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Abstract— Lower upper (LU) factorization for sparse matrices
is the most important computing step for circuit simulation
problems. However, parallelizing LU factorization on the graphic
processing units (GPUs) turns out to be a difficult problem due to
intrinsic data dependence and irregular memory access, which
diminish GPU computing power. In this paper, we propose a
new sparse LU solver on GPUs for circuit simulation and more
general scientific computing. The new method, which is called
GPU accelerated LU factorization (GLU) solver (for GPU LU),
is based on a hybrid right-looking LU factorization algorithm for
sparse matrices. We show that more concurrency can be exploited
in the right-looking method than the left-looking method, which
is more popular for circuit analysis, on GPU platforms. At the
same time, the GLU also preserves the benefit of column-based
left-looking LU method, such as symbolic analysis and column-
level concurrency. We show that the resulting new parallel
GPU LU solver allows the parallelization of all three loops in
the LU factorization on GPUs. While in contrast, the existing
GPU-based left-looking LU factorization approach can only
allow parallelization of two loops. Experimental results show
that the proposed GLU solver can deliver 5.71x and 1.46x
speedup over the single-threaded and the 16-threaded PARDISO
solvers, respectively, 19.56x speedup over the KLU solver,
47.13x over the UMFPACK solver, and 1.47x speedup over a
recently proposed GPU-based left-looking LU solver on the set
of typical circuit matrices from the University of Florida (UFL)
sparse matrix collection. Furthermore, we also compare the
proposed GLU solver on a set of general matrices from the
UFL, GLU achieves 6.38x and 1.12x speedup over the single-
threaded and the 16-threaded PARDISO solvers, respectively,
39.39x speedup over the KLU solver, 24.04 x over the UMFPACK
solver, and 2.35x speedup over the same GPU-based left-looking
LU solver. In addition, comparison on self-generated RLC mesh
networks shows a similar trend, which further validates the
advantage of the proposed method over the existing sparse
LU solvers.

Index Terms—Circuit simulation and analysis, graphic
processing unit (GPU) parallelization, sparse LU factorization.
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I. INTRODUCTION

RANSFORMING a sparse matrix into its lower upper

(LU) form is of crucial importance in linear algebra as
it plays an important role in many numerical and scientific
computing applications, such as finite-difference and
finite-element-based methods. LU factorization operation
represents the dominant computing cost in those problems
and it is very important to improve the efficiency of the
LU factorization algorithms. LU factorization for sparse matri-
ces is the most important computing step for general circuit
simulation problems for circuit designs. However, parallelizing
LU factorization on the popular many-core platforms, such
as graphic processing units (GPUs), turns out to be a difficult
problem due to intrinsic data dependence and irregular
memory access, which diminish GPU computing power.

Modern computer architecture has shifted toward the
multicore processor [1], [2] and many-core architectures [3].
The family of GPU is among the most powerful many-core
computing systems in mass-market use [4]. For instance, the
state-of-the-art NVIDIA Kepler K40 GPU with 2880 cores has
a peak performance of over 4 TeraFloating-point Operations
Per Second versus about 80-100 GigaFloating-point Opera-
tions Per Second of Intel i7 series Quad-core CPUs [5], [6].
In addition to the primary use of GPUs in accelerating graphics
rendering operations, there has been considerable interest in
exploiting GPUs for general purpose computation [7].

Until now, dense linear algebra support on GPU is well
developed, with its own Basic Linear Algebra Subprograms
library [8], but sparse linear algebra support is still limited.
Modern NVIDIA GPUs are throughput-oriented many-core
processors that can offer a very high peak computational
throughput. They favor computations exhibiting sufficient
regularity of execution paths and memory access patterns.
For sparse-matrix-based analysis, GPU acceleration has been
applied to parallelize the shooting Newton method for transient
radio frequency circuit analysis [9] and to speedup the
generalized minimum residual analysis-based iterative method
for large-scale thermal analysis [10] in the past. However, par-
allelizing the sparse LU factorization operation is very difficult
because of the irregular structure of matrices and the high data
dependence during the numeric LU factorization. As a result,
they remain a challenge for GPU-based fine-grained parallel
computing [5].

Several research efforts have been proposed for parallelizing
sparse LU factorization on shared memory multicore CPU
and GPUs. SuperLU [11], [12] implemented supernode-
based Gilbert—Peierls (G/P) left-looking algorithm [13],
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and SuperLU_MT [12] is its multithreaded parallel version
developed for shared memory multicore architectures.
However, it is not easy to form supernode in some sparse
matrix, such as circuit matrix. KLU [14], which is specially
optimized for circuit simulation, adopts block triangular form
based on G/P left-looking algorithm.

Recently, the KLU algorithm has been parallelized
on multicore architecture by exploiting the column-level
parallelism [15], [16]. For parallel LU factorization solvers
on GPU, existing works mainly focus on dense matrices,
including [17]-[19], very few works on the sparse matrix
have been proposed. Ren et al. [20] recently proposed a
GPU-based sparse LU solver based on the G/P left-looking
algorithm. It exploits the column-level parallelism due to
sparse nature of the matrix. The left-looking-based method,
which transforms the factorization computing into a number
of triangular matrix solving, seems more efficient on GPU
computing. However, it possesses higher data dependence
coming from solving the triangular matrices. The traditional
right-looking LU factorization, which involves only less data-
dependent vector operations, has not been well studied in
GPU implementation.

