

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector

Muhammad Salman Asif

Thesis Committee:

Justin Romberg (Advisor), James McClellan, Russell Mersereau

School of Electrical and Computer Engineering, Georgia Institute of Technology.

Problem statement

Measurement model

$$y = Ax + e$$

- x:n dimensional unknown signal.
- y:m dimensional measurement vector.
- $A: m \times n$ measurement matrix.
- e: error vector.

The Dantzig selector: A robust estimator for recovery of sparse signals from linear measurements.

DS: minimize $\|\tilde{x}\|_1$ subject to $\|A^T(A\tilde{x}-y)\|_{\infty} \leq \epsilon$,

for some $\epsilon > 0$. This is convex and can be recast into an LP.

Primal Dual pursuit: a homotopy approach to solve the Dantzig selector.

06/19/2008

Outline

Background

- Sparse representation
- Compressed sensing
 - Introduction
 - ℓ_1 minimization
 - Random sensing
 - ℓ_1 estimators
- Primal dual pursuit
 - Dantzig selector primal dual formulation
 - Primal-dual homotopy
 - Main algorithm
 - Primal and dual update
 - Update directions
 - Numerical implementation

- S-step solution property
 - Optimality conditions
 - S-step solution property analysis
 - Random matrices
 - Incoherent ensemble
- Simulation results
- Conclusion & future work

Sparse Representation

• Signal/image x(t) in time/spatial domain can be represented in some basis ψ as

$$x(t) = \sum_{i} \alpha_{i} \psi_{i}$$
 or $x = \Psi \alpha$
 ψ_{i} = basis function

 $\alpha_i = \text{expansion coefficients in } \psi \text{ domain}$

e.g., sinusoids, wavelets, curvelets,...

- Most signals of interest can be well-represented by a small number of transform coefficients in some appropriate basis.
- Magnitude of the transform coefficients decay rapidly, usually following some power law

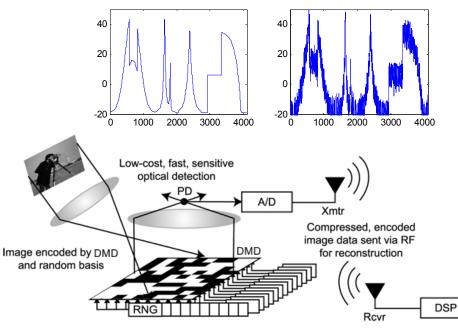
$$|\alpha|_{(k)} \sim k^{-r}$$
, for some $r > 0$

06/19/2008

Benefits of sparsity

Sparsity plays an important role in many signal processing applications such as

- Signal estimating in the presence of noise (thresholding)
- Inverse problems for signal reconstruction (tomography)
- Compression (transform coding)
- Signal acquisition (compressed sensing)



Best K-term approximation with 25k wavelet coeffs.

06/19/2008

Masters Thesis Defense

Compressed Sensing

- Data acquisition (Sampling) Shannon-Nyquist sampling theorem
 - Exact reconstruction of a band-limited signal possible if sampling rate is atleast twice the maximum frequency.
 - Reconstruction phenomenon is linear.
- Compression (Transform coding)
 - Transform signal/image in some suitable basis e.g., wavelets or discrete cosine (DCT)
 - Select few best coefficients without causing much perceptual loss.
 - Transfrom back to the canonical basis.

Sample a signal at or above Nyquist rate, transform into some sparsifying basis, adaptively encode a small portion out of it and throw away the rest. Seems very wasteful!

Is it possible to recover a signal by acquiring only as many nonadaptive samples as we will be keeping eventually? Answer is YES and lies in compressed sensing!

06/19/2008

Compressed Sensing

"entia non sunt multiplicanda praeter necessitatem -- entities must not be multiplied beyond necessity".

-Occam's Razor (wiki)

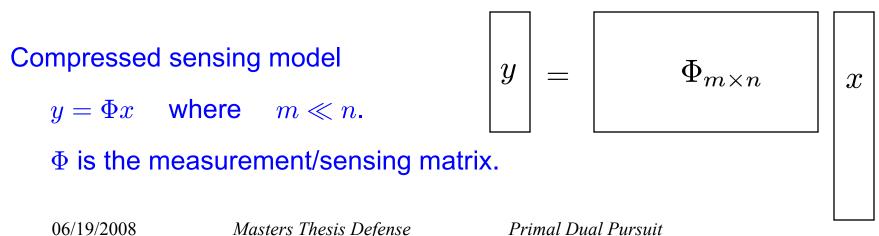
"Consider projecting the points of your favorite sculpture first onto a plane and then onto a single line". This is the power of dimensionality reduction! – [Achlioptas 2001]

