
PRIMAL DUAL PURSUIT
A HOMOTOPY BASED ALGORITHM FOR THE

DANTZIG SELECTOR

A Thesis
Presented to

The Academic Faculty

by

Muhammad Salman Asif

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2008

PRIMAL DUAL PURSUIT
A HOMOTOPY BASED ALGORITHM FOR THE

DANTZIG SELECTOR

Approved by:

Justin K. Romberg, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

James H. McClellan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Russell M. Mersereau
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: June 20, 2008

To

My parents with utmost respect,

Haiqa and Dayan with best dreams.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Justin Romberg, for all the

inspiration, motivation and guidance. Without his invaluable insight and constant

mentoring this thesis would have not been possible. I will always be grateful to him

for introducing me to this research area with so many new and exciting problems

and helping me all along the way. I cannot thank him enough for the long hours

of discussion on any problem I brought to him; anytime, anywhere. I also want to

thank him for reading all the drafts of this thesis, his suggestions helped a lot in

improving its content and presentation. I am grateful to him for being so friendly,

patient and kind to me all the time (not to mention all the squash games he beats

me in, ruthlessly!).

I want to thank my thesis committee members Prof. James McClellan and Prof.

Russell Mersereau for their encouraging remarks about this work. I would like to

thank my teachers here at Georgia Tech., all of whom influenced me a lot. I would

like to thank Profs. William Green and Michael Westdickenberg who taught me about

mathematical analysis. I would also like to thank Profs. John Barry and Faramarz

Fekri for their exciting classes in my first semester here.

I would like to extend my gratitude towards my undergraduate advisor, Amjad

Luna, whose guidance has been instrumental in every possible way, Thankyou! I

would also like to thank all my teachers (and later colleagues) at UET Lahore, without

whom I would not have been here.

Many thanks to all my friends who made my time here a lot more enjoyable than

I had anticipated. First of all, I must thank Farasat Munir and Mohammad Omer

for being a huge support to me whenever I needed them. I cherish their friendship

iv

a lot. I especially want to thank Omer for his help and consideration at all those

times when I have nobody else to talk to. I also want to thank my roommate Umair

Bin Altaf (“patti”) for all the great time so far, for forcing me to learn LATEX (along

with many other things) and carefully reading the initial drafts of my thesis. William

Mantzel, with whom I discuss almost all of my research problems and he never gets

tired of it, Thanks!. Also I wish to thank Aaron Hatch with whom I have taken most

of my classes here and it has always been fun to spend time with him.

Last but not the least, to those who mean the most to me, my family. I am

wholeheartedly thankful to my parents, my sisters Hana and Madiha, and my brother

Nauman for their love and help throughout my life. Without their support and

confidence in me, I could never have done this or anything!

Salman,

June 2008

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

II COMPRESSED SENSING . 5

2.1 Measurement model for compressed sensing 6

2.2 `1 norm minimization . 7

2.3 Uncertainty principles . 9

2.4 Sparse signal recovery from compressed measurements 11

2.4.1 Recovery from noiseless measurements 11

2.4.2 Stable recovery from noisy measurements 12

2.4.3 Dantzig selector . 13

2.5 Random Sensing . 14

III PRIMAL DUAL PURSUIT ALGORITHM 17

3.1 Introduction . 17

3.2 Dantzig selector and its dual . 18

3.3 Homotopy for Dantzig selector . 19

3.4 Main algorithm . 21

3.4.1 Primal update . 22

3.4.2 Dual update . 23

3.4.3 Geometry of primal and dual constraints 24

3.4.4 Update directions . 24

3.4.5 More on primal-dual update 26

3.4.6 Initialization . 27

3.4.7 Degenerate cases . 27

vi

3.5 Comparison with DASSO . 29

IV ANALYSIS OF PRIMAL DUAL PURSUIT 31

4.1 S-step solution property . 31

4.1.1 Dantzig shrinkability . 33

4.1.2 Sufficient conditions for Dantzig shrinkability 35

4.2 Dantzig shrinkability with random matrices 36

4.2.1 The Gaussian ensemble . 38

4.2.2 The Bernoulli ensemble . 42

4.3 Dantzig shrinkability with incoherent ensemble 44

4.4 Dantzig selector and Lasso . 46

4.5 Discussion and future work . 48

V NUMERICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS 50

5.1 Numerical implementation . 50

5.2 Block matrix update . 50

5.2.1 Adding new columns . 51

5.2.2 Deleting columns . 52

5.2.3 Replacement of columns . 54

5.3 Experimental results . 54

APPENDIX A PRIMAL DUAL FORMULATION 67

REFERENCES . 72

vii

LIST OF FIGURES

1 Compressed sensing model . 7

2 Geometry of `1 minimization . 9

3 Performance results for Gaussian matrix 57

4 Performance results for Gaussian matrix 58

5 Performance results for Bernoulli matrix 59

6 Performance results for Bernoulli matrix 60

7 Performance results for orthogonalized Gaussian matrix 61

8 Performance results for orthogonalized Gaussian matrix 62

9 Performance results for partial Hadamard matrix 63

10 Performance results for partial Hadamard matrix 64

11 Performance results for partial Hadamard matrix (n=1024) 65

12 Performance results for partial Hadamard matrix (n=1024) 66

viii

SUMMARY

The Dantzig selector is a near ideal estimator for recovery of sparse signals

from linear measurements. Consider the following measurement model

y = Ax+ e,

where x is the n-dimensional sparse signal, y is the measurement vector in a much

lower dimension m � n, A is the m × n measurement/sensing matrix and e is the

error in our measurements. The Dantzig selector estimates x by solving the following

optimization program

minimize ‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ ε, (DS)

for some ε > 0. This is a convex program, can be recast as a linear program (LP)

and solved using any modern optimization method e.g., interior point methods.

In this thesis we propose a fast and efficient scheme for solving the Dantzig Selector

(DS), which we call “Primal-Dual pursuit”. This algorithm can be thought of as

a primal-dual homotopy approach to solve the Dantzig selector. It computes the

solution to (DS) for a range of ε values, by starting with a large ε and moving towards

the desired value. Our algorithm successively updates the primal and dual supports

as ε reduces to the desired value, which gives the final solution. The homotopy path

taken by solution of (DS) with varying ε is piecewise linear. At the critical values of ε

in this path, either some new elements enter the support of the signal or some existing

elements leave the support. We derive the optimality and feasibility conditions which

are used to update the solutions at these critical points. We also present a detailed

analysis of primal-dual pursuit for sparse signals in noiseless case. We show that if our

signal is S-sparse, then we can find all its S elements in exactly S steps using about

ix

S2 · log n random measurements with very high probability (although in practice we

observe this property with only S · log n measurements).

The step-wise structure of this scheme helps us to have a very fast implementation

in which we do not need to solve a large system of equations at each step (as we do

in conventional optimization routines). Instead, we just update our existing solution

whenever the supports change, which we can do very efficiently by low rank update

of inverse matrices.

x

CHAPTER I

INTRODUCTION

In recent few years theory of compressed sensing has captured a lot of interest in

applied mathematics and statistics community. This theory attempts to answer one

fundamental question in signal processing and harmonic analysis: how much infor-

mation about a signal would be sufficient for its exact reconstruction?

In signal processing, we usually answer this question using Shannon-Nyquist Sam-

pling theorem, which says

If a function f(t) contains no frequencies higher than W cycles per second,

it is completely determined by giving its ordinates at a series of points

spaced 1/(2W) seconds apart.

Sampling theorem tells us that in order to reconstruct a bandlimited signal from its

discrete samples we need to take samples at atleast twice the maximum frequency in

our signal (known as Nyquist rate). In fact this is the underlying principle in nearly

all data acquisition schemes used in practice. However, in many applications Nyquist

rate can be so high that we need to compress our sampled data before we can store

or transmit it, e.g., images and videos. Even with modern-day technology no system

can handle image or video signals without compression. In many other applications

e.g., medical imaging and high frequency analog-to-digital converters, increasing the

sampling rate beyond the current state-of-the art is very expensive.

It is well known that most signals of our interest can be represented using very

few coefficients in some appropriate basis [19, 38]. For example pure sinusoids in

Fourier basis and piecewise smooth signals in wavelet basis. In addition to Fourier

and wavelet basis we have local cosine basis, wavelet packets [5, 21, 38] and curvelets

1

[12], along with numerous other representations in the expanding family of ‘-lets’.

In many modern compression schemes e.g., transform coding, we take advantage of

this fact that a small number of coefficients in some suitable basis will be sufficient

to represent a signal without causing much perceptual loss. We call such basis as

“sparsity inducing” and the signal as being “compressible” in that basis. The entries

of a compressible signal decay very rapidly when sorted with their magnitude, usually

following some power law. And we can form a good approximation of the signal by

coding only few largest coefficients. For example images tend to be compressible with

discrete cosine transform (DCT) and wavelets on which JPEG [45] and JPEG2000

[50] compression standards1 are based respectively.

In short, if a signal is known to be compressible in some basis, we transform it

from natural basis (time or space) to its respective sparsity inducing basis. Then we

encode only a small number of the most significant coefficients (depending on the

desired compression ratio and acceptable distortion) and throw away the rest. This

approach is known as “non linear approximation” or “best k-term approximation”

[38], where k denotes the number of elements which are encoded. It is an adaptive

scheme (i.e., signal dependent) and we need to compute all the transform coefficients

before choosing the best k terms, as the location of important coefficients is not known

in advance.

This scheme of compression, where we acquire a complete signal, encode a small

portion out of it and throw away everything else, seems to be very wasteful. This

raises a fundamental question: since we know that signals/images which we acquire

are sparse or compressible in some known basis, so why should we spend energy on

acquiring all the data we will throw eventually? Is it possible to combine the data

acquisition (sensing) and compression into one step, so that we capture only as much

1In these standards weighted quantization and adaptive bit allocation are used to achieve com-
pression instead of truncating signal to only few largest coefficients.

2

data as we will be keeping at the end? The answer is yes, and this is what compressed

sensing is all about.

Compressed sensing offers us an alternative to the traditional sampling schemes.

It provides us framework for a novel sampling or “sensing” mechanism which combines

compression and sampling. In a way it brings down the acquisition rate to a much

lower value than what is dictated by the sampling theorem. The underlying principles

to compressed sensing are sparsity of the observed signal in some basis and incoherence

between the measurement and representation bases. For example, it suggests that

if a signal x ∈ Rn has only S non-zero entries, then we do not need all n samples,

instead we can almost always recover x from about S · log n linear measurements.

And that is what gives us compression along with acquisition. However, an added

cost to this procedure is that our reconstruction phenomenon becomes highly non

linear. For reconstruction we have to solve an optimization program which involves

minimizing some sparsity measure under certain data fidelity constraints. There have

been many approaches discussed in literature for sparse signal recovery from linear

measurements, for example, relaxed convex optimization based methods [9, 13, 24, 53],

greedy approximation algorithms [41, 51, 54], gradient projection algorithms [29],

iterative shrinkage methods [20], homotopy based methods [28, 43] and iterative re-

weighted norm based algorithms [32, 46].

In compressed sensing we are typically interested in minimizing `1 norm of the

sparse coefficients under some data fidelity constraints. In this thesis our main focus

will be on the Dantzig selector [10], which is a near ideal estimator for recovery of

sparse signals from linear measurements. Dantzig selector is convex in nature and can

be recast as a linear program (LP). Our main contribution here is a new homotopy

based algorithm for Dantzig selector, which can potentially replace the optimization

routines currently being used for that purpose. We call this new algorithm “primal-

dual pursuit” or “PD-pursuit”.

3

The organization of thesis is as follows. In chapter 2 we will give a brief intro-

duction to compressed sensing. In chapter 3 we will present the primal-dual pursuit

algorithm. In chapter 4 we will give detailed analysis about the S-step solution prop-

erty of our algorithm and discuss the similarities of Dantzig selector with LASSO.

We will also discuss there some challenges we faced to establish this property. In

chapter 5 we will discuss the numerical implementation and experimental results for

our proposed algorithm.

4

CHAPTER II

COMPRESSED SENSING

Compressed sensing [23] or compressive sampling [1, 6] (CS) is a novel sensing or

sampling paradigm which suggests that under certain conditions one can almost al-

ways recover a signal or image from far fewer samples or linear measurements than

required by traditional data acquisition schemes. Moreover these measurements are

completely non-adaptive; we do not assume any knowledge about the locations or am-

plitude of signal coefficients. The reconstruction phenomenon however is non linear

and we have to solve a convex program to reconstruct the signal.

The conditions for exact reconstruction involve “sparsity” of signal in some rep-

resentation basis and “incoherence” between the representation and measurement

bases.

Sparsity of a signal is defined as the number of non-zero elements in signal un-

der some representation. We will say a signal is S-sparse if its support is of

cardinality less than or equal to S. Support of a signal x ∈ Rn is defined as

supp(x)
def
= {i : xi 6= 0}.

If our signal is not perfectly sparse but compressible (i.e., decay rapidly), then

we can extend the ideas of CS to best S-term approximation.

Incoherence gives a measure of signal concentration/sparsity in two different bases.

It deals with the idea that if our signal is concentrated or sparse in one basis

then we should take measurements in some basis where it is well spread out.

5

2.1 Measurement model for compressed sensing

Consider a general problem of reconstructing a signal x ∈ Rn from its m linear

measurements y of the form

yk = 〈x, ϕk〉, k = 1, . . . ,m or y = Φx,

where each measurement yk is given by an inner product of signal x with some “sens-

ing” function ϕk ∈ Rn, and Φ will be called a sensing or measurement matrix. This is

a generalized methodology for “sampling” a signal which we will call “sensing”. The

choice of ϕk gives us flexibility in the design as how to gather information about x. If

we take ϕk as Dirac delta functions (spikes), then y is a vector of samples in time or

space domain, so our sensing methodology becomes conventional sampling. If the ϕk

are block indicator functions of pixels, then y is the image data typically collected by

sensor array in a digital camera. If the ϕk are complex sinusoids at different frequen-

cies then y is a vector of Fourier coefficients; as in the case of magnetic resonance

imaging (MRI). The choice of sensing functions ϕk has some strong implications in

signal recovery as well. As indicated earlier, our signal must be well spread out in

the basis where we take measurements, this ensures that we get enough information

from the under-sampled data such that reconstruction is possible.

In case of compressed sensing we are interested in takingm linear and non-adaptive

measurements y, where m � n, and we want to recover x from such “compressed

measurements”. In order to reconstruct x from y, we need to solve the following

system of linear equations

Φx = y. (2.1)

This is an under-determined system, where the dimension of observation vector is

significantly smaller than the dimension of original signal. In general, it is impossible

to find the exact solution from an under-determined system of equations. Since

m � n in (2.1), there exist infinitely many possible solutions, and they all lie on

6

=y ©
m£n x

Figure 1: Compressed Sensing model: Matrix form of under-determined system of
linear equations. Here Φ is an m×n measurement matrix, x is an n dimensional and
y is an m dimensional vector, where m� n.

the (n−m)-dimensional hyperplane H := {x̂ : Φx̂ = y} = N (Φ) + x in Rn, which

corresponds to the null space N (Φ) of Φ translated by the true solution x.