In this paper, we propose a new sparse LU solver on
GPUs for circuit simulation and more general scientific
computing. The new method, called GPU accelerated LU
factorization (GLU) method, is based on a hybrid right-
looking LU factorization algorithm. We show that more
concurrency can be exploited in the right-looking method
than the left-looking method, especially on GPU platforms.
We have the following contributions.

1) We propose a new column-based right-looking LU
factorization method, which is shown to be more
amenable for exploiting the concurrency of LU
factorization. The new method preserves the benefit
of column-level concurrency and symbolic analysis
in the left-looking method, meanwhile it allows more
parallelism to be exploited.

2) We show that the new GLU LU solver allows the par-
allelization of all three loops in the LU factorization on
GPUs. In contrast, the existing GPU-based left-looking
LU factorization approach can only allow two-level par-
allelization. We conduct comprehensive studies on the
new GPU LU solver on a number of published general
matrices, circuit matrices, and self-made large RLC
circuit matrices against some existing LU solvers to
demonstrate the advantage of the proposed GLU solver.

Numerical results show that the proposed GLU solver can
deliver 5.71x and 1.46x speedup over the single-threaded
and the 16-threaded PARDISO solvers [21], respectively,
19.56 x speedup over the KLU solver [14], 47.13x over the
UMFPACK solver [22], and 1.47x speedup over a recently
proposed GPU-based left-looking LU solver [20] on the set of
typical circuit matrices from the University of Florida (UFL)
sparse matrix collection [23]. Furthermore, we also com-
pare the proposed GLU solver on a set of general matrices
from the UFL, GLU achieves 6.38x and 1.12x speedup
over the single-threaded and the 16-threaded PARDISO
solvers, respectively, 39.39x speedup over the KLU solver,
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24.04x over the UMFPACK solver, and 2.35x speedup over
the same GPU-based left-looking LU solver. In addition,
comparison on self-generated RLC mesh networks shows a
similar trend, which further validates the advantage of the
proposed method over the existing sparse LU solvers.

This paper is organized as follows. Section II reviews
the previous work that has been done to factorize sparse
matrices into LU form on GPU, in particular, the left-looking
algorithm, GPU architecture, and compute unified device
architecture (CUDA) programming. In Section III, we present
the new column-based right-looking algorithm and its parallel
implementation on GPU. Several numerical examples and
discussions are presented in Section IV. Finally, the conclusion
is drawn in Section V.

II. REVIEW OF LU FACTORIZATION
ALGORITHMS AND CUDA

Before we present our new approach, we first review the
two main stream LU factorization methods: 1) the left-looking
G/P factorization algorithm [13] and 2) a variant of the right-
looking algorithms, such as the Gaussian elimination method.
We then review some recent works on LU factorizations on
GPU and the NVIDIA CUDA programming system.

The LU factorization of an n x n matrix, A, has the form
A = LU, where L is a lower triangular matrix and U is an
upper triangular matrix. For a full matrix, LU factorization
has O(n®) complexity as it has three embedded loops.

A. Right-Looking Factorization Method

The right-looking LU factorization is the traditional
factorization, including the Gaussian elimination method.
The algorithm can be explained by

[111 i|[1411 u12i|:|:a11 012:| )
by Lo Uxn a1 Ax

where [;; = 1 is a scalar, and /»; and uj» are the column
and row vectors, respectively, and Ly and U, are the
(n — 1) x (n — 1) submatrices. They can be computed by
Uyl = arl, uip = apn, and by = azy/uy;. After this, we end
up with an (n — 1) x (n — 1) equation to solve: LUy =
Agr — bbiu1z. The process repeats until we reach an 1 x 1
equation to solve. As we can see, the traditional right-looking
method solves one row for U matrix and then one column for
L matrix at each iteration. Then, it updates the (n—1) x (n—1)
submatrix Aj> on the right part of the whole matrix and
solves the reduced matrix recursively (so it is called the right-
looking method). Note that the right-looking method requires
that A;; is first factored before we can factor A;_1 ;—1, which
indicates the sequential data dependence of this algorithm and
its limits for potential parallel implementations (although the
multifrontal-based hierarchical schemes can be exploited for
parallelization [24]). Note that we ignore all the reordering
steps for fill-in reduction and numerical pivoting as well as
symbolic analysis steps as we will visit them later.

B. Left-Looking Factorization Method

The G/P left-looking method shows better performances
for sparse matrices and easier implementation than the
traditional Gaussian elimination-based methods. It also allows
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Algorithm 1 G/P Left-Looking Algorithm

1: for j =1tondo

2:  [*Triangular matrix solving*/

3: for k=1to j— 1 where As(k,j) # 0 do
4: /*Vector multiple-and-add*/

5: for i = k + 1 to n where A,(i,k) # 0 do
6 As‘(lv]):AG(ZaJ)fAe(ka)*Ae(kaj)
7 end for

8: end for

9:  /*Compute column j for L matrix*/

10 for i =j+ 1 to n where A;(4,5) # 0 do
11: As(i,7) = As(1,9)/As(4,7)

12 end for

13: end for
J
|
o |
CP - A(k))
I I
|
__‘_‘.--'-_______-‘
Currerit column j
is updated by
column & (&£<j)
L
Already  Current
factored Colurnnj
Column &
Fig. 1. Left-looking update for column ;.