Compressed Sensing Model

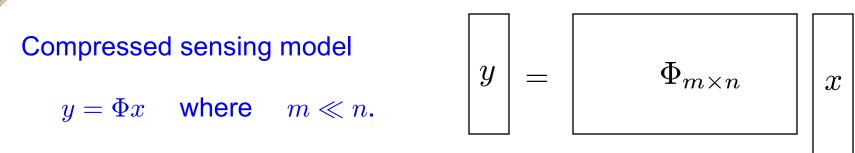
• Take m linear measurements of n dimensional signal x

 $y_1 = \langle x, \varphi_1 \rangle, \ y_2 = \langle x, \varphi_2 \rangle, \ \dots \ y_m = \langle x, \varphi_m \rangle \quad \text{or} \quad y = \Phi x$

- Generalized sampling/sensing, equivalent to sampling in transform domain φ . Call φ_k sensing functions.
- Choice of φ_k gives flexibility in acquisition
 - Dirac delta functions : conventional sampling.
 - Block indicator functions : pixels values collected from CCD arrays.
 - Sinusoids : Fourier measurements in MRI.



Signal Reconstruction



- Underdetermined system : Impossible to solve in general!
- Infinetely many possible solutions on the hyperplane

$$\mathcal{H} := \{ \hat{x} : \Phi \hat{x} = y \} = \mathcal{N}(\Phi) + x$$

- However situation is different if x is sufficiently sparse and Φ obeys some incoherence properties.
- Combinatorial search : Find sparsest vector in hyperplane \mathcal{H} .

 P_0 : minimize $\|\tilde{x}\|_0$ subject to $\Phi \tilde{x} = y$

Combinatorial optimization problem, known to be NP-hard.

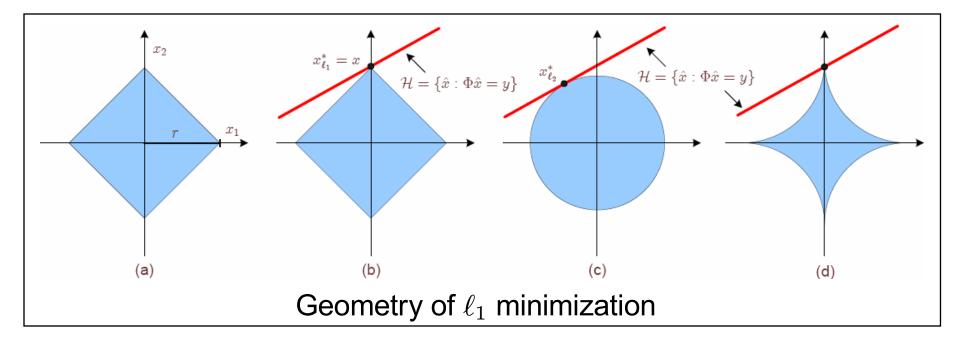
06/19/2008

Masters Thesis Defense

Convex Relaxation

- minimum ℓ_1 norm
 - P_1 : minimize $\|\tilde{x}\|_1$ subject to $\Phi \tilde{x} = y$

Can be recast into an LP for real data and SOCP for complex data.



Uniform Uncertainty Principle

• Uniform uncertainty principle (UUP) or Restricted Isometry Property

 $(1 - \delta_S) \|c\|_2^2 \le \|\Phi_T c\|_2^2 \le (1 + \delta_S) \|c\|_2^2$ (RIP)

- δ_S : *S*-restricted isometry constant.
- $-\Phi_T$: columns of Φ indexed by set T.
- UUP requires Φ to obey (RIP) for every subset of columns T and coefficient sequence $\{c_j\}_{j\in T}$ such that $|T| \leq S$.
- This essentially tells that every subset of columns with cardinality less than *S* behaves almost like an orthonormal system.
- An equivalent form of Uniform uncertainty principle

$$\frac{1}{2}\frac{m}{n}\|c\|_2^2 \le \|\Phi_T c\|_2^2 \le \frac{3}{2}\frac{m}{n}\|c\|_2^2$$

where columns of Φ are not normalized, $\delta_S = \frac{1}{2}$.

