp. 381–388.

[2] Xiaoming Chen, Yu Wang, and Huazhong Yang. “An adaptive LU
factorization algorithm for parallel circuit simulation”. In: Design
Automation Conference (ASP-DAC), 2012 17th Asia and South Pa-
cific. IEEE. 2012, pp. 359–364.

[3] Xiaoming Chen, Yu Wang, and Huazhong Yang. “NICSLU: An adap-
tive sparse matrix solver for parallel circuit simulation”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32.2 (2013), pp. 261–274.

[4] Xiaoming Chen et al. “An escheduler-based data dependence anal-
ysis and task scheduling for parallel circuit simulation”. In: IEEE
Transactions on Circuits and Systems II: Express Briefs 58.10 (2011),
pp. 702–706.

[5] Timothy A Davis and Yifan Hu. “The University of Florida sparse
matrix collection”. In: ACM Transactions on Mathematical Software
(TOMS) 38.1 (2011), p. 1.

[6] Iain S Duff and Jacko Koster. “The design and use of algorithms for
permuting large entries to the diagonal of sparse matrices”. In: SIAM
Journal on Matrix Analysis and Applications 20.4 (1999), pp. 889–
901.

[7] Kai He et al. “GPU-accelerated parallel sparse LU factorization
method for fast circuit analysis”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24.3 (2016), pp. 1140–1150.

[8] Xiaoye S Li et al. “SuperLU users’ guide”. In: Lawrence Berkeley
National Laboratory Tech. Report, LBNL-44289 (1999).