the symbolic fill-in analysis of L and U matrices before the
actual numerical computing. Instead of computing one row
of U and one column of L, the left-looking method computes
one column for both L and U instead. This is achieved
by solving a lower triangular matrix. This lower triangular
solution is repeated n times during the entire factorization
(where n is the size of the matrix) and each solution step
computes a column of the L and U factors. In this method, the
matrix is traversed by columns from left to right. To compute
current column, the algorithm has to look at all the previous
computed columns on the left part of the L and U. Therefore,
it is called left-looking method. Algorithm 1 shows one
detailed implementation of the left-looking LU factorization.
In this pseudocode, the current column is indexed by j, and
the columns to the left of the current column are indexed
by k. To compute the current column j, the algorithm looks
left and finds all already factored column k (k < j), where
Ag(k, j) # 0, and then uses these columns to update current
column j. A (x, y) indicates the LU symbolically factorized
A matrix, where all the fill-ins and nonzero elements are
assigned with nonzero initial values and their memories are
allocated. Fig. 1 shows the basic idea of the left-looking
algorithm. The key operation of the left-looking algorithm
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is the triangular matrix solving, which is actually performed
by the so-called vector multiple-and-add (MAD) operations
sequentially.

One important observation for the left-looking algorithm
is that since all the fill-in patterns of factored matrices are
exploited, we know some columns can be solved indepen-
dently and in parallel, which is called column-level parallelism
in the existing approaches. Such concurrency does not exist
in the existing traditional right-looking algorithms due to the
recursive nature of the algorithm as we mentioned previously.

C. Related Works

The G/P left-looking method, shown in Fig. 1, has been
parallelized on GPU recently [20]. This method exploits the
two-level concurrency in the left-looking algorithm due to the
sparsity patterns of the matrices. First, it exploits the column-
level parallelism in the left-looking algorithm, as mentioned
earlier. Based on the matrix sparsity pattern, the independent
columns can be grouped into levels. Therefore, the outer
j-loop of Algorithm 1 can be parallelized by processing
columns level-by-level. The so-called cluster mode in this
algorithm is for levels with many independent columns, while
the pipeline mode is for levels with only a few columns. It also
explores the parallelism within the vector MAD operation,
which is reflected in the i-loop of Algorithm 1. However, the
middle k-loop of column-by-column update, which is the key
operation, is still in serial. The reason is that there is only
one column j of the U matrix and updating this column must
be done sequentially.

D. Review of GPU Architecture and CUDA Programming

In this section, we review the GPU architecture and CUDA
programming. CUDA is the parallel programming model for
NVIDIA’s general-purpose GPUs. The architecture of a typical
CUDA-capable GPU consists of an array of highly threaded
streaming multiprocessors (SMs) and comes with up to a huge
amount of DRAM, referred to as global memory. Take the
Tesla C2070 GPU, for example. It contains 14 SMs, each
of which has 32 streaming processors (SPs, or CUDA cores
called by NVIDIA), four special function units (SFUs), and
its own shared memory/L1 cache. The structure of an SM is
shown in Fig. 2.

As the programming model of GPU, CUDA extends C
into CUDA C and supports such tasks as threads calling
and memory allocation, which makes programmers able to
explore most of the capabilities of GPU parallelism. In CUDA
programming model, shown in Fig. 3, threads are organized
into blocks; blocks of threads are organized as grids. CUDA
also assumes that both the host (CPU) and the device (GPU)
maintain their own separate memory spaces, which are
referred to as host memory and device memory, respectively.
For every block of threads, a shared memory is accessible
to all threads in that same block. The global memory is
accessible to all threads in all blocks. Developers can write
programs running millions of threads with thousands of blocks
in parallel. This massive parallelism forms the reason that
programs with GPU acceleration can be much faster than their
CPU counterparts. CUDA C provides its extended keywords
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Fig. 2. Diagram of an SM in NVIDIA Tesla C2070 [SP, L/S for load/store
unit, and SFU].
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Fig. 3. Programming model of CUDA.

and built-in variables, such as blockIdx.{x, y, z}
and threadIdx.{x, y. 2z}, to assign unique Identifier
(ID) to all blocks and threads in the whole grid partition.
Therefore, programmers can easily map the data partition to
the parallel threads, and instruct the specific thread to compute
its own responsible data elements. Fig. 3 shows an example
of 2-D blocks and 2-D threads in a grid, the block ID and
thread ID are indicated by their row and column positions.

III. PROPOSED GLU SOLVER BASED ON THE
HYBRID COLUMN-BASED RIGHT-LOOKING
LU METHOD ON GPU PLATFORMS

In this section, we explain our new hybrid column-
based right-looking sparse LU factorization method on the
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Algorithm 2 Hybrid Column-Based Right-Looking Algorithm
for k =1 ton do

1:
2:  [*Compute column k of L matrix*/
32 for i =k+ 1 ton where A,(i, k) # 0 do

4 As(is k) ZAS(Z,k)/Ab(k‘,]{)

5:  end for

6:  /*Update the submatrix for next iteration*/

7. for j =k + 1 to n where As(k,j) #0 do

8 for i = k + 1 to n where A;(i, k) # 0 do
9 As(iyg) = As(i,7) — As(i, k) x Ag(k, )
10: end for

11:  end for

12: end for

GPUs—GLU solver. GLU solver was originally inspired by
the observation that the existing left-looking LU factorization
has inherent limitations for concurrency exploitions due
to the required solving of triangular matrices. To mitigate
this problem, we look at the traditional right-looking LU
factorization method, which seems more amenable for
parallelization, especially on GPU platforms. However,
we also want the benefits of symbolic analysis for storage
management of factorized matrices and column-level
concurrency in the left-looking-based method. The resulting
method is the hybrid column-based right-looking LU method,
which will be discussed in the following.