06/19/2008

Masters Thesis Defense

Uniform Uncertainty Principle

• Uniform uncertainty principle (UUP) or Restricted Isometry Property

 $(1 - \delta_S) \|c\|_2^2 \le \|\Phi_T c\|_2^2 \le (1 + \delta_S) \|c\|_2^2$ (RIP)

- δ_S : *S*-restricted isometry constant.
- $-\Phi_T$: columns of Φ indexed by set T.
- UUP requires Φ to obey (RIP) for every subset of columns T and coefficient sequence $\{c_j\}_{j\in T}$ such that $|T| \leq S$.
- This essentially tells that every subset of columns with cardinality less than *S* behaves almost like an orthonormal system.
 - Matrices which obey UUP
 - Gaussian matrix
 - Bernoulli matrix
 - Partial Fourier matrix
 - Incoherent ensemble

 $m \gtrsim S \cdot \log n$

- $m \gtrsim S \cdot \log n$
- $m\gtrsim S\cdot \log^5 n$
- $m \gtrsim \mu^2 S \cdot \log^5 n$

06/19/2008

Stable Recovery

Compressed sensing model in the presence of noise

 $y = \Phi x + e,$

 ℓ_1 minimization with data fidelity constraints

• Quadratic constraints

minimize $\|\tilde{x}\|_1$ subject to $\|\Phi\tilde{x} - y\|_2 \le \epsilon$

Also known as Lasso in statistics community.

• Bounded residual correlation : The Dantzig selector

minimize $\|\tilde{x}\|_1$ subject to $\|\Phi^*(\Phi\tilde{x}-y)\|_{\infty} \leq \epsilon$,

where ϵ is usually chosen close to $\sqrt{2\log n} \cdot \sigma$, assuming that entries in e are i.i.d. $N(0, \sigma^2)$.

06/19/2008

Dantzig selector

• The Dantzig selector

minimize $\|\tilde{x}\|_1$ subject to $\|\Phi^*(\Phi\tilde{x}-y)\|_{\infty} \leq \epsilon$,

where ϵ is usually chosen close to $\sqrt{2\log n} \cdot \sigma$, assuming that entries in e are i.i.d. $N(0, \sigma^2)$.

• If columns of Φ are unit normed then solution x^* to DS obeys

$$||x - x^*||_2^2 \le C \cdot 2\log n \cdot \left(\sigma^2 + \sum_{i=1}^n \min(x_i^2, \sigma^2)\right),$$

• Soft thresholding (ideal denoising) : estimate x from noisy samples y = x + e

```
minimize \|\tilde{x}\|_1 subject to \|y - \tilde{x}\|_{\infty} \leq \lambda \cdot \sigma.
```

06/19/2008

Masters Thesis Defense

06/19/2008

Dantzig Selector Primal and Dual

• System model

$$y = Ax + e$$

- $x \in \mathbb{R}^n$: unknown signal
- $y \in \mathbb{R}^m$: measurement vector
- $A \in \mathbb{R}^{m \times n}$: measurement matrix
- $e \in \mathbb{R}^m$: noise vector.
- Dantzig selector (Primal)

minimize $\|\tilde{x}\|_1$ subject to $\|A^T(A\tilde{x}-y)\|_{\infty} \leq \epsilon$,

• Dantzig selector (Dual)

maximize $-(\epsilon \|\lambda\|_1 + \langle \lambda, A^T y \rangle)$ subject to $\|A^T A \lambda\|_{\infty} \leq 1$ where $\lambda \in \mathbb{R}^n$ is the dual vector.

06/19/2008

Dantzig Selector Primal and Dual

- Strong duality tells us that at any primal-dual solution pair (x^*,λ^*) corresponding to certain ϵ

$$\|x^*\|_1 = -(\epsilon \|\lambda^*\|_1 + \langle \lambda^*, A^T y \rangle)$$

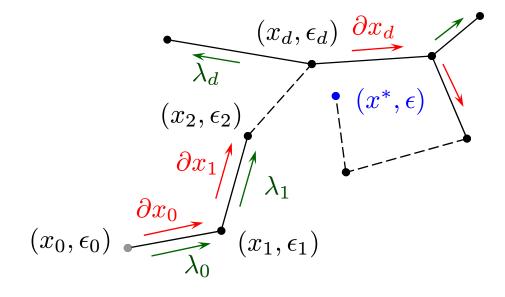
or equivalently

$$\|x^*\|_1 + \epsilon \|\lambda^*\|_1 = -\langle x^*, A^T A \lambda^* \rangle + \langle \lambda^*, A^T (A x^* - y) \rangle.$$
 (1)

- Using (1), the complementary slackness and feasibility conditions for primal and dual problems we get the following four optimality conditions for the solution pair (x^*, λ^*)
 - **K1.** $A_{\Gamma_{\lambda}}^{T}(Ax^{*}-y) = \epsilon z_{\lambda}$
 - **K2.** $A_{\Gamma_x}^T A \lambda^* = -z_x$
 - **K3.** $|a_{\gamma}^{T}(Ax^{*}-y)| < \epsilon$ for all $\gamma \in \Gamma_{\lambda}^{c}$
 - **K4.** $|a_{\gamma}^{T}A\lambda^{*}| < 1$ for all $\gamma \in \Gamma_{x}^{c}$

06/19/2008

- Homotopy Principle: Start from an artificial initial value and iteratively move towards the desired solution by gradually adjusting the homotopy parameter(s).
- In our formulation homotopy parameter is ϵ .
- Follow the path traced by sequence of primal-dual solution pairs (x_k, λ_k) for a range of ϵ_k as $\epsilon_k \downarrow \epsilon$, and consequently $x_k \to x^*$.