2.2 `1 norm minimization

We usually solve such inverse problems (2.1) by using least norm procedure, given by

minimize ‖x̃‖ subject to Φx̃ = y, (2.2)

where ‖ · ‖ is some norm defined on Rn. The most common approach to solve (2.1)

involves Euclidean or `2 norm in (2.2), which we will call minimum `2 norm recon-

struction, given as following optimization problem,

minimize ‖x̃‖2
2 subject to Φx̃ = y, (P2)

for which an analytical solution exists and is given by

x̂ = Φ∗(ΦΦ∗)−1y,

where Φ∗ is adjoint of the measurement matrix Φ. In most cases least-norm solution

with Euclidean norm gives very poor results. However, if we know a priori that our

signal is sparse, then we can do much much better and that is the main tenet of

7

CS theory. It tells us about how and when will exact recovery of a sparse signal be

possible from its compressed measurements!

If we know a priori that our original signal x is sparse, then a natural choice

would be to find a vector in H with least non-zero entries. This leads to the following

optimization problem

minimize ‖x̃‖0 subject to Φx̃ = y, (P0)

where ‖x̃‖0 := |supp(x̃)|, ‖ · ‖0 is not a norm by definition, but is known as `0 quasi-

norm. Unfortunately, this problem requires a search through all possible subsets of

Φ, looking for a sparse subset which satisfies exact solution property. In general, it is

not feasible to solve such a combinatorial optimization problem and it is known to be

NP-hard [40]. Fortunately we can do almost as well with a relaxed convex problem

which minimizes `1 norm of x, which we will call minimum `1 norm reconstruction,

given as following optimization problem,

minimize ‖x̃‖1 subject to Φx̃ = y (P1)

where ‖x̃‖1 =
∑
|x̃i| is the `1 norm of x̃. (P1) is also known as Basis Pursuit (BP) in

literature [17]. This is a convex program and can be recast as a linear program [17]

and solved using any modern optimization technique [4].

Why `1 and not `2? We can get some intuition for why minimum `1 norm recon-

struction performs better than minimum `2 norm reconstruction in the case of sparse

signals by looking at the geometry of `1 and `2 balls, as depicted in Figure 2. The

figure demonstrates an oversimplified situation in R2 but we will have to, somehow,

visualize a similar structure in higher dimensions [2]. Part(a) illustrates an `1 ball of

radius r in R2. First note that it is anisotropic; it is “pointy” along the axes (com-

pared to the standard Euclidean or `2 ball, which is spherical and thus completely

isotropic). Let us assume our original signal x ∈ R2 has only one non-zero element

8

(a) (b) (c)

H = {x̂ : Φx̂ = y} H = {x̂ : Φx̂ = y}

x∗
ℓ1
= x

x∗
ℓ2

x1

x2

r

Figure 2: Geometry of `1 minimization. (a) an `1 ball of radius r. (b) H represents a
hyperplane where all possible solutions to Φx = y, and `1 ball meets the hyperplane
at some vertex. (c) an `2 ball touching H at point closest to the origin.

in its second coordinate, say x = [0 r]T , and we take only one measurement of that.

In part(b), H denotes the line in R2 (will be a hyperplane in higher dimensions) on

which all possible solutions x̂ lie which satisfy Φx̂ = y. Orientation of this hyperplane

will depend on the measurement(s) and original signal x. To visualize how `1 recon-

struction works, imagine that we start to inflate `1 ball from origin until it touches

the hyperplane H at some point, vector at that point will be the solution to (P1). In

part(b) it is denoted by x∗`1 , which is the exact solution in our case. Now if we replace

`1 norm with `2 norm, and do the same thing as inflate `2 ball from origin until it hits

H at some point. In part(c) it is denoted as x∗`2 , which is the point on H closest to the

origin, not even close to the sparse solution. In higher dimensions this difference will

be more pronounced. Since `2 ball is perfectly uniform along all dimensions, with very

high probability `2 norm solution will live away from the coordinate axes. Whereas

the pointy structure of `1 ball will enable it to touch hyperplane H at a point near

the coordinate axes, which is precisely where sparse vector is located.

2.3 Uncertainty principles

There is still one piece missing here; what conditions must be obeyed by the mea-

surements? Here kicks in the incoherence! As we discussed earlier that if our signal

9

is sparse in one basis, we should take measurements in some basis where it is well

spread out. Equivalently our sensing function should be spread out in the basis where

signal is sparse, which means representation and measurement bases should be highly

incoherent. That’s how compressed sensing works: sample a sparse signal in some

incoherent basis and reconstruct it using `1 minimization.

To see this let’s consider an example in time and frequency domain. Suppose

our signal x ∈ Rn is supported on an unknown subset T in time domain, where

|T | � n. It is shown in [13] that x can be reconstructed from m & |T | · log n Fourier

coefficients chosen independently at random by solving (P1), where rows of Φ would

correspond to the complex sinusoids at selected frequencies. This tells us that if our

signal is S-sparse in time we can recover it from about S · log n Fourier measurements

at randomly chosen frequencies. Note that we cannot expect to recover x from less

than n time samples, as the support set T is unknown and we will hit zero locations

most of the time. But as it is well known that a signal which is concentrated in time

will be well spread out in frequency; ”time-frequency uncertainty principle” [25, 27],

so we can under-sample a time domain sparse signal in frequency and still get enough

information to recover the original signal perfectly. And similarly if a signal is S-

sparse in frequency (i.e., composed of just S sinusoids), we can recover it from about

S · log n time samples at random locations.

In [11, 14] Candés and Tao quantified the conditions which any measurement

matrix should obey. For that purpose they introduced the notion of uniform uncer-

tainty principle (UUP). The UUP essentially requires that the m× n sensing matrix

Φ obeys “restricted isometry property” (RIP). Let T ⊂ {1, . . . , n} and ΦT be the

m × |T | matrix obtained by extracting the columns of Φ indexed by elements in T ,

then S-restricted isometry constant δS of Φ is defined as the smallest quantity such

that

(1− δS)‖c‖2
2 ≤ ‖ΦT c‖2

2 ≤ (1 + δS)‖c‖2
2 (2.3)

10

for all subsets T with |T | ≤ S and coefficient sequence (cj)j∈T . The UUP or RIP

essentially requires δS not to be very close to 1. In which case, every subset of columns

with cardinality less than S will approximately behave like an orthonormal system.

Hence, the name “near isometry” or “restricted isometry”. Exact reconstruction of

any sparse signal is closely tied to the UUP condition (2.3). Loosely speaking, if

our signal x is supported on a set T , then we want sub-matrix ΦT to be very well-

conditioned, otherwise reconstruction will be impossible. This becomes obvious if we

write (2.3) in the following equivalent form

(1− δS) ≤ λmin(Φ∗TΦT) ≤ λmax(Φ∗TΦT) ≤ (1 + δS). (2.4)

2.4 Sparse signal recovery from compressed measurements

Here we will mention some theoretical results about recovery of sparse and compress-

ible signals from compressed measurements. In addition to that we will discuss some

optimization models which are used for signal recovery from noisy measurements.

2.4.1 Recovery from noiseless measurements

Let us first consider the simplest case where our signal x is S-sparse and our mea-

surements are noise free, i.e., y = Φx. It is shown in [14] that if Φ obeys restricted

isometry at level S such that1 δ2S + δ3S < 1, then the solution x∗ to (P1) is unique

and it is exact, i.e., x∗ = x. For details see [9, 14, 15].

The result about exactly sparse signals can be extended to compressible signals

as well. Although in that case we cannot reconstruct original signal but we can get

something very close to the best S-term approximation. Let xS be the best S-term

approximation of a signal x. It turns out that if Φ obeys the same conditions of

restricted isometry i.e., δ2S + δ3S < 1, then the solution x∗ to (P1) obeys

‖x∗ − x‖2 ≤ C · ‖x− xS‖1√
S

,

1(P0) will have unique solution whenever δ2S < 1.

11

where C is a small constant. For details see [9, 15].

2.4.2 Stable recovery from noisy measurements

In any practical system we cannot discount the presence of noise. This noise can

be due to imperfections in the measuring devices or it can be due to quantization

of measurements. So to be more realistic we need to assume that we have some

inaccurate measurements and our task is to recover signal from them. Let us consider

the following model for that purpose

y = Φx+ z, (2.5)

where z is some unknown stochastic or deterministic error term. Since our matrix Φ is

rank deficient and our system is an underdetermined affine system, here perturbations

can easily blow up the inversion process. For stable recovery, we want that small

perturbations in measurements should not blow up our actual solutions, i.e., small

changes in the measurements should result in small changes in the solution. For

that purpose we need to modify our recovery mechanism as well. In order to take

noise into account, we need to add some data fidelity constraint along with `1 norm

minimization in our recovery algorithm. One possible formulation is given as

minimize ‖x̃‖1 subject to ‖Φx̃− y‖2 ≤ ε. (PQC)

The program (PQC) can be recast as a second order cone program (SOCP) [4] and

solved using some convex optimization package [16, 29, 33]. There exist some variants

on (PQC) in statistics community, especially in the areas of model/variable selection

and regression analysis, e.g., “basis pursuit denoising” (BPDN) [17] and “least abso-

lute shrinkage and selection operator” (LASSO) [52].

It is shown in [9] that solving (PQC) will recover sparse signals with an error at

most proportional to the noise level. If the matrix Φ obeys δ3S + 3δ4S < 2, and noise

12

term z has bounded energy ‖z‖2 ≤ ε. The solution x∗ to (PQC) obeys

‖x∗ − x‖2 ≤ C1 · ε+ C2 ·
‖x− xS‖1√

S
. (2.6)

This result is not limited to exactly sparse signals but also gives error estimate for the

case of compressible signals; for S-sparse signals second term on right side of (2.6)

will become zero.

In order to see how well we do with this, consider the same model in (2.5) with S-

sparse signal x ∈ Rn and Gaussian noise z ∈ Rm, where z1, . . . , zm are i.i.d. Gaussian

with mean zero and variance σ2. Since z is a vector with i.i.d. Gaussian entries, ‖z‖2
2

will be distributed as a chi-squared with m degrees of freedom. If x is an S-sparse

vector, then from (2.6) the solution x∗ to (PQC) will obey

‖x− x∗‖2
2 ≤ C ·m σ2 (2.7)

with high probability.

Here we have m measurement variables, each contaminated with noise of variance

σ2, so mσ2 is not bad. But since we know that only S elements in our unknown

vector x are non-zero, so can we reduce error term to near something like Sσ2? It is

important to note here that if we know the support of signal beforehand then we can

achieve an error estimate of about Sσ2, so in a sense this is what we expect from an

ideal estimator [6, 10].

2.4.3 Dantzig selector

In [10] Candès and Tao showed that we can do almost as good as an ideal estimator

by using a new type of estimator they called Dantzig Selector (DS). The Dantzig

selector estimates x by solving the following optimization program

minimize ‖x̃‖1 subject to ‖Φ∗(Φx̃− y)‖∞ ≤ λ · σ (DS)

for some λ > 0, where ‖·‖∞ is the `∞ or supremum norm defined as ‖x̃‖∞ = maxi |x̃i|.

The program (DS) is convex and can be recast as a linear program [16]. The main

13

result for accuracy of Dantzig selector is as follows: Assume columns of Φ are unit

norm, and choose λ = (1+ t−1)
√

2 log n with some t > 0 in (DS). If x is highly sparse

and Φ obeys UUP, then with high probability, the solution x∗ to (DS) obeys

‖x− x∗‖2
2 ≤ C · 2 log n ·

(
σ2 +

n∑
i=1

min(x2
i , σ

2)

)
, (2.8)

where C is some known constant (for details see [10]). An extension of this result

is available for nearly sparse signals. This result says that Dantzig selector achieves

the squared error within a logarithmic factor of the mean squared error of an ideal

estimator; which we could achieve only with perfect information about which coor-

dinates are non-zero and which of them are above noise level. Here the logarithmic

factor in the error term can be considered as a penalty we pay for not knowing the

support of x in advance. In the same spirit, recently some other results are proposed

as well which promise near ideal estimation with Lasso, for details see [3, 7, 39]

As a final remark, note that Dantzig selector is analogous to soft thresholding [26].

If Φ is an orthonormal n× n matrix, then (DS) is equivalent to soft thresholding (in

the Φ domain), which can be written as

minimize ‖x‖1 subject to ‖ỹ − x‖∞ ≤ λ · σ where (ỹ = Φy).

So loosely speaking, Dantzig selector is equivalent to soft thresholding or shrinkage

for “incomplete observations”.

2.5 Random Sensing

In previous sections all the results we have seen depend on some conditions related

to UUP. In this section we will discuss some measurement matrices which obey UUP.

Ideally we would like to design the m × n measurement matrix Φ which would

obey UUP at sparsity level S with as fewer measurements, m as possible. The design

of matrix Φ involves choice of n vectors in m dimensional space such that any subset

of S such vectors be nearly orthogonal. All the known constructions of measurement

14

matrices which provably obey UUP are based on principle of random sensing i.e.,

their entries are either instances of i.i.d. random variable or independently picked at

random from some basis which is incoherent to the representation basis. Here are

some examples of matrices which obey UUP with high probability.

Gaussian measurements: The entries of Φ are chosen independently from the

normal distribution with mean zero and variance 1/m. If

m ≥ C · S · log(n/S), (2.9)

then Φ will obey UUP with probability at least 1−O(e−γn) for some γ > 0 [11].

Bernoulli measurement : The entries of Φ are independently chosen from sym-

metric Bernoulli distribution: P(Φkj = ±1/
√
m) = 1/2. If condition in (2.9)

holds then Φ will obey UUP with probability 1−O(e−γn) for some γ > 0 [11].

Fourier measurements: Suppose Φ is a partial Fourier matrix with its rows cho-

sen uniformly at random, re-normalize it so that the columns have unit norm

(otherwise we will have an extra m/n factor in (2.3)). If

m ≥ C · S · logα n,

then with high probability, UUP holds for partial Fourier matrix, where α ≥ 4

[11, 47].

Incoherent measurements: Suppose that the measurement matrix Φ is obtained

by selecting m rows from an n× n orthonormal matrix U uniformly at random

and re-normalized so that each column has unit norm. If our signal x = Ψα is

S-sparse in basis Ψ (i.e., ‖α‖0 ≤ S), where Ψ is known to be incoherent with

Φ. Then we can extend the ideas from Fourier measurements to any incoherent

measurements [6, 8]. If

m ≥ C · µ2(Φ,Ψ) · S · log4 n,

15

then Φ′ = ΦΨ will obey UUP, where µ(Φ,Ψ) :=
√
n max

i,j
|〈ϕi, ψj〉| is mutual co-

herence. So smaller the coherence (higher the incoherence), smaller the required

number of measurements.

In the case of incoherent bases, we can write our measurements as

y = Φx = ΦΨα = Φ′α,

where Φ′ = ΦΨ is a composite m × n matrix. One way to recover x is by

finding the expansion coefficients vector α with minimum `1 norm which is

also consistent with measurement data, which gives us following optimization

problem

minimize ‖α̃‖1 subject to Φ′α̃ = y (2.10)

This type of reconstruction is also known as Synthesis-based `1 minimization.