A. Column-Based Right-Looking Algorithm

Our starting point is still the left-looking algorithm as we
want to keep the column-concurrency and symbolic analysis
and we still compute one column for both L and U matrices.
However, unlike the left-looking algorithm, once a column of
L is computed, its impacts on the yet-to-be-solved columns
will be updated right away (so we now start to look right
in this sense). Algorithm 2 shows the hybrid column-based
right-looking LU factorization algorithm, which turns out to
be more amenable for GPU parallelization. In this pseudocode,
the current column is indexed by k, and the columns to the
right of the current column, which are updated immediately
after the current column has been computed, are indexed by ;.
After current column k is computed, the algorithm looks right
and finds all column j (j > k) in the submatrix, where
Ag(k, j) # 0, and then uses column k to update these columns.
Ag(x, y) indicates the LU symbolically factorized A matrix,
where all the fill-ins and nonzero elements are assigned
with nonzero initial values and their memories are allocated.
Fig. 4 shows the basic idea of the hybrid column-based right-
looking algorithm. The key operation of the right-looking
algorithm becomes submatrix update now. However, such
change makes a major difference in terms of concurrency
exploitation as we will show in this paper.

In this column-based right-looking algorithm, we still have
three loops: 1) the outer k-loop chooses the current column
k that will be factorized; 2) the middle j-loop chooses the
column j in the submatrix right to column k that depends on
column k; and 3) the inner i-loop is used to perform MAD
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Fig. 4. Hybrid column-based right-looking algorithm and the submatrix

update at each iteration.

operations between column k and column j. But now, we will
show that these three loops can be parallelized because the
submatrix is updated by the i- and j-loops, which is more
amenable for parallelization than the solving triangular matri-
ces in the left-looking method (see details in Section III-C).

We remark the hybrid LU factorization method is similar
to the multifrontal-based right-looking LU factorization
method, in the sense that each independent column and its
connected columns can form a frontal matrix [24]. However,
in our approach, no elimination tree is used to build the
frontal matrices and the hierarchical matrix analysis structure.
The column-level parallelization is mainly based on the
dependence graph (to be discussed later).

B. Preprocessing and Symbolic Analysis

As we mentioned earlier that the proposed method
combines the benefits of both the left-looking method and
the right-looking methods. As a result, it still follows the
preprocessing and symbolic analysis steps to improve the
factorization efficiency. Hence, the new factorization algorithm
can still be split into three phases. In the sequel, we give a
brief description of the first two steps for the self-contained
purpose. Then, we analyze the related data dependence from
the symbolic analysis step for GPU computing.

First, the preprocessing phase preorders the matrix A to
minimize fill-in and to ensure a zero-free diagonal. Second,
the symbolic phase performs symbolic factorization and
determines the structure of lower triangular matrix L and
upper triangular matrix U. Then, it groups independent
columns into levels. In addition, the numerical phase obtains
the resulting lower and upper sparse triangular factors by
solving the columns level-by-level. The preprocessing phase
and symbolic phase are performed only once on CPU (which
will be discussed in this section). The numerical phase can
be performed multiple times on GPU. For the completion of
the algorithm, we also present the first two phases.
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Algorithm 3 Forward Substitution for Solving Sparse
Triangular Matrices

Lx="b
2: for j =0 to k — 1 where b(j) # 0 do
3 fori=j+1ton where L(i,5) # 0 do
4 2() =2() - L, §)x())
5:  end for
6: end for
Column k&
:‘ x(i)
[ N
. .
N ~®| ()
Ly(iy) \\
A
~
_____ LN
Fig. 5. Nonzero pattern for a sparse triangular solver.

In the preprocessing phase, we use HSL MC64 [25] to
decrease the likelihood of encountering tiny pivots and approx-
imate minimum degree algorithm [26] to reduce the fill-ins.
The nonzero structure of the sparse matrix may dramatically
change in course of LU factorization. In this step, we per-
form a left-looking algorithm-based symbolic analysis [13] to
determine the nonzero patterns of L and U. The core operation
of the left-looking algorithm is to solve the lower triangular
system Lix = b in order to compute the kth column, where
Ly is the lower matrix representing the already computed
(k—1) columns and the vector b is the kth column of matrix A.
This pseudocore operation is shown in Algorithm 3.

From the pseudocode, we can see that entries in x can
become nonzero in only two places, the first and fourth lines.
We can represent these two relationships as a directed graph
G = (V,E), where the nodes V = 1...n represent the
rows and the edges E = (j, i), where L(i, j) # 0. Thus,
line 1 is equivalent to marking all nodes that are nonzeros
in the vector b, whereas line 4 implies that if a node j
is marked and it has an edge to a node i, then the latter
must be also marked. Fig. 5 graphically highlights these
two relationships. Therefore, the nonzero pattern can be
computed by determining the nodes that are reachable from
the nodes of vector b, which is also the computed column
vector of U from the previous iteration of the left-looking
method. This reachability problem can be solved using a
classical depth-first search in G. Then, we can determine the
nonzero pattern of the new matrices L and U.