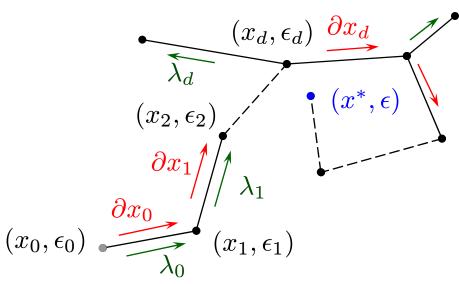
- Active primal constraints give us sign and support of dual vector λ
- Active dual constraints give us sign and support of primal vector \boldsymbol{x}

$$A_{\Gamma_{\lambda}}^{T}(Ax_{k} - y) = \epsilon_{k} z_{\lambda}$$
$$A_{\Gamma_{x}}^{T} A\lambda_{k} = -z_{x}$$

And we keep track of supports Γ_x, Γ_λ and sign sequences z_x, z_λ all the time.

- Start at sufficiently large ϵ_k such that $x_k = 0$ and only one dual constraint is active (use $\epsilon_k = ||A^T y||_{\infty}$).
- Move in the direction which reduces ϵ by most, until there is some change in the supports.
- Update the supports and sign sequences for primal and dual vectors and find new direction to move in.

06/19/2008



- The homotopy path for x_k is piecewise linear and the kinks in this path represent some critical values of ϵ_k where primal and/or dual supports change.
- Either a new element enters the support or an element from within the support shrinks to zero.
- At any instant, the optimality conditions (K1-K4) must be obeyed by the primal-dual solution pair (x_k, λ_k) .

06/19/2008

At every *k*th step we have primal-dual vectors (x_k, λ_k) , respective support $(\Gamma_x, \Gamma_\lambda)$ and sign sequence (z_x, z_λ) .

We can divide each step into two main parts

- Primal update: Compute update direction ∂x and smallest step size δ such that either a new element enters Γ_λ or an existing element leaves Γ_x.
- Dual update: Compute update direction *∂λ* and smallest step size *θ* such that either a new element enters Γ_x or an existing element leaves Γ_λ.

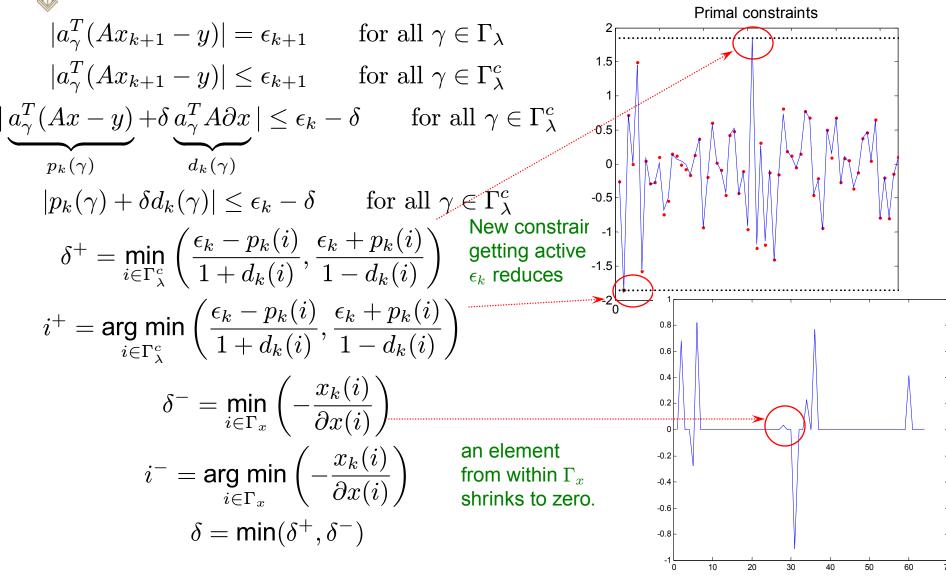
Set

- $x_{k+1} = x_k + \delta \partial x$
- $\lambda_{k+1} = \lambda_k + \theta \partial \lambda$

and update primal-dual supports and sign sequences.