Almost all the results about matrices obeying UUP are based on concepts related

to deviation of the smallest and largest singular values of random matrices [11]. An

important thing to note here is that the ambient dimension of signal, n doesn’t

affect the required number of measurements, m very much, instead m just depend

logarithmically on n, hence dictated mainly by the sparsity level of signal, S.

16

CHAPTER III

PRIMAL DUAL PURSUIT ALGORITHM

3.1 Introduction

The main result of compressed sensing says that under some conditions on sparsity

and incoherence, a sparse signal can be recovered exactly from a small number of

linear measurements. All the convex programs, we have seen for signal recovery,

solve a minimization problem where they minimize `1 norm of sparse coefficients un-

der some data fidelity constraints. These problems can be recast as linear program

(LP) or second order cone program (SOCP), and can be solved using tools from con-

vex optimization like Interior point methods e.g., in `1-magic [16]. Some excellent

advancements made in the area of interior point methods have made possible the

polynomial time solution of these problems [42]. Although the interior point methods

are really fast compared to classical simplex methods but still for some large scale

problems e.g., imaging, these methods tend to be slow. The main computational bur-

den in interior point method comes from solving a large system of linear equations for

every Newton iteration, which can be solved using conjugate gradient (CG) methods

[48] (see [16] for details). Although several different methods have been developed for

(PQC) over the last few years, e.g., gradient projection based signal recovery (GPSR)

[29], large scale `1 regularized least squares [36] and path following or homotopy con-

tinuation based methods [28, 43], but not much work has been done yet to develop

fast methods for Dantzig selector.

Here we will present a homotopy based algorithm to solve the Dantzig selector.

This new iterative algorithm, which we call “Primal Dual Pursuit” or “PD-pursuit”, is

very fast compared to the optimization methods currently being used for the Dantzig

17

selector. In this algorithm we follow a primal-dual homotopy approach to compute

the solution. We successively update the primal and dual variables at every step

until we reach the solution point. And at every step our update requires just a few

matrix-vector multiplications.

3.2 Dantzig selector and its dual

Let us consider the following system model

y = Ax+ e,

where x ∈ Rn is our unknown signal, y ∈ Rm is the measurement vector, A is the

m × n measurement/sensing matrix and e ∈ Rm is the error in our measurements.

The Dantzig selector (DS) solves the following convex program

minimize
x̃

‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ ε. (Primal-DS)

Dual program to (Primal-DS) is:

maximize
λ

− (ε‖λ‖1 + 〈λ,ATy〉) subject to ‖ATAλ‖∞ ≤ 1, (Dual-DS)

where λ ∈ Rn is our dual vector. A detailed description for derivation of dual problem

is given in Appendix A. By Slater’s condition, we know that strong duality holds for

this problem [4]. So in our case we have the strong duality between our primal and

dual objective functionals, i.e., at any primal-dual solution pair (x∗, λ∗), the objective

functionals in (Primal-DS) and (Dual-DS) will be equal:

‖x∗‖1 = −(ε‖λ∗‖1 + 〈λ∗, ATy〉),

or equivalently we can write it as

‖x∗‖1 + ε‖λ∗‖1 = −〈x∗, ATAλ∗〉+ 〈λ∗, AT (Ax∗ − y)〉. (3.1)

The complementary slackness condition tells us that whenever primal constraint is

active, the corresponding element in dual vector will be non-zero and vice versa,

18

similarly for the dual constraints and elements in primal vector. So using (3.1) and

the feasibility conditions for our primal and dual problems;

‖AT (Ax− y)‖∞ ≤ ε (3.2a)

‖ATAλ‖∞ ≤ 1, (3.2b)

we get the following optimality conditions which must be obeyed by any solution pair

(x∗, λ∗) to (Primal-DS) and (Dual-DS):

K1. ATΓλ(Ax∗ − y) = εzλ

K2. ATΓxAλ
∗ = −zx

K3. |aTγ (Ax∗ − y)| < ε for all γ ∈ Γcλ

K4. |aTγAλ∗| < 1 for all γ ∈ Γcx

where Γx and Γλ is the support of x∗ and λ∗, zx and zλ are the sign sequences of x∗

and λ∗ on their respective supports. Using these four conditions we will derive our

“path following” or “homotopy” algorithm for Dantzig selector. These conditions can

also be derived by using KKT conditions, where we will have to use subgradients,

since functionals are not smooth.

3.3 Homotopy for Dantzig selector

Let us start with the description of homotopy method. The general principle in

homotopy methods is to trace a complete solution path by starting from an artificial

initial value and iteratively moving towards a desired solution by gradually adjusting

the homotopy parameter(s). For our method this implies following a path traced by

a sequence of primal-dual pair (xk, λk) towards the solution point while reducing εk

to the desired ε. We start from x0 = 0 and a large ε0 > ‖ATy‖∞, find the primal and

dual solution set (xk, λk) at every kth step for corresponding εk and terminate when

εk → ε, and consequently xk → x∗, where x∗ is the solution to (Primal-DS). This

19

can be considered as solving a series of relaxed optimization problems, where we start

with a large feasible domain (at very large εk) and shrink the feasibility domain (by

reducing εk), while updating our solution. The exact Dantzig selector path is ensured

by maintaining the optimality conditions (K1-K4) at each point along the homotopy

path.

It is obvious from the optimality conditions (K1-K4) that at any point (xk, λk)

on the solution path, corresponding to a particular εk in (Primal-DS), active primal

constraints in (3.2a) give us the sign and support of dual vector λ in (K1) and active

dual constraints in (3.2b) give the sign and support of primal vector x in (K2).

Whereas all the primal and dual constraints corresponding to zero elements in dual

and primal vectors respectively will hold with strictly inequality. We can consider

this as a consequence of the complementary slackness property in KKT conditions

[4].

In our algorithm we will use the four optimality conditions to update the supports

and signs of primal vector x and dual vector λ at every εk while reducing it towards

the desired value ε. Now how does our method work; we start with x0 = 0, λ0 = 0

and a large ε0 > ‖ATy‖∞, then we update vectors x and λ in such a way that at every

step at most one element enters or leaves the support of each x and λ. Along the

homotopy path we will have some critical values of εk when the supports of x and/or

λ will change. So we move in a particular direction until there is some change in the

support of either x or λ, at which point we update the supports and find new directions

for primal and dual vectors. At every step we first update the sign and support of λ

using primal feasibility conditions (3.2a) and once we have that information we update

the sign and support of x using the dual feasibility conditions (3.2b). As we proceed

along the homotopy path, by updating primal-dual pair (xk, λk), we are essentially

shrinking the primal constraints i.e., εk+1 < εk. If we update x and λ along the

correct directions with proper step sizes, such that the optimality conditions (K1-K4)

20

are maintained at every step, we will eventually reach the solution x∗ to (Primal-DS)

as εk → ε.

3.4 Main algorithm

Assume k = 1, 2, . . . denotes our homotopy step count and let xk and λk denote x

and λ vectors at kth step respectively. Let us write the optimality conditions at any

given εk as

ATΓλ(Axk − y) = εkzλ (3.3a)

ATΓxAλk = −zx (3.3b)

|aTγ (Axk − y)| < ε for all γ ∈ Γcλ (3.3c)

|aTγAλk| < 1 for all γ ∈ Γcx, (3.3d)

where (xk, λk) is the primal-dual solution pair for DS at εk, Γx and Γλ is the support

of xk and λk, zx and zλ are the sign sequences of xk and λk on their respective

supports. The algorithm works in an iterative fashion, computing xk and λk at every

step k = 1, 2, . . . while maintaining the optimality conditions in (3.3). A pseudocode

for the algorithm is given in Algorithm 1 on page 28.

The algorithm starts with an initial solution x1 and λ1, and operates in an iterative

way computing/updating the new supports Γx, Γλ and signs zx, zλ and updating x

and λ on each step. We can divide our algorithm into two main parts:

• Primal Update

• Dual Update

In primal update phase we update the primal vector and primal constraints which

give us support and sign of dual vector. In dual update phase we update the dual

vector and dual constraints which give us support and sign of primal vector to be

used in next primal update phase.

21

3.4.1 Primal update

In primal update step we update the primal vector x and primal constraints which

give us new support Γλ and sign sequence zλ for dual vector λ. First we compute

the update direction for primal vector ∂x as defined in (3.6) and set xk+1 = xk + δ∂x

with some step size δ > 0 as described in (3.4). Now as we move in the direction ∂x

primal constraints will change, with all the active constraints shrinking by a factor

δ in magnitude. So by increasing step size δ we can encounter two scenarios; either

a new element can enter the support of λ (i.e., a new primal constraint can become

active) or an element from within the support of x can shrink to zero. So the path

taken by our primal vector will be continuous except at certain critical values of εk

where supports of primal and/or dual vectors change. So x will follow a piecewise

linear path w.r.t. changing εk. We choose our step size δ depending on which occurs

first, as described in (3.4). The value of active constraints at the new point gives us

εk+1 = εk − δ.

|aTγ (Axk+1 − y)| = εk+1 for all γ ∈ Γλ (3.4a)

|aTγ (Axk+1 − y)| ≤ εk+1 for all γ ∈ Γcλ (3.4b)

| aTγ (Ax− y)︸ ︷︷ ︸
pk(γ)

+δ aTγA∂x︸ ︷︷ ︸
dk(γ)

| ≤ εk − δ for all γ ∈ Γcλ (3.4c)

|pk(γ) + δdk(γ)| ≤ εk − δ for all γ ∈ Γcλ (3.4d)

δ+ = min
i∈Γcλ

(
εk − pk(i)
1 + dk(i)

,
εk + pk(i)

1− dk(i)

)
(3.4e)

i+ = arg min
i∈Γcλ

(
εk − pk(i)
1 + dk(i)

,
εk + pk(i)

1− dk(i)

)
(3.4f)

δ− = min
i∈Γx

(
−xk(i)
∂x(i)

)
(3.4g)

i− = arg min
i∈Γx

(
−xk(i)
∂x(i)

)
(3.4h)

δ = min(δ+, δ−). (3.4i)

22

Here minimum is taken over positive arguments only. Let us call the index corre-

sponding to δ+ as i+ and index corresponding to δ− as i−. So either i+ enters the

support of λ (if δ+ < δ−) or i− leaves the support of x (if δ+ > δ−) and we update

the supports and signs accordingly.

3.4.2 Dual update

In dual update we follow exactly the same procedure as done in primal update with an

extra check that we have to make on sign of update direction vector ∂λ if an element

leaves support of x during primal update. So similar to primal update, here also we

compute the update direction as defined in (3.7) and set λk+1 = λk + θ∂λ, where

θ > 0 is the step size as described in (3.5). Now here dual constraints do not shrink

like primal constraints, instead at some critical value of εk, either a new constraint

just becomes active which gives us new support of x, or an element from within the

support of λ goes to zero. So we accordingly select the largest step size θ as given in

(3.5).

|aTνAλk+1| = 1 for all ν ∈ Γx (3.5a)

|aTνAλk+1| ≤ 1 for all ν ∈ Γcx (3.5b)

| aTνAλk︸ ︷︷ ︸
ak(ν)

+θ aTνA∂λ︸ ︷︷ ︸
bk(ν)

| ≤ 1 for all ν ∈ Γcx (3.5c)

|ak(ν) + θbk(ν))| ≤ 1 for all ν ∈ Γcx (3.5d)

θ+ = min
j∈Γcx

(
1− ak(j)
bk(j)

,
1 + ak(j)

−bk(j)

)
(3.5e)

j+ = arg min
j∈Γcx

(
1− ak(j)
bk(j)

,
1 + ak(j)

−bk(j)

)
(3.5f)

θ− = min
j∈Γλ

(
−λ(j)

∂λ(j)

)
(3.5g)

j− = arg min
j∈Γλ

(
−λ(j)

∂λ(j)

)
(3.5h)

θ = min(θ+, θ−). (3.5i)

23

Here again the minimum is taken over positive arguments only. Let us call the index

corresponding to θ+ as j+ and index corresponding to θ− as j−. So either j+ enters

the support of x (if θ+ < θ−) or j− leaves the support of λ (if θ+ > θ−) and we

update the supports and signs accordingly.

3.4.3 Geometry of primal and dual constraints

The primal constraints exhibit the “shrinkage” behavior as ε is reduced. At some

facet determined by primal and dual supports (Γx,Γλ), if we increase the step size δ

from zero to some small value ∆δ, the active constraints shrink uniformly by the same

amount becoming ε−∆δ. And as we continue to increase δ, either a new constraint

gets active or an element from x shrinks to zero, and that is where we need to update

the supports. In contrast dual constraints will stay almost same throughout the facet

determined by (Γx,Γλ) except at end points. So dual constraints will change only

when a new element enters the support of x or an existing element leaves the support

of x. Therefore, in a sense dual constraints only determine the direction or facet to

move on, and in order to move along that facet we need to change the step size δ in

primal update (up or down). And as we move along some facet, we hit some vertex at

a critical value of εk, and going beyond that point needs some change in the supports

(Γx,Γλ), so dual vector tells us which direction or facet to take next. This is also an

indication that the path taken by primal vector x is piecewise linear whereas path

taken by dual vector λ is piecewise constant (i.e., only indicator of a facet).

3.4.4 Update directions

At every kth step, we need to compute new directions ∂x and ∂λ for primal and

dual vectors x and λ respectively. We can compute the update directions using

the optimality conditions in (3.3). Let us assume we are at some point (xk, λk)

corresponding to εk, with primal dual supports Γx,Γλ, and sign sequences zx, zλ.

First for primal vector; we want to change x in a direction ∂x which causes maximum

24

change in εk. So from (3.3a) we get our primal update direction ∂x as

∂x =


−(ATΓλAΓx)

−1zλ on Γx

0 elsewhere

(3.6)

Using ∂x as defined above we update the support and sign of the dual vector as

described in (3.4). After that we update the support and sign of primal vector as

described in (3.5) by changing our dual vector in the dual update direction ∂λ defined

as

∂λ =


−zγ(ATΓxAΓλ)−1ATΓxaγ on Γλ

zγ on γ

0 elsewhere

(3.7)

where aγ is the γth column of A corresponding to index of element last entered in the

support of λ, zγ is the sign of γth primal active constraint which infact is the sign of

the new element in λ. We derived (3.7) using (3.3b). To see this, assume that the

new support of λ at (k + 1)th step will be Γ′λ = [Γλ γ] and for dual vector update

we pick an arbitrary direction vector ∂λ′ which is supported on set Γ′λ. In order for

this to be a valid direction for λ, it must obey optimality conditions (3.3a) at kth step

with λ′ = λk + θ∂λ′ for a small step size θ > 0. We can write (3.3b) with λ′ as

ATΓxAλ
′ = −zx

ATΓxAλk + θATΓxA∂λ
′ = −zx

ATΓxAΓλu+ ATΓxaγv = 0,

where u is the restriction of ∂λ′ on Γλ and v is the value of ∂λ′ on γth index. Since we

already know that the sign of γth element in λk+1 will be zγ, so we can write v = czλ,

where c is some positive number. This gives us

ATΓxAΓλu+ czγA
T
Γxaγ = 0,

25

or equivalently

u = −czγ(ATΓxAΓλ)−1ATΓxaγ, v = czγ, (3.8)

which is precisely what is given in (3.7) with c = 1 (and it doesn’t make a difference

because the factor c will be adjusted in the final step size θ). This also implies that

we can pick any γ from within the supp(λ) as long as the new Gram matrix ATΓxAΓλ

is invertible.