Fig. 6 shows a sparse matrix A and the predicted nonzero
pattern of the LU factors of A after symbolic analysis
(L and U share the same space of A), in which the black
circle and white circle represent original entries of A and
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Fig. 6. Original matrix A (left) and the matrix A (right) after symbolic

analysis with predicted nonzero pattern of LU factors of A.

fill-in entries, respectively. As a result, the matrix A now
contains the fill-ins and elements in the original matrix.
When we copy A to GPU’s memory, we actually copy the
L and U matrices (with their values yet to be determined).
After the factorization, the A becomes the resulting
L and U matrices physically and it does not contain the
original matrix any more.

Another important problem is the column dependence. It is
clear that any column dependence in the overall left-looking
algorithm only arise from the sparse triangular solve step, the
line 2 of Algorithm 3. However, when we compute column k,
not all the columns to its left are needed, as it was illustrated
in Algorithm 3. The factorization of column k only depends on
the columns that satisfy a;; # 0 for i < j. In other words, the
dependence between rows is defined by the sparsity pattern of
the upper triangular matrix U and is independent of the lower
triangular matrix L.

We use a directed acyclic graph (also called dependence
graph) to represent the data dependence in the LU factorization
of the matrix in Fig. 6, in which, if column k& depends on
column i, then a directed edge exists from node i to node k,
where i < k. Fig. 7 (top) shows the column dependence of
example matrix A. The graph was computed using predicted
nonzero structure of matrix U only. All the columns in
the same level are independent and can be computed in
parallel. For instance, columns 1, 2, 3, and 5 can be evaluated
in parallel; however, column 6 cannot be processed until
columns 4 and 5 are computed.

Note that the concurrent computation resources
(warps per SM, shared memory per block, and threads
per block) on GPU are limited. As a result, the number of
columns, which can be solved in parallel, in each level should
be limited. Hence, we propose a resource-aware levelization
scheme, in which the number of columns of each level will
be limited by a fixed number. Fig. 7 (bottom) shows the
levelization result from the top figure, in which the maximum
number of allowed columns is 3. This resource-aware
levelization scheme will be applied to parallelize the outer
k-loop of the proposed right-looking algorithm.

C. Numerical Computing Phase

The algorithm-based symbolic analysis can be altered to
expose the column-level parallelism. Despite this exposed
column-evaluation concurrency, in the numerical factorization
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Resource-aware levelization scheme.

Fig. 7.

phase, we can explore more parallelism available in each level
using multiple threads.

On GPU, the global memory access from the same CUDA
warp (one warp consists of 32 threads and it is scheduling
unit on one SM on GPU) can be coalesced if they are
visiting the consecutive memory address. However, for sparse
LU factorization, irregular nonzero pattern leads to many
uncoalesced global memory accesses, which greatly degrades
the performance. To maximize the coalescence, we use
compressed sparse column format to store the A matrices
(L and U share the same storage of A) and record all nonzeros
in L and U. In addition, to maximize parallelization during
the factorization, we also use compressed sparse row (CSR)
format to record the nonzero positions of symbolic U (but
not its values), and its usage will become clear soon.

Now, let us look at how the three loops in the proposed
right-looking method can be parallelized in GPU platforms.
Algorithm 4 is the pseudocode for the proposed parallel
column-based right-looking algorithm. The first loop is to
choose a number of columns of L matrix in one level, which
can be factorized in parallel. Both the proposed method and
the left-looking method enjoy this column-level parallelism as
the proposed method is also based on the symbolic left-looking
level analysis. The difference is in the other two loops of the
two algorithms. Next, let us look at the computing steps inside
the first loop (between lines 2 and 14). There are two stages.
In the first stage, we compute the current column col of the
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Algorithm 4 Parallel
Algorithm on GPU

1: for level 1 to level m do

2:  /[*column-level parallelism*/
3:  for all col’s in current level in parallel do
4 compute current col of L matrix
5:  end for

6:  synchronize threads
7

8

9

Column-Based Right-Looking

for all col’s in current level in parallel do
/*submatrix update parallelism*/
for all subcol’s in current submatrix which depends
on col in parallel do

10: /*vector MAD operation parallelism*/
11: update elements in one subcol
12: end for

13:  end for
14:  synchronize threads
15: end for

L matrix by vector-scalar division and it can be performed
in parallel easily. Due to the first column-level parallelism,
we may have several current column col’s to be updated.

In the second step, we perform the submatrix update
(MAD operations) for the current column col. We are
concerned col’s that are needed by other columns of the
submatrix [means that A(k, j) 7~ O in line 7 of Algorithm 2].
We call the columns in submatrix, which depends on current
column col, the subcol. To facilitate locating those subcol’s,
we need to access the dependence graph, which is represented
by the symbolic upper triangular matrix U. For instance,
the subcol’s of a current column, say k, can be found
using the nonzero position information of row k of L. This
also explains why we need to have symbolic U in the
CSR format. Note that the current column col needs to be
stored into a uncompressed array and the subcol’s can access
the uncompressed array to get the col information to update
themselves. Since the subcol’s only read information from
the uncompressed column, there is no conflict.