06/19/2008

Primal Update



06/19/2008

Masters Thesis Defense

Dual Update

$$\begin{aligned} |a_{\nu}^{T}A\lambda_{k+1}| &= 1 & \text{for all } \nu \in \Gamma_{x} \\ |a_{\nu}^{T}A\lambda_{k+1}| &\leq 1 & \text{for all } \nu \in \Gamma_{x}^{c} \\ \underbrace{a_{\nu}^{T}A\lambda_{k}}_{a_{k}(\nu)} + \theta \underbrace{a_{\nu}^{T}A\partial\lambda}_{b_{k}(\nu)}| &\leq 1 & \text{for all } \nu \in \Gamma_{x}^{c} \\ |a_{k}(\nu) + \theta b_{k}(\nu))| &\leq 1 & \text{for all } \nu \in \Gamma_{x}^{c} \\ \theta^{+} &= \min_{j \in \Gamma_{x}^{c}} \left(\frac{1 - a_{k}(j)}{b_{k}(j)}, \frac{1 + a_{k}(j)}{-b_{k}(j)}\right) \\ j^{+} &= \arg\min_{j \in \Gamma_{x}^{c}} \left(\frac{1 - a_{k}(j)}{b_{k}(j)}, \frac{1 + a_{k}(j)}{-b_{k}(j)}\right) \\ \theta^{-} &= \min_{j \in \Gamma_{\lambda}} \left(\frac{-\lambda(j)}{\partial\lambda(j)}\right) \\ j^{-} &= \arg\min_{j \in \Gamma_{\lambda}} \left(\frac{-\lambda(j)}{\partial\lambda(j)}\right) \\ \theta &= \min(\theta^{+}, \theta^{-}) \end{aligned}$$

06/19/2008

Masters Thesis Defense

• Primal update direction

$$\partial x = \begin{cases} -(A_{\Gamma_{\lambda}}^{T}A_{\Gamma_{x}})^{-1}z_{\lambda} & \text{on } \Gamma_{x} \\ 0 & \text{elsewhere} \end{cases}$$

• Dual update direction

$$\partial \lambda = \begin{cases} -z_{\gamma} (A_{\Gamma_x}^T A_{\Gamma_{\lambda}})^{-1} A_{\Gamma_x}^T a_{\gamma} & \text{ on } \Gamma_{\lambda} \\ z_{\gamma} & \text{ on } \gamma \\ 0 & \text{ elsewhere } \end{cases}$$

Why?
$$A_{\Gamma_x}^T A(\lambda + \theta \partial \lambda) = -z_x$$

 $A_{\Gamma_x}^T A_{\Gamma_\lambda} \tilde{\partial \lambda} + A_{\Gamma_x}^T a_{\gamma} z_{\gamma} = 0.$

Primal Dual Pursuit Algorithm

Primal update:

else

$$\tilde{\Gamma}_{\lambda} = \Gamma_{\lambda} \cup \{i^{+}\}$$

$$z_{\lambda} = \operatorname{sign}[A_{\tilde{\Gamma}_{\lambda}}^{T}(Ax_{k+1} - y)]$$

$$\gamma = i^{+}$$

$$z_{\gamma} = z_{\lambda}(\gamma)$$
I if

 $\{\text{store } i^+ \text{ but do not update } \Gamma_\lambda\} \\ \{\text{update } z_\lambda\}$

end if

06/19/2008

Primal Dual Pursuit Algorithm

Dual update:

compute the dual update direction $\partial \lambda$ compute a_k and b_k if $\delta = \delta^-$ && sign $[a_k(i^-)] = sign[b_k(i^-)]$ then {a check needed due to uncertainty in sign} $\partial \lambda \leftarrow -\partial \lambda$ {flip the sign of $\partial \lambda$ and in turn b_k } $b_k \leftarrow -b_k$ end if compute θ $\lambda_{k+1} = \lambda_k + \theta \partial \lambda$ if $\theta = \theta^-$ then $\Gamma_{\lambda} \leftarrow \tilde{\Gamma}_{\lambda} \setminus j^{-}$ {remove j^- from supp (λ) and update Γ_{λ} } {update sign sequence on updated support} update z_{λ} else $\Gamma_x \leftarrow \Gamma_x \cup \{j^+\}$ {add j^+ to supp(x) and update Γ_x } {set Γ_{λ} to supp (λ) determined in Primal update} $\Gamma_{\lambda} \leftarrow \Gamma_{\lambda}$ $z_x = \operatorname{sign}[A_{\Gamma_x}^T A \lambda_{k+1}]$ {update z_x } end if