3.4.5 More on primal-dual update

One additional check we need in the dual update is related to the situation when an

element is removed from support of x in the primal update step. Let Γx and Γλ be the

support of x and λ respectively. If an element corresponding to index γx is removed

from the support of x in the primal step, our new support becomes Γx1 = Γx\γx. We

can rewrite Γλ = [Γλ1 γλ], where γλ is an element picked from the current support of

λ for which the new matrix ATΓx1AΓλ1
does not become singular. This can be easily

checked by looking at inverse of the Schur complement for ATΓx1AΓλ1
in ATΓxAΓλ , which

should not become zero. Let us write inverse of ATΓxAΓλ as

(ATΓxAΓλ)−1 :=

Q11 Q12

Q21 Q22

 .
This can be seen in (5.3) that for (ATΓx1AΓλ1

)−1 to exist we need Q22 to be non-zero

(see section 3.4.7 and section 5.2.2 for further details). For stability purpose, a better

way is to choose γλ in the following way. Pick the column in matrix (ATΓxAΓλ)−1

corresponding to index of γx in Γx. Find the entry in that column with largest

absolute value, and select the element at respective row index in Γλ as γλ. This will

ensure that Q22 will not become zero.

In order to find the update direction ∂λ we will use Γx1 ,Γλ1 and γλ in place of

Γx,Γλ and γ respectively in (3.7). Since in this case λk(γλ) 6= 0 and we do not know

what will be the sign of λk+1(γλ), therefore, we will have uncertainty in sign of ∂λ

26

(as c is not necessarily positive in (3.8)). In order to resolve this we will check if

{sign(ak(γx)) = sign(bk(γx))} (which means dual constraint corresponding to γx will

be violated for any value of θ > 0 (3.5d)), then we first flip the sign of ∂λ in (3.7)

and then compute θ.

3.4.6 Initialization

We start with x0 = 0, λ0 = 0, Γx = [], Γλ = [], zx = [], zλ = []. Choose ε1 large

enough such that there is only one primal constraint active i.e., pick ε1 = ‖ATy‖∞.

This gives us the support of λ for ε1; Γλ = {γ}, where γ corresponds to the index of

the only active primal constraint (3.3a) i.e., γ = {i : aTi y = ε1}, where ai denotes the

ith column of A and zγ = sign(aTγ y). Using this information we find the support1 and

sign of x as Γx = {ν} and zx by using the update direction (3.7), which will be ∂λ =

zγδγ, where δγ is a vector with all zero entries except at index γ where it is 1. After

the first step we will have x1 = 0 and λ1 = θ1∂λ (θ1 as defined in (3.4)). Γx = [ν],

Γλ = [γ], zx = −sign(ATΓxAλ1), zλ = sign(−ATΓλy). For next steps we follow the same

procedure of primal and dual update as described before.

3.4.7 Degenerate cases

As a side note, it is important to know that in some extreme cases this scheme

will not work. For example, it is possible that at some critical value of εk more

than one inactive constraints become active, or more than one active constraints

become inactive or some constraints become active and some become inactive. In

short it is possible under some controlled settings (e.g., if we take very few Bernoulli

measurements of a signal whose entries are {±q} for some constant q), it can happen

that the primal and/or dual vectors change at more than one locations simultaneously.

This means that we have some degeneracy at that particular vertex, and more than

one constraints are touching it. So one way to resolve this problem is to store all the

1support of x and λ will be same for first step

27

Algorithm 1 Primal Dual Pursuit Algorithm for Dantzig Selector

Initialize xk, λk,Γx,Γλ, zx, zλ and εk for k = 1 as described in section 3.4.6
repeat

k ← k + 1
Primal update:
compute the primal update direction ∂x as in (3.6)
compute pk, dk and δ as in (3.4)
xk+1 = xk + δ∂x
εk+1 = εk − δ
if δ = δ− then

Γx ← Γx \ i− {remove i− from supp(x) and update Γx}
Γ̃λ = Γλ {store the current Γλ in a dummy variable}
Γλ ← Γλ \ γ {select an index γ from supp(λ) and remove it from Γλ}
zγ = zλ(γ) {treat γ as the new element to supp(λ)}
update zx, zλ {update sign sequences on updated supports}

else
Γ̃λ = Γλ ∪ {i+} {store i+ but do not update Γλ}
zλ = sign[AT

Γ̃λ
(Axk+1 − y)] {update zλ}

γ = i+

zγ = zλ(γ)
end if
Dual update:
compute the dual update direction ∂λ as in (3.7)
compute ak and bk as in (3.5)
if δ = δ− && sign[ak(i

−)] = sign[bk(i
−)] then

∂λ← −∂λ {a check needed due to uncertainty in sign}
bk ← −bk {flip the sign of ∂λ and in turn bk}

end if
compute θ as in (3.5)
λk+1 = λk + θ∂λ
if θ = θ− then

Γλ ← Γ̃λ \ j− {remove j− from supp(λ) and update Γλ}
update zλ {update sign sequence on updated support}

else
Γx ← Γx ∪ {j+} {add j+ to supp(x) and update Γx}
Γλ ← Γ̃λ {set Γλ to supp(λ) determined in Primal update}
zx = sign[ATΓxAλk+1] {update zx}

end if
until εk+1 ≤ ε

28

candidates in some stack and work with one of them at a time, and then perform

primal or dual updates in cycle. We have tried it and this works in many cases.

In some cases it can happen that some of the incoming or outgoing columns make

the gram matrix ATΓxAΓλ or ATΓλAΓx singular, so under such situations we need to

verify that our Gram matrices do not become singular by adding or removing the

chosen column, and if they are becoming singular we need to choose some other

column from the stack. If we are adding new columns, we can check the singularity

of the updated Gram matrix easily by checking Schur complement. Let us consider

the following K + 1×K + 1 matrix

D =

A11 A12

A21 A22

 ,
where A11 is a K × K matrix, A12 is a K-dimensional column vector, A21 is a K-

dimensional row vector and A22 is a scalar. S = A22 − A21A
−1
11 A12 is known as

Schur complement of A11 in D. A well known result from linear algebra tells us

that det(D) = det(A11) det(S) [4]. So if A11 is full rank then we just need to check

that Schur complement doesn’t become zero by update. On the other hand if we are

removing some columns, we just need to check that inverse of the Schur complement

for the remaining matrix does not become zero. This can also be seen in (5.3), where

we want Q22 = 1/S to be non-zero for inverse to exist.

In case all the columns in our stack make matrices singular, we cannot go further;

so take it easy, just break from the loop and return the most recent results. Although

we expect that this degeneracy will not appear in any practical situation.

3.5 Comparison with DASSO

While working on primal-dual pursuit algorithm we learnt about another homotopy

based algorithm for the Dantzig selector; DASSO [35]. Although both methods are

designed in the same spirit, i.e., to trace the entire homotopy path towards the solution

29

of the Dantzig selector, but formulation and update schemes of the two algorithms

follow different approaches. Here we will highlight some advantages we think our

scheme has over DASSO.

One major advantage of our scheme over DASSO is the direct computation of

update directions ∂x and ∂λ. In DASSO, the authors solve a simple optimization

routine to find the update direction ∂x, for which one needs at least 2n matrix-vector

multiplications with a K dimensional square matrix at every step, where K denotes

size of the supports at that step. In contrast to this, with our primal dual formulation

we get direct formulae for the update directions, each of which can be computed with

a single matrix-vector multiplication with a K dimensional square matrix.

As we discussed in section 3.4.7, we can have some degenerate cases under some

extreme conditions. Although degenerate cases will not appear very often in any

practical situation, but in case we have one, our proposed algorithm behaves very

efficiently. Using the direct formulae for the update directions we can find the primal

and dual supports much easily and can be updated as discussed in section 3.4.7.

Whereas in DASSO, the proposed optimization routine with d > 1 new elements can

become highly cumbersome, where one needs to find a pair of d columns from K×2n

matrix which maximize the cost, for details see [35].

In addition to this, our primal-dual formulation helps in getting some further

insights into the connections between Lasso and Dantzig Selector as discussed in

section 4.4.

30

CHAPTER IV

ANALYSIS OF PRIMAL DUAL PURSUIT

Here we will discuss the S-step solution property of our primal dual pursuit algorithm

under certain sparsity conditions on the signal. By the S-step solution property we

mean that we can recover an S sparse signal from compressed measurements in at

most S steps of primal dual update as described in Algorithm 1 on page 28. We will

first discuss the basic conditions required for this property to hold. Then we will

establish those conditions for Gaussian and Bernoulli measurement matrices. Later

we will discuss the S-step solution property for general incoherent ensembles. In the

end we will draw some connections between the homotopy methods for Lasso and

Dantzig selector, and give conditions under which they both follow identical path.

4.1 S-step solution property

Let x ∈ Rn be an S-sparse signal supported on index set Γ with sign sequence z, A

be the m × n measurement matrix, y = Ax be the noiseless measurement vector in

a much lower dimensional space (m � n). For reference we will state the Dantzig

selector optimization problem, its dual and optimality conditions discussed in section

3.2 again.

minimize
x̃

‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ ε. (Primal-DS)

maximize
λ

− (ε‖λ‖1 + 〈λ,ATy〉) subject to ‖ATAλ‖∞ ≤ 1, (Dual-DS)

A pair (x∗, λ∗) is a solution set to the problem (Primal-DS) and (Dual-DS) if and

only if the following four conditions hold.

K1. ATΓλ(Ax∗ − y) = εzλ

31

K2. ATΓxAλ
∗ = −zx

K3. ‖ATΓcλ(Ax∗ − y)‖∞ < ε

K4. ‖ATΓcxAλ
∗‖∞ < 1

The following lemma gives us sufficient conditions for the existence of an optimal set

(x∗, λ∗) which satisfies the above mentioned optimality conditions (K1-K4) and hence

solve (Primal-DS) for any given value of ε. Not only that but it also gives an explicit

value of dual vector λ∗ corresponding to x∗ at any facet corresponding to Γx.

Lemma 4.1. Let x0 ∈ Rn be supported on a set Γ with sign sequence z := sign (xΓ),

and y = Ax0 ∈ Rm be the measurement vector with m � n. Suppose A satisfies the

following three conditions with Γ and z:

H1. AΓ is full rank

H2. ‖ATΓcAΓ(ATΓAΓ)−1z‖∞ < 1

H3. sign[(ATΓAΓ)−1z] = z

Take λ∗ ∈ Rn as

λ∗ =

 −(ATΓAΓ)−1z on Γ

0 on Γc

and

x∗ε = x0 + ελ∗. (4.1)

Then for all ε in the range

0 ≤ ε ≤ εcrit = min
γ∈Γ

(
x0(γ)

−λ(γ)

)
,

(x∗ε , λ
∗) will be a solution set to (Primal-DS) and (Dual-DS).

Proof. If AΓ is full rank (H1), then λ∗ is well-defined. We will show that this

proposed pair (x∗ε , λ
∗) meet the criteria (K1-K4) above. First, note that Γλ = Γx = Γ.

32

If (H3) holds, then also zλ = −z, zx = z and (K2) is satisfied. In addition, this makes

(H2) the same as (K4). Finally with x∗ε as in (4.1),

AT (Ax∗ε − y) = εATAλ∗ = −εATAΓ(ATΓAΓ)−1z,

and so (H2) implies (K1) and (K3).

4.1.1 Dantzig shrinkability

Under the conditions (H1-H3), we can interpret the solution of Dantzig Selector x∗ε

as a “shrinkage” of the original signal x0. As ε increases, the magnitudes of all the

non-zero entries in x∗ε will decrease. But instead of decreasing at the same rate (as

in soft thresholding), the decrease at component γ is proportional to λ(γ). εcrit is the

value of ε for which one of the components shrinks to zero and leaves the support.

It is natural to ask then, if this “shrinkage” property holds for this x∗εcrit supported

on Γ1 ⊂ Γ. If so, can we continue the process until x∗ = 0. To make this more precise,

we will call x0 “Dantzig shrinkable” with respect to A if the following procedure

terminates in Success:

1. Set k = 0, Γ0 = supp(x0), and z0 = sign(x0) restricted to Γ0.

2. If xk = 0, return Success.

3. Check that

‖ATΓckAΓk(A
T
Γk
AΓk)

−1z‖∞ < 1

sign[(ATΓkAΓk)
−1z] = z

If either condition fails, break and return Failure.

33

4. Set

λk =

 −(ATΓkAΓk)
−1zk on Γk

0 on Γck

,

εk+1 = min
γ∈Γk

(
xk(γ)

−λk(γ)

)
,

xk+1 = xk + εk+1λk,

γ′k+1 = arg min
γ∈Γk

(
xk(γ)

−λk(γ)

)
,

Γk+1 = Γk\γ′k+1,

zk+1 = zk restricted to Γk+1.

5. Set k ← k + 1, and return to step 2.

As x0 is being shrunk to zero in the procedure above, it is following the solution path

to (Primal-DS) for increasing value of ε, as demonstrated in the next lemma.

Lemma 4.2. Suppose x0 is Dantzig shrinkable, and define xk, λk, εk as above. Given

any 0 ≤ ε ≤ ‖ATy‖∞, let K be the largest integer such that

ε ≥
K−1∑
k=0

εk+1 =: EK .

Then the solution to (Primal-DS) will be exactly

x∗ε = xK + (ε− EK)λK .

Proof. Set δ = ε− EK . Since x0 is Dantzig shrinkable, we have that

x∗ε = x0 +
K−1∑
k=0

εk+1λk + δλK

and so

AT (Ax∗ε − y) = ATA

(
K−1∑
k=0

εk+1λk + δλK

)
.

Since

(aTγAλk)(γ) = −z(γ) for γ ∈ ΓK and for all k = 1, . . . , K,

34

and

|aTγAλk| < 1 for γ ∈ ΓcK and for all k = 1, . . . , K − 1,

we have ∣∣∣∣∣aTγA
(
K−1∑
k=0

εk+1λk + δλK

)∣∣∣∣∣ < (EK + δ) = ε for allγ ∈ ΓcK .

Hence (K1-K4) are satisfied.

Given these definition, it is not hard to see that if x0 is S-sparse and Dantzig

shrinkable with respect to A, then the Primal-Dual Pursuit algorithm will terminate

in S steps. To see this, note that (H2) at every step ensures that only true elements

enter the support of signal, and (H3) ensures that any element which has entered the

support does not leave it.

4.1.2 Sufficient conditions for Dantzig shrinkability

Let us assume that AΓ is full rank i.e., condition (H1) is satisfied. Now let us define

G = I − ATΓAΓ. Condition (H2) and (H3) will be satisfied if ‖G‖ < 1 and

max
γ∈{1,...,n}

|〈(ATΓAΓ)−1Yγ, z〉| < 1, (4.2)

with

Yγ =


ATΓaγ γ ∈ Γc

ATΓaγ − 1γ γ ∈ Γ

, (4.3)

where aγ is the column of A indexed by γ, and 1γ is a vector which is equal to 1 at

γ and zero elsewhere. To see this, first note that (H2) is same as

max
γ∈Γc

|〈aγ, AΓ(ATΓAΓ)−1z〉| < 1.