Notice that each subcol only needs to be updated once by
the current column. As a result, all subcol’s in one submatrix
can be updated in parallel. This parallelism in the loop is
called submatrix update parallelism. In the third loop, the
core operation is vector MAD operation, which is used to
update a subcol. In contrast, the current column col needs to
be updated by all solved and relevant columns to its left in
the left-looking algorithm in the left-looking algorithm and the
updates to column k& must be performed sequentially. Hence,
it cannot enjoy the submatrix update parallelism. As a result,
we parallelize essentially all the loops in LU factorization in
the proposed new method.

D. Parallel Implementation on GPU

In parallel implementation of sparse LU factorization, the
CPU is responsible for initializing the matrix and doing the
symbolic analysis. The GPU only concentrates on numer-
ical factorization. CPU is also responsible for allocating
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Fig. 8. Comparison of the concurrency exploitation on GPU in terms of
warp scheduling.

device memory, copy host inputs to device memory, and copy
the computed device results back to the host.

In the proposed algorithm, the matrix A is divided into
several levels. With the resource-aware levelization scheme,
the optimal number of thread blocks can be easily determined
(see experimental section for some study results). We use one
thread block to process one column in a level. In the first
stage, we use one warp to compute one current column in
the L matrix. Multiple current columns will lead to multiple
blocks invoked in GPU in each kernel launch as each block
can execute independently. Then, we synchronize the threads
within the block to ensure the current column is solved.
In the second stage, we use one warp to update one subcol.
There may be multiple active warps in one block now. Within
one block, there is no data conflict among warps because
they update different subcol. However, memory access conflict
may occur between different blocks. For example, column j
depends on both columns ki and kj, while columns k; and k>
are in the same level. In this case, the updates to the column j
must be performed using atomic floating point operations.
Finally, each element in subcol is updated by one thread.
In this way, we can take the full advantage of the GPU powers.
Fig. 8 shows the difference for concurrency exploitation and
warp scheduling schemes between the left-looking and the
proposed column-based right-looking algorithm. It can be seen
that there is only one warp sequentially updating current
column with the already factored columns in the left-looking
algorithms. However, in the proposed right-looking algorithm,
multiple warps can use the current column to update many
different subcolumns concurrently.

IV. NUMERICAL RESULTS AND DISCUSSION

The proposed GLU LU factorization algorithm is
implemented in C programming language. The GPU part
is incorporated into the main program with CUDA C
programming interface. The proposed method has been
prototyped in CUDA 5.0 and the experimental results are
carried out in a Linux server with two 8-Core Xeon E5-2670
CPUs, DDR3-1600 64-GB memory. The server also consists
of one K40 GPU and one K20 GPU, which serve as the
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TABLE I
BENCHMARK MATRICES

Name [ N[ NNZ@A) | NNZ(AYN | NNZ(L+UD)
General matrices
cagell 39082 59722 14.3 165367120
cant 62451 4007383 64.2 57830341
barrier2-11 115625 3897557 72.1 193180399
FEM_3D_thermal2 147900 3489300 23.6 93097092
thermomech_dK 204316 2846228 13.9 29085006
mc2depi 525825 2100225 4.0 54346411
epb3 643994 6175377 9.6 31698731
apachel 715176 4817870 39 8679783
ecology2 999999 4995991 5.0 45752523
thermal2 1228045 8580313 4.0 6330643
Circuit matrices
circuit_2 4510 21199 4.7 35612
rajatl5 37261 443573 11.9 2028124
beircuit 68902 375558 5.5 982513
ASIC_100ks 99190 578890 5.8 4271846
hcircuit 105676 513072 4.8 625958
scircuit 170998 958936 5.6 2518316
rajl 263743 1302464 4.9 10771367
ASIC_320ks 321671 1827807 5.7 4838888
rajat30 643994 6175377 9.6 31698731
ASIC_680ks 682712 2329176 7.2 4957172
G3_circuit 1585478 7660826 4.8 376618798
Freescalel 3428755 17052626 5.0 61281350
Self-generated RLC mesh networks

rlcl 1970204 5930208 3.0 10169818
rlc2 3940404 11900408 3.0 21669968

rlc3 5890604 15731208 2.7 29761652
rlc4 15880404 | 47720408 3.0 81367568
rlc5 35621204 | 95082408 2.7 180026381

GPU platforms for the proposed algorithms. Note that all the
GPU results are obtained from the K40 GPU.

A. Performance Comparisons

The benchmark matrices are listed in Table I. The general
matrices set and the circuit matrices set are from the UFL [23],
which are used to evaluate the proposed GPU sparse LU
factorization against other LU solvers. We also include a
set of self-generated RLC mesh networks, which are used
for providing comparison results on large circuit matrices.
In Table I, N is the matrix size, NNZ(A) means the number
of nonzeros of the original matrix A, NNZ(A)/N shows the
average number of nonzeros per row, and NNZ(L + U — I)
shows the number of nonzeros of the L and U matrices. Within
each set, they are ranked with increasing number of N from
top to bottom. Although our intention is for circuit matrices,
we also include some matrices from wide applications to show
that this GLU sparse solver can be applied for wide scientific
and engineering applications.

We compare the proposed GLU solver against the recently
proposed GPU left-looking (GPU-LL) algorithm [20], the
UMFPACK solver [22], which is a right-looking multifrontal
solver, the KLU solver [14], and PARDISO [21], which is a
state-of-the-art parallel sparse LU solver, over the benchmark
matrices in Table I. In our performance evaluation, we use
the CPU time reported by UMFPACK 5.6.2, KLU 1.2.0, and
PARDISO 5.0.0.