06/19/2008

Numerical Implementation

- Main computational cost
 - Update direction $(\partial x, \partial \lambda)$.
 - Step size (δ, θ) .
- No need to solve a new system at every step.
- Just update the most recent inverse matrix whenever supports change.
 - Matrix inversion lemma.
 - Rank one update.

$$\tilde{A}^T \tilde{B} = \begin{bmatrix} A^T & a^T \end{bmatrix} \begin{bmatrix} B \\ b \end{bmatrix} = \begin{bmatrix} A^T B & A^T b \\ a^T B & a^T b \end{bmatrix} =: \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

06/19/2008

Numerical Implementation

- Just update the most recent inverse matrix whenever supports change.
 - Matrix inversion lemma.
 - Rank one update.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1} A_{12} S^{-1} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} S^{-1} \\ -S^{-1} A_{21} A_{11}^{-1} & S^{-1} \end{bmatrix},$$

where $S = A_{22} - A_{21} A_{11}^{-1} A_{12}$ is the Schur complement of A_{11} .
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{11} & A_{12} \end{bmatrix}^{-1} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{11} & Q_{12} \end{bmatrix},$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}$$
$$A_{11}^{-1} = Q_{11} - Q_{12}Q_{22}^{-1}Q_{21}.$$

Computational cost for one step is just few matrix vector multiplications.

06/19/2008

S-step Solution

• *S*-sparse signal can be recovered in *S* primal-dual step !

$$y = Ax_0$$

• Random measurements

$$m \gtrsim S^2 \cdot \log n$$

Gaussian entries of *A* independently selected to be i.i.d. Gaussian N(0, 1/m). **Bernoulli** entries of *A* independently selected to be $\pm 1/\sqrt{m}$ with equal probability

• Incoherent measurements

$$S \le \frac{1}{2} \left(1 + \frac{1}{M} \right)$$

where $M = \max_{i \neq j} |\langle a_i, a_j \rangle|$

06/19/2008

Optimality Condition

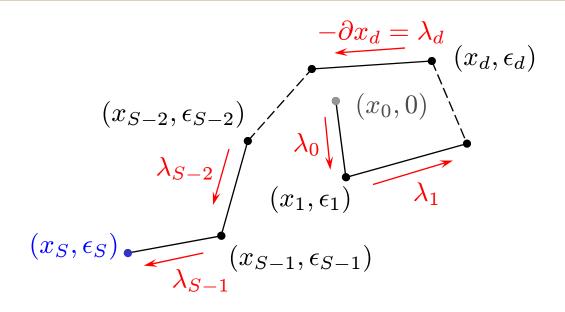
K1.
$$A_{\Gamma_{\lambda}}^{T}(Ax^{*}-y) = \epsilon z_{\lambda}$$

K2. $A_{\Gamma_{x}}^{T}A\lambda^{*} = -z_{x}$
K3. $\|A_{\Gamma_{\lambda}}^{T}(Ax^{*}-y)\|_{\infty} < \epsilon$
K4. $\|A_{\Gamma_{x}}^{T}A\lambda^{*}\|_{\infty} < 1$

$$(x^*_\epsilon,\lambda^*)$$
 is a solution pair

$$\text{for all} \quad 0 \leq \epsilon \leq \epsilon_{crit} := \min_{\gamma \in \Gamma} \left(-\frac{x_0}{\lambda} \right)$$

S step Solution



- Trace the path backwards, starting from exact solution x_0 .
- S step solution property holds if $x_S = 0$. Means all the elements are removed from the support in S steps.
- Only if conditions (H1-H3) hold at every step.

06/19/2008

Dantzig Shrinkability

- 1. k = 0, $\Gamma_0 = \text{supp } x_0$, and $z_0 = \text{sign}(x_0|_{\Gamma_0})$.
- 2. If $x_k = 0$, return Success.

3. Check that

$$\begin{split} &|A_{\Gamma_k^c}^T A_{\Gamma_k} (A_{\Gamma_k}^T A_{\Gamma_k})^{-1} z \|_{\infty} < 1 \\ & \mathsf{sign}[(A_{\Gamma_k}^T A_{\Gamma_k})^{-1} z] = z \end{split}$$

If either condition fails, break and return Failure.