Whenever ‖G‖ < 1, the Neumann series
∑∞

`=0G
l converges to the inverse (I −G)−1.

So we can write (ATΓAΓ)−1z in the following way

(ATΓAΓ)−1z = (I −G)−1z =
∞∑
`=0

G`z =

(
z +

∞∑
`=1

G`z

)
,

35

and condition (H3): sign[(ATΓAΓ)−1z] = z, will be satisfied if∥∥∥∥∥
∞∑
`=1

G`z

∥∥∥∥∥
∞

< 1. (4.4)

We can rewrite (4.4) as

max
γ∈Γ

∣∣∣∣∣〈1γ,
∞∑
`=1

G`z〉

∣∣∣∣∣ = max
γ∈Γ

∣∣∣∣∣〈
∞∑
`=1

G`1γ, z〉

∣∣∣∣∣
= max

γ∈Γ

∣∣∣∣∣〈
∞∑
`=1

G`−1gγ, z〉

∣∣∣∣∣
= max

γ∈Γ

∣∣〈(ATΓAΓ)−1gγ, z〉
∣∣

where gγ is the column of G indexed by γ, gγ = 1γ − ATΓaγ. The first equality

above comes from the self-adjointness of G, the second comes from simple fact that

gγ = G1γ, and the third because
∑

`≥1G
`−1 =

∑
`≥0G

` = (ATΓAΓ)−1.

In order to show that an S-sparse signal x supported on Γ with sign sequence z is

Dantzig shrinkable w.r.t. the measurement matrix A, we need to show that conditions

(H1-H3) are obeyed at every kth step for k = 1, 2, . . . , S. So we need AΓk to be full

rank, its respective matrix G = I − ATΓkAΓk to have ‖G‖ < 1 at every kth step and

we need to ensure that (4.2) is obeyed at every step with appropriate Yγ.

Now we will establish the Dantzig shrinkability conditions (H1-H3) for Gaussian,

Bernoulli and Incoherent ensembles.

4.2 Dantzig shrinkability with random matrices

Here we will establish Dantzig shrinkability conditions (H1-H3) for two special types

of measurement ensembles 1) Gaussian and 2) Bernoulli distribution.

1. Independently select each entry of the measurement matrix A to be i.i.d. Gaus-

sian with zero mean and variance 1/m.

2. Independently select each entry of A to be ±1/
√
m with equal probability.

36

The uniform uncertainty principle (UUP) or restricted isometry property (RIP)

as discussed in section 2.3 tells us that any sub-matrix of A (as described above),

consisting of S columns indexed by set Γ, will be well conditioned (2.4). In [11] Candès

and Tao established that random matrices having Gaussian or Bernoulli distribution

as defined above obey (2.3) with overwhelming large probability if m & S · log n. This

establishes (H1) in Lemma 4.1 with appropriate support size. Theorem 4.3 shows that

for “most” S-sparse signals supported on an arbitrary set Γ, condition (H2) and (H3)

will hold.

Theorem 4.3. Generate an m×n matrix A whose entries are chosen independently

at random from any of the two distributions 1) Gaussian or 2) Bernoulli as described

above with

m ≥ C · S2 · log n (4.5)

where C > 0 is a known constant. Given an arbitrary signal x ∈ Rn supported on

subset Γ where |Γ| ≤ S. Let z be the sign sequence of x on coordinates given by Γ.

Then with probability exceeding 1−O(n−β), we will have

max
γ∈{1,...,n}

|〈(ATΓAΓ)−1Yγ, z〉| < 1

with Yγ as defined in (4.3).

The strategy for proving Theorem 4.3 is as follows. We will bound the size (`2

norm) of Yγ, which when combined with the UUP will give us bound on the size

of wγ := (ATΓAΓ)−1Yγ. Then we will use Cauchy-Schwarz inequality to show that

|〈wγ, z〉| will be less than 1. Without loss of generality we will assume that Γ corre-

sponds to the first S columns of A.

For the proof of Theorem 4.3 we will first consider the Gaussian case, the argument

for Bernoulli distribution is very similar, as will be shown later.

37

4.2.1 The Gaussian ensemble

Consider the m × n measurement matrix A with i.i.d normal(0, 1/m) entries. We

will first consider the case for

Yγ = ATΓaγ for all γ ∈ Γc.

We can write this vector Yγ as a sequence of inner products {〈aj, aγ〉}Sj=1 as

Yγ =



〈a1, aγ〉

〈a2, aγ〉
...

〈aS, aγ〉


=:



Q1

Q2

...

QS


.

Since we know from the construction of matrix A that all its entries are i.i.d. Gaussian

with zero mean and variance 1/m. Here we will use the fact that all the elements of

sequence {Qj}Sj=1 will also be random variables following Gaussian distribution with

zero mean and variance ‖aγ‖2/m for the fixed vector aγ as shown below.

E(Qj) = E

(
m∑
i=1

aijaiγ

)
=

m∑
i=1

E(aij)aiγ = 0

and

E(Q2
j) = E

(m∑
i=1

aijaiγ

)2


= E

(
m∑
i=1

(aijaiγ)
2 +

m∑
l=1

m∑
k=1

2aljalγakjakγ

)

=
m∑
i=1

E(a2
ij)a

2
iγ +

m∑
l=1

m∑
k=1

2E(alj)E(akj)alγakγ

=
‖aγ‖2

m

A well-known Gaussian tail bound (using Chernoff bound) [e.g., 49, pg. 215] gives

us the following inequality for a Gaussian random variable X with zero mean and

variance σ2

P[|X| > ε] ≤ exp(−ε2/2σ2). (4.6)

38

Applying the Gaussian tail bound (4.6) on the inner product between any two inde-

pendent columns, aj, aγ where j 6= γ, we get the following inequality

P[|〈aj, aγ〉| > ε] ≤ 2 exp(−ε2m/2‖aγ‖2). (4.7)

Here we need some bound for the value of ‖aγ‖2, where we know that ‖aγ‖2 will be a

random variable following chi-square distribution. Suppose that the random variable

Z is defined as

Z =
m∑
i=1

X2
i ,

where Xi, i = 1, 2, . . . ,m, are statistically independent and identically distributed

Gaussian random variables with zero mean and variance 1/m. The Chernoff bound

for concentration of any such chi-square distributed random variable Z around its

mean is given as [18]

P [|Z − E[Z]| > δ] ≤ 2 exp(−mδ2/8). (4.8)

So for any given column vector aγ from matrix A, where E[‖aγ‖2] = 1, we get the

following result about concentration of its squared norm around 1,

P
[
‖aγ‖2 > 1 + δ

]
≤ 2 exp(−mδ2/8),

and we have a slightly better bound for P[‖aγ‖2 < 1− δ]. Now in order to bound the

probability for squared norm of all columns of A we can use the union bound to get

the following result

P
[

max
γ∈{1,...,n}

‖aγ‖2 > 1 + δ

]
≤ 2n exp(−mδ2/8), (4.9)

using this bound for any given ‖aγ‖2 together with the Gaussian tail bound on the

inner product |〈aj, aγ〉| in (4.7) we get the following inequality

P[|〈aj, aγ〉| > ε
∣∣ ‖aγ‖2 ≤ 1 + δ] ≤ 2 exp(−ε2m/2(1 + δ)).

39

In order to establish such bound for inner products between all the pairs of two

columns from matrix A we will use the union bound on

(
n

2

)
≤ n2 possible pairs.

P

 max
j,γ∈{1,...,n}

j 6=γ

|〈aj, aγ〉| > ε

 ≤ 2

(
n

2

)
exp(−ε2m/2(1 + δ)) + P

[
max ‖aγ‖2 > 1 + δ

]
,

If we take δ = ε and if ε < 1, we get

P

 max
j,γ∈{1,...,n}

j 6=γ

|〈aj, aγ〉| > ε

 ≤ 2

(
n

2

)
exp(−ε2m/2(1 + ε)) + 2n exp(−mε2/8)

< 2n2 exp(−ε2m/4) + 2n exp(−mε2/8).

In order to satisfy condition (4.2) we will use ε ∼
√

(8(β + 1) log n)/m. This is

detailed as follows:

P

 max
j,γ∈{1,...,n}

j 6=γ

|〈aj, aγ〉| >
√

8(β + 1) log n

m

 ≤ 2n2 exp(−2(β + 1) log n)

+ n exp(−(β + 1) log n)

= 2/n2β + 2/nβ

≤ 3/nβ. (4.10)

whenever nβ > 2.

Now let’s consider the case for

Yγ = ATΓaγ − 1γ for all γ ∈ Γ.

We can write this vector Yγ as

Yγ =



〈a1, aγ〉

〈a2, aγ〉
...

〈aγ, aγ〉 − 1

...

〈aS, aγ〉


=:



Q1

Q2

...

Qγ

...

QS


.

40

Here we can use the already established bound (4.10) (for the inner product between

any two distinct columns of matrix A) for any element of sequence {Qj}Sj=1 except

when j = γ. For Qγ = 〈aγ, aγ〉 − 1, we can use the chi-square concentration as in

(4.8). And using similar argument we will get the same bound in (4.10).

To summarize, we have the following result for all elements {Qj}Sj=1 of Yγ for all

γ ∈ {1, . . . , n},

P

[
max
j,γ
|Qj| >

√
8(β + 1) log n

m

]
≤ 3/nβ (4.11)

whenever nβ > 2.

From the discussion above we can immediately bound the `2 norm of Yγ as defined

in (4.3) for the Gaussian case by the following inequality,

P

[
max

γ∈{1,...,n}
‖Yγ‖2 >

√
8S(β + 1) log n

m

]
≤ 3/nβ.

Uniform uncertainty principle tells us that for Gaussian matrix A if m & S · log n,

then with probability O(1− n−β)

1/2 ≤ λmin(ATΓAΓ) ≤ λmax(ATΓAΓ) ≤ 3/2,

which is equivalent to the following condition about spectral norm of (ATΓAΓ)−1,

2/3 ≤ λmin(ATΓAΓ)−1 ≤ λmax(ATΓAΓ)−1 ≤ 2. (4.12)

Define wγ = (ATΓAΓ)−1Yγ. Using the UUP condition (4.12) we get the following

inequality

P

 sup
γ∈{1,...,n}
|Γ|≤S

‖wγ‖2 >

√
16S(β + 1) log n

m

∣∣∣∣∣ λmax(ATΓAΓ)−1 < 2

 ≤ 3/nβ

or equivalently

P

[
sup

γ∈{1,...,n}
‖wγ‖2 >

√
16S(β + 1) log n

m

]
≤ O(1/nβ). (4.13)

41

So we can write (4.3) in the following way,

|〈(ATΓAΓ)−1Yγ, z〉| = |〈wγ, z〉|

≤ ‖wγ‖2‖z‖2

≤
√

16S(β + 1) log n

m
.
√
S,

where the first inequality comes from Cauchy-Schwarz inequality and second inequal-

ity comes from (4.13) under consideration that ‖z‖2 ≤ S. So in order to satisfy (4.2)

in Theorem 4.3 we need the following constraint on m

m > S216(β + 1) log n (4.14)

This proves Theorem 4.3 for Gaussian case with C ∼ 16(β + 1).

4.2.2 The Bernoulli ensemble

Now we will analyze the case for Bernoulli distributed measurement matrix. The

argument is very similar to the Gaussian case. Let A be the m × n matrix with its

entries independently chosen from {±1/
√
m} We will first consider the case for

Yγ = ATΓaγ for all γ ∈ Γc,

We can write this vector Yγ as a sequence of inner products {〈aj, aγ〉}Sj=1

Yγ =



〈a1, aγ〉

〈a2, aγ〉
...

〈aS, aγ〉


=:



Q1

Q2

...

QS


We can write every element vector Yγ as

Qj = 〈aj, aγ〉 =
m∑
i=1

aijaiγ =
m∑
i=1

qi

42

Since all the entries of matrix A are chosen independently, each element of the se-

quence {qi}mi=1 will be a random variable with its value ±1/m with equal probability.

And its clear that E[Qj] =
∑m

i=1 E[aij]aiγ = 0 for all j ∈ {1, . . . , S}

Here we will use the well known Hoeffding’s inequality to bound the value of inner

product between any two independent columns aj, aγ. Hoeffding’s inequality [37] is

given in the following lemma,

Lemma 4.4 (Hoeffding’s tail inequality). Let X1, . . . , Xm be independent bounded

random variables such that Xi falls in the interval [ai, bi] with probability one. If we

define Sm =
∑m

i=1 Xi, then for any t > 0 we have

P[|Sm − ESm| ≥ t] ≤ e−2t2/
∑m
i=1(bi−ai)2 .

Using Hoeffding’s inequality we get the following bound on the value of any given

element of vector Yγ

P[|〈aj, aγ〉| ≥ t] ≤ 2e−mt
2/2. (4.15)

Now using the same procedure we will use the union bound on right hand side to

justify this bound for values of inner products between all

(
n

2

)
possible pairs. To

satisfy condition (4.2) we need t ∼
√

2(β + 2) log n. This is detailed as follows:

P

[
|〈aj, aγ〉| >

√
2(β + 2) log n

m

]
≤ 2 exp(−(β + 2) log n) (4.16)

and after using the union bound we get the following bound for all inner product

pairs

P

 max
j,γ∈{1,...,n}

j 6=γ

|〈aj, aγ〉| >
√

2(β + 2) log n

m

 ≤ 2

(
n

2

)
.1/nβ+2 (4.17)

≤ 2/nβ. (4.18)

For Bernoulli case we don’t need to consider separately the case for

Yγ = ATΓaγ − 1γ for all γ ∈ Γ.

43

The already established bound in (4.17) will work for all elements Qj = 〈aj, aγ〉

whenever j 6= γ. And for the case when j = γ, Qγ = 〈aγ, aγ〉 − 1 = 0. From the

discussion above we can bound the `2 norm of Yγ for any γ as follows:

P

[
max

γ∈{1,...,n}
‖Yγ‖2 >

√
2S(β + 2) log n

m

]
≤ 2/nβ. (4.19)

Setting wγ = (ATΓAΓ)−1Yγ and using the UUP argument we get

P

[
sup

γ∈{1,...,n}
‖wγ‖2 >

√
4S(β + 2) log n

m

]
≤ O(1/nβ). (4.20)

Again we can write (4.3) in the following way,

|〈(ATΓAΓ)−1Yγ, z〉| = |〈wγ, z〉|

≤ ‖wγ‖2‖z‖2

≤
√

4S(β + 2) log n

m
.
√
S,

where the first inequality comes from Cauchy-Schwarz inequality and second inequal-

ity comes from (4.20) under consideration that ‖z‖2 ≤ S. So in order to satisfy (4.2)

in Theorem 4.3 we need the following constraint on m

m > S24(β + 2) log n (4.21)

This proves Theorem 4.3 for Bernoulli case with C ∼ 4(β + 2).

4.3 Dantzig shrinkability with incoherent ensemble

Here we will extend the S-step solution property to any general incoherent ensemble.

Let A be an m× n measurement matrix with unit length columns aj, ‖aj‖2 = 1. Let

the coherence or mutual coherence of matrix A be given as

M(A) = max
i 6=j
|〈ai, aj〉|.