Table II summarizes the performance comparison results
over benchmark matrices. In addition, the listed time is
only for numeric factorization, excluding preprocessing and
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symbolic analysis, because the numeric factorization can be
done many times in circuit simulation and consume most
of the simulation time, while the other steps are not signif-
icant. For UMFPACK and KLU, it is difficult to see which
one is better: 1) KLU performs relatively better for circuit
matrices, but are slower for matrices, which take longer time
to factor; 2) UMFPACK beats KLU for general matrices,
which cost hundreds of seconds in their factorization, but is
much slower for circuit matrices; 3) single-threaded PARDISO
performs very well on general matrices, which are denser than
circuit matrices; 4) the 16-threaded PARDISO is very fast
on some of the cases but not so impressive on some large
circuit matrices like ASIC_680ks and all of our self-generated
RLC mesh networks; and 5) GPU-based left-looking
solver, GPU-LL, has very stable performance on all of the
three sets.

The proposed GLU algorithm outperforms the above solvers
on most the matrices cases with various structures. For the
general matrices set, compared with the KLU and UMFPACK,
our speedup can achieve 39.4x and 24.0x on geometric
mean, respectively. In addition, we can see in some cases,
such as mc2depi, the speedup over KLU solver can be as
high as 530x. Compared with the single-threaded and the
16-threaded PARDISO solver, the speedup can be 6.38x and
1.12x on geometric mean, respectively. Compared with the
GPU-LL solver, the speedup ranges from 1.09x to 4.49x,
with 2.35x on geometric mean, which is still quite significant
as the new solver is faster for all the matrices. On the other
hand, we also notice that the speedup highly depends on the
structures of benchmark matrices.

Speedup in some cases, such as barrier2-11, is due to the
fact that there are many denormal floating point numbers
(extremely small real numbers) when factorizing this kind
of matrix. CPU deals denormal numbers much slower
than with normal represented numbers [27]. In contrast,
the GPU can handle these numbers at the same speed as
normal numbers [20]. Therefore, the GPU speedups for these
matrices are very high. The performance comparison on these
matrices clearly demonstrates the advantage of the proposed
method.

We then compare the proposed method against other
solvers on a set of typical circuit matrices, which are also
from the UFL sparse matrix collection [23]. Compared with
the single-threaded and the 16-threaded PARDISO, KLU,
UMFPACK, and GPU-LL, the proposed method achieves
about 5.71x, 1.46x, 19.56x, 47.13x, and 1.47x speedup,
respectively, which further validates the advantage of the
proposed method over the existing LU solvers. The proposed
GLU can be slower than other solvers on very small circuit,
such as circuit_2 and rajat15. The possible reason is that the
computation time is quite small and overheads become more
significant, which was also observed in [28].

Finally, we perform the comparison on a set of self-
generated general RLC meshed networks. We notice that
the KLU solver is highly optimized for such circuit matrices
and it indeed shows better performance. But still the
16-threaded PARDISO gives the best results among all
the CPU sparse solver. However, the new GLU method



1148

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 3, MARCH 2016

TABLE II

PERFORMANCE COMPARISON OVER BENCHMARK MATRICES

Bechmark GLU PARDISO KLU UMFPACK | GPU-LL Speedup over
name Runtime T=1 T=16 Runtime Runtime Runtime PARDISO KLU UMFPACK | GPU-LL
(s) (s) (s) (s) (s) (s) T=1 [ T=16
General matrices

cagell 5.875 23.778 | 3.180 781.360 163.240 16.840 4.04 0.54 133.00 27.79 2.87

cant 3.662 3.543 0.491 33.741 18.1 11.03 0.97 0.13 9.21 4.94 3.01

barrier2-11 7.434 38.622 | 4.491 475.690 204.059 23.667 5.20 0.60 63.99 27.45 3.18