4. Set
$$\lambda_k = \begin{cases} -(A_{\Gamma_k}^T A_{\Gamma_k})^{-1} z_k & \text{on} & \Gamma_k \\ 0 & \text{on} & \Gamma_k^c \end{cases}$$
,
 $\epsilon_{k+1} = \min_{\gamma \in \Gamma_k} \left(\frac{x_k(\gamma)}{-\lambda_k(\gamma)} \right)$,
 $x_{k+1} = x_k + \epsilon_{k+1}\lambda_k$,
 $\gamma'_{k+1} = \arg\min_{\gamma \in \Gamma_k} \left(\frac{x_k(\gamma)}{-\lambda_k(\gamma)} \right)$,
 $\Gamma_{k+1} = \Gamma_k \setminus \gamma'_{k+1}$,
 $z_{k+1} = z_k$ restricted to Γ_{k+1} .
5. Set $k \leftarrow k+1$, and return to step 2.

06/19/2008

Sufficient Conditions for S step Solution

- A_{Γ} be full rank. (H1)
- Let $G = I A_{\Gamma}^T A_{\Gamma}$, then (H2-H3) will be satisfied if ||G|| < 1 and

$$\max_{\gamma \in \{1,\dots,n\}} |\langle (A_{\Gamma}^T A_{\Gamma})^{-1} Y_{\gamma}, z \rangle| < 1,$$
(2)

with

$$Y_{\gamma} = \begin{cases} A_{\Gamma}^{T} a_{\gamma} & \gamma \in \Gamma^{c} \\ A_{\Gamma}^{T} a_{\gamma} - \mathbf{1}_{\gamma} & \gamma \in \Gamma \end{cases},$$

06/19/2008

Condition H3!

If ||G|| < 1, we can write $(A_{\Gamma}^T A_{\Gamma})^{-1} z$ in the following way

$$(A_{\Gamma}^{T}A_{\Gamma})^{-1}z = (I-G)^{-1}z = \sum_{\ell=0}^{\infty} G^{\ell}z = \left(z + \sum_{\ell=1}^{\infty} G^{\ell}z\right),$$

condition (H3) will be satisfied if
$$\left\|\sum_{\ell=1}^{\infty} G^{\ell}z\right\|_{\infty} < 1.$$
$$\left\|\sum_{\gamma\in\Gamma} G^{\ell}z_{\ell=1} G^{\ell}z_{\ell}\right\|_{\infty} < 1.$$
$$\left\|\max_{\gamma\in\Gamma} \left|\langle \mathbf{1}_{\gamma}, \sum_{\ell=1}^{\infty} G^{\ell}z_{\ell}\right| = \max_{\gamma\in\Gamma} \left|\langle \sum_{\ell=1}^{\infty} G^{\ell}\mathbf{1}_{\gamma}, z_{\ell}\right|$$
$$= \max_{\gamma\in\Gamma} \left|\langle \sum_{\ell=1}^{\infty} G^{\ell-1}g_{\gamma}, z_{\ell}\right|$$
$$= \max_{\gamma\in\Gamma} \left|\langle (A_{\Gamma}^{T}A_{\Gamma})^{-1}g_{\gamma}, z_{\ell}\right|$$

06/19/2008

Masters Thesis Defense

Outline of Proof for S-step property

- Bound the norm of Y_{γ} for all $\gamma \in \{1, \dots, n\}$
- Bound the norm of $w_{\gamma} := (A_{\Gamma}^T A_{\Gamma}^T)^{-1} Y_{\gamma}$
- Use Cauchy-Schwarz inequality to satisfy $|\langle w_\gamma,z
 angle|<1$ for all γ

Random Matrices : Gaussian or Bernoulli

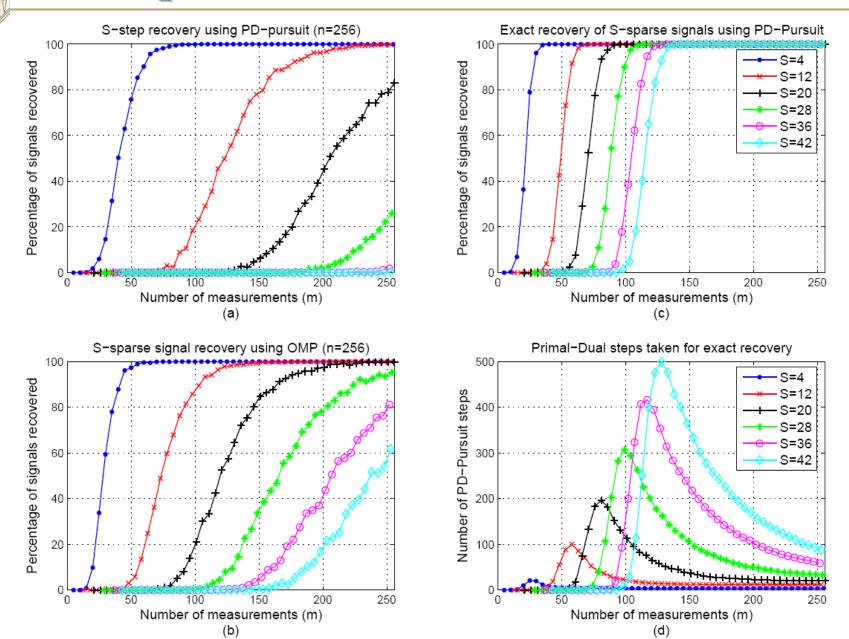
• Each entry of Y_{γ} is bounded by $C_{\beta}\sqrt{\frac{\log n}{m}}$ with probability exceeding