Theorem 4.5 gives relation between the sparsity of a signal and mutual coherence of

measurement matrix in order to recover an S-sparse signal in S steps. This result is a

44

more generalized version of similar earlier results on signal recovery using orthogonal

matching pursuit (orthogonal matching pursuit (OMP)) [54] and `1 minimization as in

basis pursuit [30]. Also similar result holds for recovery of S-sparse signal with Lasso

[22]. And this should be no surprise because the optimality conditions and respective

solution paths for Lasso and Dantzig will be exactly identical in some settings, and

S-step convergence is one of them. We will discuss it further in section 4.4.

Theorem 4.5. Let A be the incoherent matrix with mutual coherence M . Let x be

an S-sparse signal supported on Γ with sign sequence z, and Yγ be as defined in (4.3).

If

S ≤ 1

2

(
1 +

1

M

)
(4.22)

then

max
γ∈{1,...,n}

|〈(ATΓAΓ)−1Yγ, z〉| < 1.

Proof. This can be proved easily by following the arguments in [30, Theorem 3]. We

need a slight modification due to our different definition of Yγ. It will be exactly same

for the case where γ /∈ Γ. For the case where γ ∈ Γ we can still use similar argument

because the γth component of Yγ will become zero (since aTγ aγ = 1).

The result given in Theorem 4.5 can be considered as an extension of result given

in Theorem 4.3, where we bound each entry of Yγ to be less than constant M .

In our analysis for all three cases, we have established the required conditions for

the complete support Γ and sign sequence z on it. But it is obvious that the argument

can be extended to any subset Γk ⊂ Γ. Since ATΓkAΓk will be a submatrix of ATΓAΓ,

from Cauchy’s interlacing theorem [34] we know that

‖Gk‖ ≤ ‖G‖ where Gk := I − ATΓkAΓk .

So AΓk will be full rank and ATΓkAΓk will be well-conditioned. Similarly ‖Yγ‖ and

‖z‖ corresponding to any subset Γk ⊂ Γ will get smaller as we reduce size of the

45

support Γk. Since we are using Cauchy-Schwarz inequality, so conditions (H1-H3)

will be obeyed for all the steps.

4.4 Connections between Dantzig selector and Lasso

Dantzig selector has captured some decent attention in statistics community in last

few years. Recently there have been many discussions about the efficiency of Dantzig

selector and its comparison to other well established model selection methods espe-

cially Lasso (for details see [10] and related discussions in the same volume). One

important area researchers have been interested in is to find a fast algorithm to solve

Dantzig selector with path following features. We hope that our primal-dual pursuit

algorithm fulfills this purpose.

Another question being raised very often now is to find conditions under which

Dantzig selector and Lasso behave similarly. Here we will try to answer some parts

of this question; we will give some conditions under which Lasso and Dantzig selector

follow identical path for the model, hence same performance. Lasso minimizes `1

norm of the parameters subject to a quadratic constraint on error, as given in (PQC).

There is an equivalent penalized version of Lasso also known as basis pursuit denoising

problem, given as

minimize
x̃

1

2
‖y − Ax̃‖2

2 + ε‖x̃‖1 (Lasso)

It is well known that dual to (Lasso) is given by [44]

minimize
x̃

1

2
‖Ax̃‖2

2 subject to ‖AT (y − Ax̃)‖∞ ≤ ε. (Dual-Lasso)

As it is clear that dual problem to Lasso (Dual-Lasso) looks very similar to the Dantzig

selector (Primal-DS). But we will not exploit this similarity, instead we will confine

ourselves to the homotopy algorithm for Lasso as described in [22, 43]. We can easily

derive optimality conditions for Lasso [30], which require that any valid solution x∗

to (Lasso) for a given ε must obey

46

L1. ATΓ(Ax∗ − y) = −εz

L2. |aTγ (Ax∗ − y)| < ε for all γ ∈ Γc

where Γ is the support of x∗ and z is its sign sequence on Γ . This gives us the update

direction

∂x =


(ATΓAΓ)−1z on Γ

0 on Γc
(4.23)

Note that Lasso optimality conditions (L1-L2) are exactly same as the Dantzig selector

optimality conditions (K1-K4) when Γλ = Γx and zλ = −zx. This gives us the

following result about equivalence between Lasso and Dantzig selector.

Corrollary 4.6. If the conditions presented in (H1-H3) are obeyed, then (Lasso) and

(Primal-DS) will recover x in exactly S steps and the paths they take will be identical.

Proof. As discussed in section 4.1, in order to recover an S-sparse signal in S primal-

dual steps we need the supports of x and λ to match i.e., Γx = Γλ, and their signs on

respective supports to mismatch i.e., zx = −zλ. Let Γ := Γx = Γλ and z = zx. Then

at every step the non-zero portion of update direction in (3.6) for Dantzig selector

is given as ∂x
∣∣
Γx

= −(ATΓλAΓx)
−1zλ = (ATΓAΓ)−1z, which is precisely the update

direction for Lasso (4.23).

Similarly, the difference between the paths taken by Lasso and Dantzig selector

can be easily seen by looking at their respective update directions

∂xLasso
∣∣
Γ

= (ATΓAΓ)−1z (Lasso update)

∂xDS
∣∣
Γx

= −(ATΓλAΓx)
−1zλ (DS update)

So as long as support of primal and dual vector in Dantzig selector stays the same,

Lasso and Dantzig selector paths will be identical. Their paths start to diverge when

support of dual vector Γλ differs from primal support Γx in the Dantzig selector. If

47

we modify our homotopy algorithm for Dantzig selector such that it does not update

dual direction and use same support for both primal and dual vectors, we will get

homotopy path for Lasso.

4.5 Discussion and future work

In previous sections we have seen that if our sensing matrix obeys Dantzig shrinkabil-

ity conditions, then we can recover an S-sparse signal in exactly S-steps. Although we

have proved the S-step solution property for random matrices with m & S2 ·log n, but

our ultimate goal was to establish this property with something like m & S · logα n,

for some small α > 0 (what we observe in practice!).

In order to show that S-step solution property holds for a given signal x supported

on a subset Γ with sign sequence z, we need to show that the optimality conditions

(H1-H3) hold at every step, with respective support Γk ⊂ Γ. As shown in section 4.1

this is equivalent to say that matrix G := 1− ATΓkAΓk obeys ‖G‖ < 1 and condition

in (4.2) is obeyed at every step. The condition about G is satisfied by any matrix

which obeys uniform or weak uncertainty principle, and we can extend the result to

sub-matrices of G using Cauchy’s interlacing theorem. The main difficulty arises with

establishing condition in (4.2) for all subsets of Γ. We can establish (4.2) for a fixed

subset Γ′ ⊂ Γ with m & S · log n [8]. In which case we will use some concentra-

tion inequality e.g., Hoeffding’s inequality to bound the inner product inner product

|〈wγ, z〉|, instead of Cauchy-Schwarz inequality. But these concentration inequalities

require wγ and z to be statistically independent, and after the first step new wγ will

not be independent of z anymore. However, we can use some concentration inequality

in the first step to bound the inner product |〈wγ, z〉| with support set Γ. Although

we know that we need to establish (4.2) for some S subsets of Γ, for next S steps,

but we do not know in advance which subsets would they be. So an obvious choice to

establish (4.2) at every step can be to use the union bound for all 2S possible subsets

48

of Γ. This will essentially give us the same result of S2 · log n measurements.

As a final remark, we expect that S-step solution property holds for m & S ·logα n,

for some α > 0. But we have not been able to establish it yet, unless we somehow

get rid of that dependence issue. In future, we intend to investigate this further and

see if it is possible to push the measurement bound from S2 · log n to something like

S · logα n.

49

CHAPTER V

NUMERICAL IMPLEMENTATION AND

EXPERIMENTAL RESULTS

5.1 Numerical implementation

The main computational burden in the interior point methods for Dantzig selector

comes from solving an n dimensional system of linear equations multiple times for

each Newton iteration, which can be solved using conjugate gradient (CG) methods

(see [16] for details). Computational cost for each Newton iteration is about O(n3).

This is a bottleneck for large scale problems e.g., imaging.

In contrast our method is iterative and main cost comes from finding update

directions ∂x and ∂λ and respective step sizes δ and θ. Under normal situation

we are adding or removing one column to or from each AΓx and AΓλ at any step.

Therefore, it won’t be sensible to solve a complete system of equations at every step,

each of which will cost O(k3 +km) flops, where k is the size of our current primal-dual

support. Instead we can update the inverse of our Gram matrices at every step with k

elements in the support with only O(km) flops. The cost associated to compute step

sizes is about O(mn). This is essentially the cost of few matrix-vector multiplications,

and it cannot be reduced if we use explicit matrix representation.

5.2 Block matrix update

In our implementation we continuously update the Gram matrix ATΓxAΓλ and ATΓλAΓx ,

and their inverses whenever the Γx and/or Γλ are changed. As we see that these two

matrices are transpose of each other, so update for any one would be sufficient (since

for any invertible matrix A, (AT)−1 = (A−1)T). In our algorithm, at every step

50

usually one element is added or removed from each support, so we can easily update

the inverse using matrix inversion lemma (or Sherman-Woodbury-Morrison formula)

for low rank update [4, 31]. For a single primal-dual step, we need to update Gram

matrix and its inverse before computing ∂x. And if any element is removed from the

primal support during primal update step, then we will have to update inverse before

computing ∂λ as well.

Under the assumption that at every step primal-dual support changes at one

location at most, we can encounter the following scenarios where we need to update

the Gram matrix and its inverse

1. A new element enters Γx and Γλ.

2. An existing element leaves Γx during primal update.

3. A new element enters Γλ and an existing element leaves Γλ during dual update.

In order to update the Gram matrices for these case we can use the following simple

matrix inverse update schemes.

5.2.1 Adding new columns

Assume that Γx and Γλ is the support of our primal and dual vectors respectively and

we already have ATΓxAΓλ and its inverse. Let us assume that one new element enters

in the support of each vector, and our new supports become Γ̃x := Γx ∪ {γx} and

Γ̃λ := Γλ ∪ {γλ}. Then we need to update our Gram matrix AT
Γ̃x
AΓ̃λ

and its inverse.

Let us consider we have two m× k matrices A and B and we already have k × k

inverse matrix (ATB)−1. Now if we add a new column to each of the two matrices

such that our new matrices become Ã = [A a] and B̃ = [B b], we need to find the

inverse of the updated (k+ 1)× (k+ 1) Gram matrix (ÃT B̃), which we can write as:

ÃT B̃ =
[
AT aT

] B
b

 =

ATB AT b

aTB aT b

 .
51

In order to find this updated matrix we need one vector-vector and two matrix-vector

multiplications, which requires nearly (2k+1)m flop counts. For the update of inverse

we will use block matrix inverse update as described below. Let us write D := ÃT B̃

as

D =

A11 A12

A21 A22

 =

ATB AT b

aTB aT b

 , (5.1)

where A11 = ATB is a k × k block matrix whose inverse we have already computed

and stored. Using matrix inversion lemma [31], the inverse of our square matrix ÃT B̃

can be written asA11 A12

A21 A22


−1

=

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

 , (5.2)

where S = A22 −A21A
−1
11 A12 is the Schur complement of A11 in the square matrix D

and I is the k dimensional identity matrix. Under the assumption that one element

enters at a time S will always be scalar. In order to update the inverse matrix we

need to first compute A−1
11 A12 and A21A

−1
11 , each of which take about k2 flops, after

that S can be computed in just k flops. For the main k × k block, we need a rank

one update A−1
11 + (A−1

11 A12)(A21A
−1
11)/S which will cost about 2k2 flops. So we can

find the inverse any modified Gram matrix in just about (2k+ 1)m+ 4k2 flops which

is bounded above by O(km).

5.2.2 Deleting columns

Similarly if we remove an element from Γx during primal update, we can find the

inverse of a (k− 1)× (k− 1) block of a k× k matrix whose inverse we have computed

previously and stored. To see this let’s consider an example where we have two

matrices Ã and B̃ as defined earlier, and this time we remove columns a and b from

Ã and B̃ respectively. Here our task is to compute inverse of ATB from ÃT B̃. Let us

52

write the inverse of bigger matrix in the following formA11 A12

A21 A22


−1

=:

Q11 Q12

Q21 Q22

 .
Since we are interested in finding A−1

11 =: Q11, we can write Q11 as in (5.2)

Q11 = A−1
11 + A−1

11 A12S
−1A21A

−1
11

= A−1
11 + (Q12S)S−1(SQ21),

which gives us

A−1
11 = Q11 −Q12Q

−1
22 Q21. (5.3)

This is again just a rank one update, so if we want to update inverse of our Gram

matrices after removing a column from the support, it can be done in just about k2

flops.

In our discussion above, we assumed that last row and column from the bigger

matrix is being removed, which is equivalent to say that last element from Γx and

Γλ are removed. If some other row and column is to be removed, we can modify

this method easily. For example, we can first change Γx and Γλ such that outgoing

indices are swapped with last indices and then modify Gram matrix and its inverse

accordingly. Let us assume we need to remove ith row and jth column. So to modify

Gram matrix we just need to swap its ith row and jth column with last row and

column. Similarly to get the modified inverse we need to swap the jth row and ith

column of the actual inverse of Gram matrix with its last row and column respectively.

To see this let’s consider Q := ÃT B̃ and Qij as the modified matrix whose ith row

and jth column is swapped with last ones. Then we can write

Qij = PinQPjn

and in turn

Q−1
ij = PjnQ

−1Pin,

53

where Pin and Pjn denote the permutation matrices. After this we can apply the

same procedure as discussed in (5.3).

5.2.3 Replacement of columns

If an existing element in supp(λ) is replaced by a new element, we can update the

Gram matrices and their inverses by similar rank update. Consider for example that

we already have the Gram matrix ATΓxAΓλ and its inverse. An element γ− in Γλ is

replaced by a new element γ+, let us denote the new support as Γ̃λ. So we need

to compute the new matrix ATΓxAΓ̃λ
and its inverse. We can conveniently write the

updated matrix as rank one update of the old matrix as

ATΓxAΓ̃λ
= ATΓxAΓλ + (ATΓxaγ+ − A

T
Γxaγ−)1Tγ , (5.4)

where 1γ is a vector which is equal to 1 at index corresponding to the location of γ−

in Γλ and zero elsewhere. In order to find the inverse of updated matrix in (5.4) we

can again use Sherman-Woodbury-Morrison formula [31] given as

(F + UV)−1 = F−1 − F−1U(I + V F−1U)−1V F−1,

where F is k× k nonsingular matrix, U is k× q matrix and V is q× k matrix. In our

implementation q will usually be equal to 1.

To summarize, in our proposed algorithm any primal-dual step can be performed

at a cost O(mn). In section 4.1 we presented conditions under which our algorithm

takes at most S primal-dual steps to recover an S-sparse, in which case our total cost

will be O(Smn). In general, our computational cost will be bounded by O(dmn),

where d is the total number of primal-dual steps taken, which is same as updating a

least squares solution d times.

5.3 Experimental results

In this section we will present some simulation results for the primal-dual pursuit

algorithm. Our results can be interpreted into two main categories for signal recovery:

54

• S-step recovery: when S-sparse signal is exactly recovered in at most S primal-

dual steps of PD-pursuit.

• Exact recovery: when S-sparse signal is exactly recovered by PD-pursuit (with-

out considering the number of steps taken).