FEM_3D_thermal2 0.898 5.658 0.864 85.201 40.94 2.583 6.30 0.96 94.88 45.59 3.71

thermomech_dK 0.053 1.501 0.274 7.090 4.527 0.238 28.32 5.17 133.77 85.42 4.49

mc2depi 0.049 0.587 0.325 25.970 20.986 0.197 11.97 6.63 530.00 428.29 4.02

epb3 0.043 0.210 0.051 0.652 0.560 0.047 4.88 1.19 15.16 13.02 1.09

apachel 0.490 2.318 0.415 14.241 7.437 0.560 473 0.85 29.06 15.17 1.14

ecology2 6.940 6.604 0.928 38.131 25.330 8.990 0.95 0.13 5.49 3.64 1.30

thermal2 0.066 7.668 1.043 0.466 0.943 0.112 116.18 | 15.80 7.06 14.29 1.70

Arithmetic mean 18.36 3.20 102.16 66.56 2.65

Geometric mean 6.38 1.12 39.39 24.04 2.35

Circuit matrices

circuit_2 0.008 0.002 0.004 0.004 0.006 0.011 0.25 0.50 0.54 0.78 1.43

rajatl5 0.163 0.090 0.020 0.293 0.447 0.203 0.55 0.12 1.79 2.74 1.24

beircuit 0.009 0.052 0.013 0.065 0.205 0.030 5.78 1.44 7.22 22.78 3.33

ASIC_100ks 0.031 0.292 0.090, 1.660 1.871 0.032 9.42 2.90 54.25 61.15 1.05

hcircuit 0.009 0.048 0.018 0.030 0.253 0.014 5.33 2.00 3.33 28.11 1.55

scircuit 0.056 0.13 0.031 0.339 0.829 0.106 2.32 0.55 6.05 14.80 1.89

rajl 0.189 0.355 0.078 73.842 125.799 0.211 1.88 0.41 390.69 665.60 1.12

ASIC_320ks 0.058 1.328 0.264 3.703 9.156 0.081 22.90 4.55 63.75 157.63 1.39

rajat30 1.234 6.309 1.468 0.317 230.59 1.864 1.19 0.26 15.58 186.86 1.51

ASIC_680ks 0.054 20.246 | 2.526 1.298 4.679 0.070 37493 | 46.78 24.09 86.86 1.30

G3_circuit 0.672 26.464 | 3.467 516.882 133.358 1.054 39.38 5.16 769.16 198.44 1.57

Freescalel 0.235 4.004 0.689 13.486 67.414 0.284 17.04 2.93 57.45 287.20 1.21

Arithmetic mean 40.08 5.63 116.16 142.74 1.55

Geometric mean 5.71 1.46 19.56 47.13 1.47

Self-generated general RLC mesh networks

rlcl 0.080 0.730 0.326 0.558 1.746 0.135 9.13 4.08 7.02 21.96 1.70

rlc2 0.180 1.567 0.419 1.263 6.499 0.267 8.71 2.33 7.04 36.21 1.49

rlc3 0.213 2.493 0.684 1.504 6.892 0.359 11.70 3.21 7.05 32.39 1.69

rlc4 0.626 5.770 1.545 4.638 fail 0.996 9.22 2.47 7.41 - 1.59

rlc5 1.274 15.539 | 3.279 9.807 fail 1.985 12.20 2.57 7.70 - 1.56

Arithmetic mean 10.19 2.93 7.24 30.19 1.61

Geometric mean 10.09 2.87 7.24 29.53 1.60

Note: the GPU time includes the numeric factorization time and the time cost of data transfers between host and device.

outperforms KLU about 7.24x on average. In addition, the
UMFPACK solver runs out of memory on two largest matrices.
For the other three matrices, the proposed method also delivers
about 29.53x speedup compared with UMFPACK solver.
In addition, GLU outperforms single-threaded and 16-threaded
PARDISO with 10.09x and 2.87x on average. Compared
with the GPU-LL solver, GLU achieves about 1.60x speedup
and it again consistently outperform the GPU-LL solver
on all the examples, which further demonstrates the
advantage of the proposed method over the existing
GPU-LL method.

B. Impacts of Warp Number on Performance

Next, we study one important design parameter and its
impacts on performance of the GLU solver. We observe that
one important parameter for the proposed solver is the number
of warps allowed for each block or SM. Fig. 9 shows the
speedup over KLU on four matrices on K40 GPU, with
different number of warps per SM. The best performance
is achieved when the number of resident warps per SM is
around eight.

=¥=scircuit thermal2 ==rlcl

=l=ecology2

Speedup over KLU
w IS

0 4 8 12 16 20 24 28 32
Warp number per SM

Fig. 9. Speedup over KLU versus number of warps per SM on K40c.

As we mentioned in Section III-D, we use one warp to
process one subcolumn. Although more active warps can
attain a higher parallelism, processing too many subcolumns
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simultaneously may decrease the performance. There
are several reasons for this. First, there may not be enough
subcolumns as the matrix is sparse, while more resident warps
mean more overhead on SM. Second, it may lead to more
memory access conflicts as the threads need to perform slow
atomic operations. With a threshold warp number set to eight,
the performance reaches its best in terms of those tradeoffs.
When we further increase the number of warp, although
there are more threads, the parallelism will not be further
exploited, so the performance starts to degrade. Note that such
golden number of warp number depends on the structure of
sparse matrix, and a few tries are needed to find the optimal
number.

V. CONCLUSION

We have proposed a new sparse LU solver on GPUs for
circuit simulation and more general scientific computing.
The new algorithm is based on a hybrid right-looking LU
factorization method, which we showed, is more suitable
for GPU computing as it can exploit more parallelism than
the widely used left-looking LU factorization algorithm.
We further showed how the three loops of LU factorization
can be parallelized based on the GPU thread structures, while
the existing GPU left-looking LU factorization method can
only parallelize two loops. Numerical results show that the
proposed GLU solver can deliver 5.71x and 1.46x speedup
over the single-threaded and the 16-threaded PARDISO
solvers, respectively, 19.56x speedup over the KLU solver,
47.13x over the UMFPACK solver, and 1.47x speedup over
a recently proposed GPU-based left-looking LU solver on the
set of typical circuit matrices from the UFL. Furthermore,
we also compare the proposed GLU solver on a set of
general matrices from the UFL, GLU achieves 6.38x and
1.12x speedup over the single-threaded and the 16-threaded
PARDISO solvers, respectively, 39.39x speedup over the
KLU solver, 24.04x over the UMFPACK solver, and 2.35x
speedup over the same GPU-based left-looking LU solver.
In addition, comparison on self-generated RLC mesh
networks shows a similar trend, which further validates the
advantage of the proposed method over the existing sparse
LU solvers.
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