 $1 - O(n^{-\beta})$, for some constant $\beta > 0$. So $||Y_{\gamma}|| < C_{\beta}\sqrt{\frac{S \log n}{m}}$ with same probability.

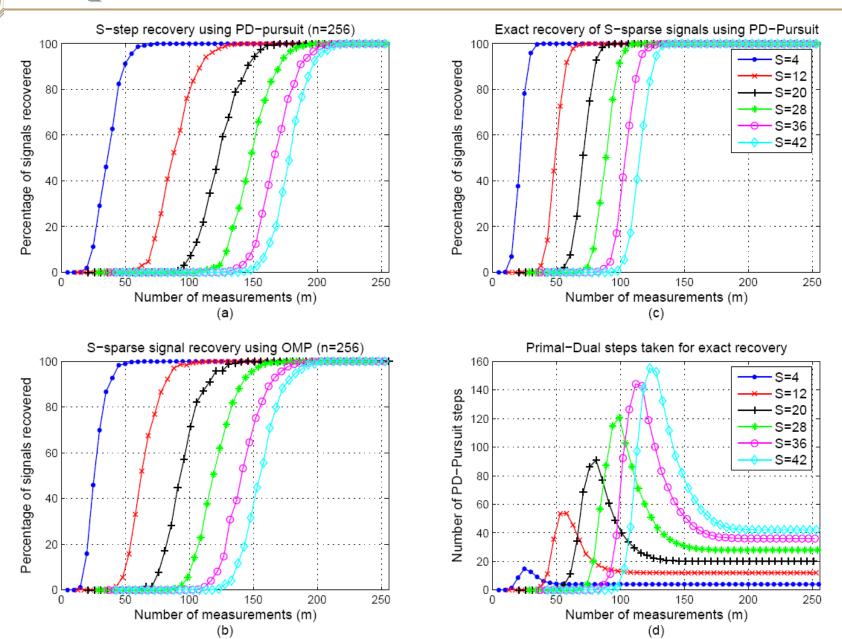
- Uniform uncertainty principle tells us that $||(A_{\Gamma}^T A_{\Gamma})^{-1}|| < 2$ with overwhelming high probability.
- Using Cauchy-Schwarz inequality, (2) is satisfied with probability exceeding $1-O(n^{-\beta})$ if $m\geq C_\beta\cdot S^2\log n$

06/19/2008

Experimental Results (Gaussian)



Experimental Results (Ortho-Gaussian)



Lasso and Dantzig Selector

Lasso

$$\underset{\tilde{x}}{\text{minimize}} \ \frac{1}{2} \|y - A\tilde{x}\|_2^2 + \epsilon \|\tilde{x}\|_1$$
 (Lasso)

- Optimality conditions
 - L1. $A_{\Gamma}^{T}(Ax^{*} y) = -\epsilon z$ L2. $|a_{\gamma}^{T}(Ax^{*} - y)| < \epsilon$ for all $\gamma \in \Gamma^{c}$

$$\partial x^{\text{Lasso}} \Big|_{\Gamma} = (A_{\Gamma}^T A_{\Gamma})^{-1} z \qquad \text{(Lasso update)}$$
$$\partial x^{\text{DS}} \Big|_{\Gamma_x} = -(A_{\Gamma_\lambda}^T A_{\Gamma_x})^{-1} z_\lambda \qquad \text{(DS update)}$$

06/19/2008

Future Work

• Better bound on required number of measurements!

$$S^2 \cdot \log n \quad \stackrel{?}{\longrightarrow} \quad S \cdot \log^{\alpha} n,$$

for some small $\alpha > 0$.

- Investigate the effect of orthogonal rows in the *S*-step recovery.
- Dynamic update of measurements.
- Implementation for largescale problems.

Questions

06/19/2008

Thankyou !

Muhammad Salman Asif

sasif@gatech.edu

06/19/2008