The results presented here are aimed at finding, empirically, how many measurement,

m do we need for S-step recovery. On the other hand, we want to see how many

primal-dual steps does our algorithm take on average whenever an S-sparse signal

is exactly recovered from m measurements. In practice, we usually get exact signal

recovery with nearly all `1 minimization schemes if m ≥ 4S.

In the performance plots, Figures 3 to Figures 12, we will give performance re-

sults for S-step recovery by PD-pursuit and compare our results with S-sparse signal

recovery using orthogonal matching pursuit (OMP) [55], which is a greedy algorithm

and terminates after exactly S iterations. Along with that we will also give results re-

garding exact recovery of sparse signals by PD-pursuit and the number of primal-dual

steps taken on average by our algorithm whenever signal is recovered exactly.

In our simulations we used the following different distributions for our m × n

measurement matrix A.

Gaussian: Choose each entry as i.i.d. Gaussian with zero mean and variance 1/m.

Bernoulli: Choose each entry independently to be ±1/
√
m with equal probability.

Orthogonalized Gaussian: Generate Gaussian matrix and orthogonalize its rows.

Partial Hadamard: Select m rows of an n × n Hadamard matrix uniformly at

random.

In all simulations we performed 1000 independent trials for every set of measure-

ments (m) at different sparsity levels (S). In each trial a new measurement matrix

55

is generated, along with a new sparse n dimensional vector x, whose S entries at

randomly chosen locations are set either +1 or −1 with equal probability1.

Figure 3 and Figure 4 show the results for Gaussian matrix with (n = 256). Fig-

ure 5 and Figure 6 show the results for Bernoulli matrix with (n = 256). Figure 7

and Figure 8 show the results for orthogonalized Gaussian matrix with (n = 256). It

is interesting to note here that exact recovery performance of Gaussian matrix and

orthogonalized Gaussian matrix is exactly same but S-step recovery with orthogo-

nalized Gaussian matrix is much superior. Similar results can be seen in Figure 9

and Figure 10 for partial Hadamard matrix, whose rows are also orthogonal to each

other with (n = 256). Figure 11 and Figure 12 show the results for partial Hadamard

matrix with (n = 1024).

We observe that, if the measurement matrix has orthogonal rows, we get exact

recovery with about 4S measurements in nearly 4S primal-dual steps, whereas for

S-step recovery we need about 8S measurements. In case of Gaussian and Bernoulli

matrices we get exact recovery with about 4S measurements in about 10S primal-dual

steps. As can be seen from the simulation plots that required number of primal-dual

steps for exact recovery decrease sharply with increased number of measurements.

1We have seen similar performance with other distributions for signal values, e.g., Gaussian and
binary.

56

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

st
ep

 r
ec

ov
er

y
us

in
g

P
D

−
pu

rs
ui

t (
n=

25
6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(a

)

Percentage of signals recovered

0
50

10
0

15
0

20
0

25
0

02040608010
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(c

)

Percentage of signals recovered

E
xa

ct
 r

ec
ov

er
y

of
 S

−
sp

ar
se

 s
ig

na
ls

 u
si

ng
 P

D
−

P
ur

su
it

0
50

10
0

15
0

20
0

25
0

0

10
0

20
0

30
0

40
0

50
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(d

)

Number of PD−Pursuit steps

P
rim

al
−

D
ua

l s
te

ps
 ta

ke
n

fo
r

ex
ac

t r
ec

ov
er

y

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

sp
ar

se
 s

ig
na

l r
ec

ov
er

y
us

in
g

O
M

P
 (

n=
25

6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(b

)

Percentage of signals recovered

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

F
ig

u
re

3:
G

au
ss

ia
n

m
at

ri
x

(n
=

25
6)

.
(a

)
P

er
ce

n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

in
S

-s
te

p
s

of
P

D
-p

u
rs

u
it

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(b
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

b
y

or
th

og
on

al
m

at
ch

in
g

p
u
rs

u
it

(O
M

P
)

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(c
)

P
er

ce
n
ta

ge
of

S
-s

p
ar

se
si

gn
al

s
ex

ac
tl

y
re

co
ve

re
d

b
y

P
D

-p
u
rs

u
it

.
(d

)
A

ve
ra

ge
n
u
m

b
er

of
p
ri

m
al

-d
u
al

st
ep

s
ta

ke
n

fo
r

ex
ac

t
re

co
ve

ry
of
S

-s
p
ar

se
si

gn
al

s.

57

0 50 100 150 200 250
0

100

200

300

400

500

A
ve

ra
ge

 n
um

be
r

of
 P

D
−

pu
rs

ui
t s

te
ps

Exact recovery of S−sparse signals using PD−pursuit with
Average number of primal−dual steps taken whenever signals recovered exactly (n=256)

0 50 100 150 200 250
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 s

ig
na

ls
 r

ec
ov

er
ed

Number of measurements (m)

S=4
S=12
S=20
S=28
S=36
S=42

Figure 4: Gaussian matrix (n=256). Superimposed Plots for exact recovery of S-
sparse signal with the average number of primal-dual steps taken by primal-dual
pursuit. Dashed lines in the plot and vertical axis on the right gives percentage of
signals recovered using m measurements. Solid lines in the plot and vertical axis
on the left gives the average number of primal-dual steps taken whenever signal is
recovered exactly with m measurements.

58

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

st
ep

 r
ec

ov
er

y
us

in
g

P
D

−
pu

rs
ui

t (
n=

25
6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(a

)

Percentage of signals recovered

0
50

10
0

15
0

20
0

25
0

02040608010
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(c

)

Percentage of signals recovered

E
xa

ct
 r

ec
ov

er
y

of
 S

−
sp

ar
se

 s
ig

na
ls

 u
si

ng
 P

D
−

P
ur

su
it

0
50

10
0

15
0

20
0

25
0

05010
0

15
0

20
0

25
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(d

)

Number of PD−Pursuit steps

P
rim

al
−

D
ua

l s
te

ps
 ta

ke
n

fo
r

ex
ac

t r
ec

ov
er

y

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

sp
ar

se
 s

ig
na

l r
ec

ov
er

y
us

in
g

O
M

P
 (

n=
25

6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(b

)

Percentage of signals recovered

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

F
ig

u
re

5:
B

er
n
ou

ll
im

at
ri

x
(n

=
25

6)
.

(a
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

in
S

-s
te

p
s

of
P

D
-p

u
rs

u
it

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(b
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

b
y

or
th

og
on

al
m

at
ch

in
g

p
u
rs

u
it

(O
M

P
)

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(c
)

P
er

ce
n
ta

ge
of

S
-s

p
ar

se
si

gn
al

s
ex

ac
tl

y
re

co
ve

re
d

b
y

P
D

-p
u
rs

u
it

.
(d

)
A

ve
ra

ge
n
u
m

b
er

of
p
ri

m
al

-d
u
al

st
ep

s
ta

ke
n

fo
r

ex
ac

t
re

co
ve

ry
of
S

-s
p
ar

se
si

gn
al

s.

59

0 50 100 150 200 250
0

50

100

150

200

250

A
ve

ra
ge

 n
um

be
r

of
 P

D
−

pu
rs

ui
t s

te
ps

Exact recovery of S−sparse signals using PD−pursuit with
Average number of primal−dual steps taken whenever signals recovered exactly (n=256)

0 50 100 150 200 250
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 s

ig
na

ls
 r

ec
ov

er
ed

Number of measurements (m)

S=4
S=12
S=20
S=28
S=36
S=42

Figure 6: Bernoulli matrix (n=256). Superimposed Plots for exact recovery of S-
sparse signal with the average number of primal-dual steps taken by primal-dual
pursuit. Dashed lines in the plot and vertical axis on the right gives percentage of
signals recovered using m measurements. Solid lines in the plot and vertical axis
on the left gives the average number of primal-dual steps taken whenever signal is
recovered exactly with m measurements.

60

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

st
ep

 r
ec

ov
er

y
us

in
g

P
D

−
pu

rs
ui

t (
n=

25
6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(a

)

Percentage of signals recovered

0
50

10
0

15
0

20
0

25
0

02040608010
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(c

)

Percentage of signals recovered

E
xa

ct
 r

ec
ov

er
y

of
 S

−
sp

ar
se

 s
ig

na
ls

 u
si

ng
 P

D
−

P
ur

su
it

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

16
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(d

)

Number of PD−Pursuit steps

P
rim

al
−

D
ua

l s
te

ps
 ta

ke
n

fo
r

ex
ac

t r
ec

ov
er

y

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

sp
ar

se
 s

ig
na

l r
ec

ov
er

y
us

in
g

O
M

P
 (

n=
25

6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(b

)

Percentage of signals recovered

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

F
ig

u
re

7:
O

rt
h
og

on
al

iz
ed

G
au

ss
ia

n
m

at
ri

x
(n

=
25

6)
.

(a
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

in
S

-s
te

p
s

of
P

D
-p

u
rs

u
it

u
si

n
g

m
m

ea
su

re
m

en
ts

.
(b

)
P

er
ce

n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

b
y

or
th

og
on

al
m

at
ch

in
g

p
u
rs

u
it

(O
M

P
)

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(c
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
ex

ac
tl

y
re

co
ve

re
d

b
y

P
D

-p
u
rs

u
it

.
(d

)
A

ve
ra

ge
n
u
m

b
er

of
p
ri

m
al

-d
u
al

st
ep

s
ta

ke
n

fo
r

ex
ac

t
re

co
ve

ry
of
S

-s
p
ar

se
si

gn
al

s.

61

0 50 100 150 200 250
0

100

200

A
ve

ra
ge

 n
um

be
r

of
 P

D
−

pu
rs

ui
t s

te
ps

Exact recovery of S−sparse signals using PD−pursuit with
Average number of primal−dual steps taken whenever signals recovered exactly (n=256)

0 50 100 150 200 250
0

50

100

P
er

ce
nt

ag
e

of
 s

ig
na

ls
 r

ec
ov

er
ed

Number of measurements (m)

S=4
S=12
S=20
S=28
S=36
S=42

Figure 8: Orthogonalized Gaussian matrix (n=256). Superimposed Plots for exact
recovery of S-sparse signal with the average number of primal-dual steps taken by
primal-dual pursuit. Dashed lines in the plot and vertical axis on the right gives
percentage of signals recovered using m measurements. Solid lines in the plot and
vertical axis on the left gives the average number of primal-dual steps taken whenever
signal is recovered exactly with m measurements.

62

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

st
ep

 r
ec

ov
er

y
us

in
g

P
D

−
pu

rs
ui

t (
n=

25
6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(a

)

Percentage of signals recovered

0
50

10
0

15
0

20
0

25
0

02040608010
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(c

)

Percentage of signals recovered

E
xa

ct
 r

ec
ov

er
y

of
 S

−
sp

ar
se

 s
ig

na
ls

 u
si

ng
 P

D
−

P
ur

su
it

0
50

10
0

15
0

20
0

25
0

02040608010
0

12
0

14
0

16
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(d

)

Number of PD−Pursuit steps

P
rim

al
−

D
ua

l s
te

ps
 ta

ke
n

fo
r

ex
ac

t r
ec

ov
er

y

0
50

10
0

15
0

20
0

25
0

02040608010
0

S
−

sp
ar

se
 s

ig
na

l r
ec

ov
er

y
us

in
g

O
M

P
 (

n=
25

6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(b

)

Percentage of signals recovered

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

S
=

4
S

=
12

S
=

20
S

=
28

S
=

36
S

=
42

F
ig

u
re

9:
P

ar
ti

al
H

ad
am

ar
d

m
at

ri
x

(n
=

25
6)

.
(a

)
P

er
ce

n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

in
S

-s
te

p
s

of
P

D
-p

u
rs

u
it

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(b
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

b
y

or
th

og
on

al
m

at
ch

in
g

p
u
rs

u
it

(O
M

P
)

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(c
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
ex

ac
tl

y
re

co
ve

re
d

b
y

P
D

-p
u
rs

u
it

.
(d

)
A

ve
ra

ge
n
u
m

b
er

of
p
ri

m
al

-d
u
al

st
ep

s
ta

ke
n

fo
r

ex
ac

t
re

co
ve

ry
of
S

-s
p
ar

se
si

gn
al

s.

63

0 50 100 150 200 250
0

100

200

A
ve

ra
ge

 n
um

be
r

of
 P

D
−

pu
rs

ui
t s

te
ps

Exact recovery of S−sparse signals using PD−pursuit with
Average number of primal−dual steps taken whenever signals recovered exactly (n=256)

0 50 100 150 200 250
0

50

100

P
er

ce
nt

ag
e

of
 s

ig
na

ls
 r

ec
ov

er
ed

Number of measurements (m)

S=4
S=12
S=20
S=28
S=36
S=42

Figure 10: Partial Hadamard matrix (n=256). Superimposed Plots for exact recovery
of S-sparse signal with the average number of primal-dual steps taken by primal-dual
pursuit. Dashed lines in the plot and vertical axis on the right gives percentage of
signals recovered using m measurements. Solid lines in the plot and vertical axis
on the left gives the average number of primal-dual steps taken whenever signal is
recovered exactly with m measurements.

64

0
20

0
40

0
60

0
80

0
10

00
02040608010
0

S
−

st
ep

 r
ec

ov
er

y
us

in
g

P
D

−
pu

rs
ui

t (
n=

25
6)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(a

)

Percentage of signals recovered

0
20

0
40

0
60

0
80

0
10

00
02040608010
0

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(c

)

Percentage of signals recovered

E
xa

ct
 r

ec
ov

er
y

of
 S

−
sp

ar
se

 s
ig

na
ls

 u
si

ng
 P

D
−

P
ur

su
it

0
20

0
40

0
60

0
80

0
10

00
0

20
0

40
0

60
0

80
0

10
00

12
00

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(d

)

Number of PD−Pursuit steps

P
rim

al
−

D
ua

l s
te

ps
 ta

ke
n

fo
r

ex
ac

t r
ec

ov
er

y

0
20

0
40

0
60

0
80

0
10

00
02040608010
0

S
−

sp
ar

se
 s

ig
na

l r
ec

ov
er

y
us

in
g

O
M

P
 (

n=
10

24
)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
m

)
(b

)

Percentage of signals recovered

S
=

25
S

=
50

S
=

10
0

S
=

15
0

S
=

25
S

=
50

S
=

10
0

S
=

15
0

F
ig

u
re

11
:

P
ar

ti
al

H
ad

am
ar

d
m

at
ri

x
(n

=
10

24
).

(a
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

in
S

-s
te

p
s

of
P

D
-p

u
rs

u
it

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(b
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
re

co
ve

re
d

b
y

or
th

og
on

al
m

at
ch

in
g

p
u
rs

u
it

(O
M

P
)

u
si

n
g
m

m
ea

su
re

m
en

ts
.

(c
)

P
er

ce
n
ta

ge
of
S

-s
p
ar

se
si

gn
al

s
ex

ac
tl

y
re

co
ve

re
d

b
y

P
D

-p
u
rs

u
it

.
(d

)
A

ve
ra

ge
n
u
m

b
er

of
p
ri

m
al

-d
u
al

st
ep

s
ta

ke
n

fo
r

ex
ac

t
re

co
ve

ry
of
S

-s
p
ar

se
si

gn
al

s.

65

0 100 200 300 400 500 600 700 800 900 1000
0

1000

A
ve

ra
ge

 n
um

be
r

of
 P

D
−

pu
rs

ui
t s

te
ps

Exact recovery of S−sparse signals using PD−pursuit with
Average number of primal−dual steps taken whenever signals recovered exactly (n=1024)

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

P
er

ce
nt

ag
e

of
 s

ig
na

ls
 r

ec
ov

er
ed

Number of measurements (m)

S=25
S=50
S=100
S=150

Figure 12: Partial Hadamard matrix (n=1024). Superimposed Plots for exact re-
covery of S-sparse signal with the average number of primal-dual steps taken by
primal-dual pursuit. Dashed lines in the plot and vertical axis on the right gives
percentage of signals recovered using m measurements. Solid lines in the plot and
vertical axis on the left gives the average number of primal-dual steps taken whenever
signal is recovered exactly with m measurements.

66

APPENDIX A

PRIMAL DUAL FORMULATION

A.1 Standard primal dual LP

Let us consider the following linear program under inequality constraints.

minimize
z

cT z subject to Mz � b, (Primal-LP)

where z ∈ Rn, c ∈ Rn, M ∈ Rm×n and b ∈ Rm. Here � and � denote element wise

inequalities. Dual to (Primal-LP) is given as

maximize
v

− bTv subject to MTv + c = 0, v � 0, (Dual-LP)

where v ∈ Rm is the dual vector [4].

A.2 `1 norm with equality constraint

Let x ∈ Rn, A ∈ Rm×n, y ∈ Rm, then our first convex program is given as

minimize
x

‖x‖1 such that Ax = y (P-EQ)

We can recast (P-EQ) into an equivalent linear program (LP) as

minimize
x,u

n∑
i=1

ui Dual Variables (A.1)

subject to x− u � 0 ν1

−x− u � 0 ν2

Ax � y λ1

−Ax � −y λ2

where u ∈ Rn is a dummy vector. We have written the respective dual variables

opposite to each set of inequalities, dimension of the dual vectors will match the

67

number of inequalities, i.e., ν1,2 ∈ Rn and λ1,2 ∈ Rm. Now we can relate (A.1) to the

form of (Primal-LP) with following format:

c =

 0

1

 , z =

 x

u

 , M =



I −I

−I −I

A 0

−A 0


, b =



0

0

y

−y


,

where 1 is a vector with all its entries as 1, I is n-dimensional identity matrix. The

dual to (P-EQ) can be written as

maximize
ν1,ν2,λ1,λ2

−
[

0 0 yT −yT
]


ν1

ν2

λ1

λ2


(A.2)

subject to

 I −I AT −AT

−I −I 0 0




ν1

ν2

λ1

λ2


+

 0

1

 = 0,

ν1, ν2, λ1, λ2 � 0.

where ν1, ν2 are n-dimensional and λ1, λ2 are m-dimensional dual vectors. The

feasibility conditions are as follows:

ν1 − ν2 + ATλ1 − ATλ2 = 0

−ν1 − ν2 + 1 = 0

ν1, ν2, λ1, λ2 � 0.

Let us set λ = λ1−λ2 and ν = ν1−ν2. Now we know that ν1 = 1−ν2 and ν1, ν2 � 0,

so we can write the second feasibility condition in its equivalent form as ‖ν‖∞ ≤ 1,

where ‖ · ‖∞ is the infinity or supremum norm. Also we can write the first feasibility

68

condition as

AT (λ1 − λ2) = ν2 − ν1,

and taking supremum norm on both sides we get the following feasibility condition

‖ATλ‖∞ = ‖ν‖∞ ≤ 1.

Since λ = λ1 − λ2 and λ1, λ2 � 0, therefore λ is unconstrained in sign. So we can

write the dual problem to (P-EQ) as:

maximize
λ

− yTλ subject to ‖ATλ‖∞ ≤ 1 (D-EQ)

A.3 `1 norm with bounded residual - Dantzig selector

Let x ∈ Rn, A ∈ Rm×n, y ∈ Rm and ε be a small non-zero constant. The convex

program for Dantzig selector is given as

minimize
x

‖x‖1 subject to ‖AT (Ax− y)‖∞ ≤ ε (P-DS)

We can write its equivalent LP as:

minimize
x,u

n∑
i=1

ui Dual Variables (A.3)

subject to x− u � 0 ν1

−x− u � 0 ν2

ATAx � ε+ ATy λ1

−ATAx � ε− ATy λ2

where u ∈ Rn is a dummy vector. We have written the respective dual variables

opposite to each set of inequalities, dimension of the dual vectors will match the

number of inequalities, and here all of them will be n-dimensional. Now we can relate

69

(A.3) to the form of (Primal-LP) with following format:

c =

 0

1

 , z =

 x

u

 , M =



I −I

−I −I

ATA 0

−ATA 0


, b =



0

0

ε1 + ATy

ε1− ATy


So the dual to (P-DS) can be written as:

maximize
ν1,ν2,λ1,λ2

−
[

0 0 (ε1 + ATy)T (ε1− ATy)T
]


ν1

ν2

λ1

λ2


(A.4)

s.t.

 I −I ATA −ATA

−I −I 0 0




ν1

ν2

λ1

λ2


+

 0

1

 = 0,

ν1, ν2, λ1, λ2 ≥ 0.

The feasibility conditions are as follows:

ν1 − ν2 + ATAλ1 − ATAλ2 = 0

−ν1 − ν2 + 1 = 0

ν1, ν2, λ1, λ2 ≥ 0.

Let us set λ = λ1 − λ2 and ν = ν1 − ν2. Now we know ν1 = 1 − ν2 and ν1, ν2 ≥ 0,

so we can write the second feasibility condition in its equivalent form as ‖ν‖∞ ≤ 1.

Also we can write the first feasibility condition as

ATA(λ1 − λ2) = ν2 − ν1,

taking supremum norm on both sides gives us the following feasibility condition.

‖ATAλ‖∞ = ‖ν‖∞ ≤ 1.

70

This way we get rid of ν terms in the constraints. Now we can write the dual problem

(A.4) as:

maximize
λ1,λ2

− (ε1T (λ1 + λ2) + (ATy)Tλ) (A.5)

subject to ‖ATAλ‖∞ ≤ 1

λ = λ1 − λ2

λ1, λ2 � 0

Now we know λ = λ1−λ2, and at any index i either λ1(i) or λ2(i) is zero (because they

represent complementary constraints), and λ1, λ2 � 0, so we can write 1T (λ1 + λ2)

as `1 norm of λ = λ1 − λ2. Now our optimization variable will be λ (which is

unconstrained in sign). So our Dual problem to (P-DS) can be written as

maximize
λ

− (ε‖λ‖1 + 〈λ,ATy〉) subject to ‖ATAλ‖∞ ≤ 1 (D-DS)

71

REFERENCES

[1] “IEEE Signal Processing Magazine [Sensing, Sampling, and Compression],” Sig-
nal Processing Magazine, IEEE, vol. 25, no. 2, March 2008.

[2] Abbott, E., Flatland: A Romance of Many Dimensions. Seeley & Co., 1884.

[3] Bickel, P. and Ya’acov Ritov, A. T., “Simultaneous analysis of Lasso and
Dantzig selector,” Arxiv preprint arXiv:0801.1095, 2008.

[4] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Univer-
sity Press, March 2004.

[5] Burrus, C., Gopinath, R., and Guo, H., Introduction to Wavelets and
Wavelet Transforms: A Primer. Prentice Hall, Upper Saddle River, NJ, 1998.

[6] Candes, E., “Compressive sampling,” Proceedings of the International Congress
of Mathematicians, Madrid, Spain, vol. 3, pp. 1433–1452, 2006.

[7] Candes, E. and Plan, Y., “Near-ideal model selection by L1 minimization,”
Arxiv preprint arXiv:0801.0345, 2008.

[8] Candes, E. and Romberg, J., “Sparsity and incoherence in compressive sam-
pling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.

[9] Candes, E., Romberg, J., and Tao, T., “Stable signal recovery from incom-
plete and inaccurate measurements,” Comm. Pure Appl. Math, vol. 59, no. 8,
pp. 1207–1223, 2006.

[10] Candes, E. and Tao, T., “The Dantzig selector: Statistical estimation when p
is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–2351, 2007.

[11] Candes, E. J. and Tao, T., “Near-optimal signal recovery from random projec-
tions: Universal encoding strategies?,” Information Theory, IEEE Transactions
on, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[12] Candes, E. and Donoho, D., “New tight frames of curvelets and optimal
representations of objects with piecewise C2 singularities,” Communications on
Pure and Applied Mathematics, vol. 57, no. 2, pp. 219–266, 2004.

[13] Candes, E., Romberg, J., and Tao, T., “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information,” In-
formation Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[14] Candes, E. and Tao, T., “Decoding by linear programming,” Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

72

[15] Candes, E., “Lecture Notes; Compressive Sampling and Frontiers in Signal
Processing.” New direction short course, The Institute of Mathematics and its
Applications, University of Minnesota, June 2007.

[16] Candes, E. and Romberg, J., “`1-magic: Recovery of Sparse Signals via
Convex Programming.” http://www.acm.caltech.edu/l1magic.

[17] Chen, S. S., Donoho, D. L., and Saunders, M. A., “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–
61, 1999.

[18] Cohen, A., Dahmen, W., and DeVore, R., “Near optimal approximation of
arbitrary signals from highly incomplete measurements,” Preprint.

[19] Coifman, R. and Wickerhauser, M., “Entropy-based algorithms for best
basis selection,” Information Theory, IEEE Transactions on, vol. 38, no. 2,
pp. 713–718, Mar 1992.

[20] Daubechies, I., Defrise, M., and De Mol, C., “An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint,” Communications
on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.

[21] Daubechies, I., Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial
and Applied Mathematics (SIAM), 1992.

[22] Donoho, D. L. and Tsaig, Y., “Fast solution of `1 minimization problems
when solution may be sparse.” Preprint, October 2006.

[23] Donoho, D., “Compressed sensing,” Information Theory, IEEE Transactions
on, vol. 52, no. 4, pp. 1289–1306, April 2006.

[24] Donoho, D., Elad, M., and Temlyakov, V., “Stable recovery of sparse over-
complete representations in the presence of noise,” Information Theory, IEEE
Transactions on, vol. 52, no. 1, pp. 6–18, 2006.

[25] Donoho, D. and Huo, X., “Uncertainty principles and ideal atomic decomposi-
tion,” Information Theory, IEEE Transactions on, vol. 47, no. 7, pp. 2845–2862,
Nov 2001.

[26] Donoho, D. and Johnstone, J., “Ideal spatial adaptation by wavelet shrink-
age,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[27] Donoho, D. and Stark, P., “Uncertainty principles and signal recovery,”
SIAM Journal on Applied Mathematics, vol. 49, no. 3, pp. 906–931, 1989.

[28] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

73

[29] Figueiredo, M., Nowak, R., and Wright, S., “Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse prob-
lems,” Selected Topics in Signal Processing, IEEE Journal of, vol. 1, no. 4,
pp. 586–597, 2007.

[30] Fuchs, J., “On sparse representations in arbitrary redundant bases,” Informa-
tion Theory, IEEE Transactions on, vol. 50, no. 6, pp. 1341–1344, 2004.

[31] Golub, G. and Van Loan, C., Matrix Computations. Johns Hopkins Univer-
sity Press, 1996.

[32] Gorodnitsky, I. and Rao, B., “Sparse signal reconstruction from limited data
using FOCUSS: A re-weighted minimum norm algorithm,” Signal Processing,
IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], vol. 45, no. 3, pp. 600–616, 1997.

[33] Grant, M., Boyd, S., and Y.Ye., “CVX: Matlab software for disciplined
convex programming.” http://stanford.edu/ boyd/cvx.

[34] Horn, R. and Johnson, C., Matrix Analysis. Cambridge University Press,
1985.

[35] James, G., Radchenko, P., and Lv, J., “The DASSO algorithm for fit-
ting the Dantzig selector and the Lasso,” Under review.(Available at www-
rcf.usc.edu/∼gareth), 2007.

[36] Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., “An
interior-point method for large-scale `1-regularized least squares,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 1, no. 4, pp. 606–617, 2007.

[37] Lugosi, Gabór, “Concentration-of-Measure Inequalities,” Lecture notes,
www.econ.upf.edu/ lugosi/anu.ps, February 2006.

[38] Mallat, S., A Wavelet Tour of Signal Processing, Second Edition (Wavelet
Analysis & Its Applications). Academic Press, September 1999.

[39] Meinshausen, N. and Yu, B., “Lasso-type recovery of sparse representations
for high-dimensional data,” submitted to Annals of Statistics, 2007.

[40] Natarajan, B. K., “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[41] Needell, D. and Tropp, J., “CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples,” Arxiv preprint arXiv:0803.2392, 2008.

[42] Nesterov, Y. and Nemirovsky, A., “Interior Point Polynomial Methods in
Convex Programming,” Studies in Applied Mathematics (SIAM), vol. 13, 1994.

74

[43] Osborne, M., Presnell, B., and Turlach, B., “A new approach to variable
selection in least squares problems,” IMA Journal of Numerical Analysis, vol. 20,
no. 3, pp. 389–403, 2000.

[44] Osborne, M., Presnell, B., and Turlach, B., “On the lasso and its dual,”
Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 319–337,
2000.

[45] Pennebaker, W. and Mitchell, J., JPEG Still Image Data Compression
Standard. Kluwer Academic Publishers, 1993.

[46] Rao, B. and Kreutz-Delgado, K., “An affine scaling methodology for best
basis selection,” Signal Processing, IEEE Transactions on [see also Acoustics,
Speech, and Signal Processing, IEEE Transactions on], vol. 47, pp. 187–200, Jan
1999.

[47] Rudelson, M. and Vershynin, R., “On sparse reconstruction from Fourier
and Gaussian measurements,” Comm. Pure Appl. Math., to appear.

[48] Shewchuk, J. R., “An introduction to the conjugate gradient method without
the agonizing pain.” http://www.cs.cmu.edu/ quake-papers/painless-conjugate-
gradient.pdf, August 1994.

[49] Stark, H. and Woods, J. W., Probability and Random Processes with Appli-
cations to Signal Processing. Prentice Hall, 2001.

[50] Taubman, D. and Marcellin, M., JPEG2000: Image compression funda-
mentals, standards and practice,. Kluwer Academic Publishers Boston, 2002.

[51] Temlyakov, V., “Nonlinear Methods of Approximation,” Foundations of Com-
putational Mathematics, vol. 3, no. 1, pp. 33–107, 2002.

[52] Tibshirani, R., “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[53] Tropp, J., “Just relax: Convex programming methods for identifying sparse
signals in noise,” Information Theory, IEEE Transactions on, vol. 52, no. 3,
pp. 1030–1051, 2006.

[54] Tropp, J., “Greed is good: Algorithmic results for sparse approximation,” In-
formation Theory, IEEE Transactions on, vol. 50, no. 10, pp. 2231–2242, 2004.

[55] Tropp, J. A. and Gilbert, A., “Signal recovery from random measurements
via orthogonal matching pursuit,” Information Theory, IEEE Transactions on,
vol. 53, pp. 4655–4666, December 2007.

75

